Lecture Hall / Room 056, Graduate School of Mathematical Sciences, The University of Tokyo

October 17-19, 2018

14:20 - 15:00

Influence of surface reconstruction on the impurity incorporation in GaN MOVPE

Yoshihiro Kangawa

RIAM, Kyushu University IMaSS, Nagoya University

Acknowledgements This research was partially supported by the MEXT GaN R&D Project, JSPS KAKENHI (Grant Number JP16H06418), JST SICORP (Grant Number 16813791B), JST CREST (JPMJCR16N2) and the European Union's Horizon 2020 research and innovation program (Grant Number 720527: InRel-NPower project).

http://www.riam.kyushu-u.ac.jp/reme/ http://www.imass.nagoya-u.ac.jp/

Kyushu University Akira Kusaba (MC 2014-2015, DC 2016-) Yuya Inatomi (MC 2016-2017, DC 2018-) Satoshi Yamamoto (MC 2017-)

Nagoya University

Poland

Kenji Shiraishi, Prof. Atsushi Oshiyama, Designated Prof.

Michał Boćkowski, Prof. (UNIPRESS) Stanisław Krukowski, Prof. (UNIPRESS) Paweł Kempisty, Assistant Prof. (UNIPRESS)

Introduction

Methodology

Results

✓ Background ~ Roles of crystal growth simulations ~

✓ Ab initio based-approach

- ✓ Influence of growth orientation on InGaN composition
- ✓ Incorporation mechanism of C & O in GaN MOVPE

Summary

NOXEX Background ~ Roles of crystal growth simulations ~

X®X®X ●X●X● X®X● Background ~ Roles of crystal growth simulations ~

III-Nitride MOVPE

Conventional multi-scale simulation method

Missing links in ******r****** and ******t******

Background ~ Roles of crystal growth simulations ~

Introduction

Methodology

Results

✓ Background ~ Roles of crystal growth simulations ~

✓ Ab initio based-approach

- ✓ Influence of growth orientation on InGaN composition
- ✓ Incorporation mechanism of C & O in GaN MOVPE

Summary

$$G = E_{\text{slab}}^{\text{recon}} - \left[E_{\text{slab}}^{\text{ideal}} + n_{\text{Ga}}^{\text{ad}} \mu_{\text{Ga}}^{gas} + \frac{1}{2} n_{\text{N}}^{\text{ad}} \mu_{\text{N2}}^{gas} + \frac{1}{2} n_{\text{H}}^{ad} \mu_{\text{H2}}^{gas} \right].$$

G: Gibbs free energy, **n**: number of adatoms, **µ**: chemical potential
(**µ** is functions of **p** and **T**)

Ab initio based-approach

Before 2000

Introduction

Methodology

Results

✓ Background ~ Roles of crystal growth simulations ~

✓ Ab initio based-approach

- ✓ Influence of growth orientation on InGaN composition
- ✓ Incorporation mechanism of C & O in GaN MOVPE

Summary

Thermodynamic analysis

Vapor-solid interface $\underline{TMI}(g)+3/2 H_2(g) = In(g)+3CH_3H(g)$ Substrate surface $In(g)+\underline{NH}_3(g) = \underline{InN}(s)+3/2 H_2(g)$ Conservation constraints $\Sigma P_i = P_{In}+P_{NH3}+P_{H2}+P_{CH4}+P_{IG}$ Parameters; F and α $F=P_{H2}^{0}/(P_{H2}^{0}+P_{IG}^{0})$ NH₃(g) \rightarrow (1- α)NH₃(g)+ α /2 N₂(g)+3 α /2 H₂(g) Equilibrium equation for reaction

$$K_{1} = \frac{a_{\text{InN}} P_{\text{H2}}^{3/2}}{P_{\text{In}} \cdot P_{\text{NH3}}}$$

K: Equilibrium constant,

a: Activity

18 37

Influence of surface reconstruction on the impurity incorporation in GaN MOVPE Yoshihiro Kangawa (Kyushu University/Nagoya University)

Input V/III Ratio

Figure 2 (online color at: www.pss-b.com) Results of XRD measurements: In contents (filled symbols) and period lengths (open symbols) of *c*-plane, *a*-plane, and *m*-plane $5 \times \text{GaInN/GaN}$ QW structures as a function of growth temperature.

H. Jönen et al., physica status solidi (b), 248, 600-604 (2011).

Introduction

Methodology

Results

✓ Background ~ Roles of crystal growth simulations ~

✓ Ab initio based-approach

- ✓ Influence of growth orientation on InGaN composition
 - ✓ Incorporation mechanism of C & O in GaN MOVPE

Summary

Matter for investigation

X®X®X

- \blacktriangleright Reconstructed structure on the growth surface (p-T surface phase diagram).
- Formation energy of a substitutional impurity in each layer.

Evaluation criteria of stable surface reconstruction under a certain growth condition

 $G = E_{\text{slab}}^{\text{recon}} - \left[E_{\text{slab}}^{\text{ideal}} + n_{\text{Ga}}^{\text{ad}} \mu_{\text{Ga}}^{gas} + \frac{1}{2} n_{\text{N}}^{\text{ad}} \mu_{\text{N2}}^{gas} + \frac{1}{2} n_{\text{H}}^{ad} \mu_{\text{H2}}^{gas} \right].$ **G**: Gibbs free energy, **n**: number of adatoms, **µ**: chemical potential (**µ** is functions of **p** and **T**)

A. Kusaba et al., JJAP 56 (2017) 070304

Influence of surface reconstruction on the impurity incorporation in GaN MOVPE Yoshihiro Kangawa (Kyushu University/Nagoya University) \star Ga-rich surface model

★ N−H-rich surface model

 $p_{\text{tot}}^0 = 1 \text{ atm}, p_{\text{NH3}}^0 = 0.5 \text{ atm}, \alpha = 0.25, \text{ F} = 0 \text{ or } 1$

Matter for investigation

X®X®X

- \blacktriangleright Reconstructed structure on the growth surface (p-T surface phase diagram).
- Formation energy of a substitutional impurity in each layer.

C_N (carbon substituting nitrogen) is stable in n-type GaN.

FIG. 1. (Color online) Formation energy vs Fermi level for C_{Ga} and C_N in GaN. Ga-rich conditions are shown in (a) and N-rich conditions in (b).

$$\begin{split} E^{f}(\mathbf{C}_{\mathbf{N}}^{q}) &= E_{\mathrm{tot}}(\mathbf{C}_{\mathbf{N}}^{q}) - E_{\mathrm{tot}}(\mathrm{GaN}) - \mu_{\mathrm{C}} + \mu_{\mathrm{N}} \\ &+ q(E_{F} + \boldsymbol{\epsilon}_{v} + \Delta V), \end{split}$$

A. F. Wright et al., JAP 98 (2005) 103531

Surface segregation process

Introduction

Methodology

Results

✓ Background ~ Roles of crystal growth simulations ~

✓ Ab initio based-approach

- ✓ Influence of growth orientation on InGaN composition
- ✓ Incorporation mechanism of C & O in GaN MOVPE

Summary

36

37

Thank you for your kind attention :)

T. Akiyama, T. Ito, Y. Kangawa, T. Nakayama, and K. Shiraishi "Epitaxial Growth of III-Nitride Compounds: Computational Approach" T. Matsuoka, Y. Kangawa (Eds.) Springer Series in Materials Science, vol. 269, 2018

[DOI: 10.1007/978-3-319-76641-6]

nger Series in Materials Science (19

 $σ_{bottom}$: surface energy of bottom side; E_{slab} : total energy of surface slab model; $μ_{NH3}$: total energy of an ammonia molecule; $μ_{In}^{InN(bulk)}$, $μ_N^{InN(bulk)}$, $μ_{InN}^{InN(bulk)}$: chemical potentials of In, N, InN in InN(bulk); n_{In}^{ad} , n_N^{ad} , n_H^{ad} : numbers of In, N, and H adatoms; n_{InN}^{slab} : number of InN formula units; n_{InN}^{top} : number of InN formula unit of the topmost layers; N_A is Avogadro's number; A_{slab} : surface area.

