Mathematical Aspects of Surface and Interface Dynamics 16 @The University of Tokyo, October 17-19, 2018

Crystal growth of two-dimensional materials and heterostructures

Hiroki Hibino Kwansei Gakuin University NTT Basic Research Laboratories

Library of 2D Materials

Graphene family	Graphene	hBM *white gra	N			Granhan	-	
		hBN "white graphene"			BCN	Graphane Fluorographene		Graphene oxide
2D chalcogenides	MoS ₂ , WS ₂	Transition metal dich oS ₂ , WS ₂ , MoSe ₂ , WSe ₂			ogenides (TM onducting ogenides: ,, WTe,, e, and so on	DC) Metallic dichalcogenides: NbSe, NbS, TaS, TiS, NSe, and so on TM mono-/tri-chalcogenides Layered semiconductors: GaSe, GaTe, InSe, B, Se, and so on provide		
2D oxides	Micas, BSCCO	MoO ₃ , WO ₃		Perovskite- LaNb ₂ O ₇ , (Ca,Sr Bi ₄ Ti ₃ O ₁₂ , Ca ₂ Ta ₂ TiC		type:),Nb ₃ O ₁₀ ,	NI(OI	Hydroxides: Hydroxides: H) ₂ , Eu(OH) ₂ and so on
2D oxides	Layered Cu oxides	TiO ₂ , MnO ₂ , V ₂ O ₅ , TaO ₃ , RuO ₂ and so on) ₁₀ and so on		Others
Halides	ZrBr							
Xenes	Phosphorene, Arsenene, Antimonene, Bismuthene Silicene, Germanene, Stanene Borophene, Gallenene							
MXenes	$Ti_2C_7, Ti_3C_{2^\prime}, Ti_4N_{3^\prime}$ and so on (A is removed from $M_{n+1}AX_{n^\prime}$ transition metal carbides, nitrides, or carbonitrides).							

Graphene fabrication method

CONTENTS

1. 2D materials: growth and characterization techniques

2. In-situ observations of graphene segregation on Ni

3. CVD growth of high-quality monolayer and bilayer

4. Growth and structural characterization of hexagonal

boron nitride and 2D heterostructures

graphene

Low-energy electron microscopy (LEEM) Low-energy electron microscopy (LEEM): microscopy using elastically backscattered electrons with the typical energy of 1-100 eV ✓ High reflectivity ✓ Short inelastic mean free path Ee=20 keV ✓ Projection (non-scanning) type Fast image acquisition Deflector Low-energy electron diffraction Surface sensitivity Objective lens Specimen E ~1 eV **Dynamical observations** Structural characterization 8

Fabrication methods of graphene

Structure characterizations using LEEM

Growth control of 2D materials

Time (s)

Millimeter- to centimeter-sized graphene

hch-sized graphene Local supply of feedstock Cu-vialloy substrate U u et al., Nature Matter 15, 43 (2016). Tu et al., Nature Matter 15, 43 (2016). Heating and the state of the state

Single-orientation graphene grown by CVD

CVD growth on heteroepitaxial metal films

Y. Ogawa et al., J. Phys. Chem. Lett. 3, 219 (2012).

21

Dependence of alignment on CVD temperature

Highly uniform bilayer graphene on Ni-Cu(111)

CVD growth of monolayer *h*-BN on Co(0001)

Domain structure in bilayer graphene on NiCu

CVD growth of monolayer h-BN on Co(0001)

CONTENTS

- 1. 2D materials: growth and characterization techniques
- 2. In-situ observations of graphene segregation on Ni
- 3. CVD growth of high-quality monolayer and bilayer graphene
- 4. Growth and structural characterization of hexagonal boron nitride and 2D heterostructures

CVD-grown monolayer *h*-BN on Co(0001)

Low-energy electron reflectivity of graphene/h-BN

Artificial graphene/h-BN heterostructure

Direct growth of TMDCs on 2D materials

SUMMARY

(1) 2D materials

- ✓ New physics and new applications from individual materials and their heterostructures
- (2) Structural characterizations using LEEM
- ✓ Powerful tool for investigating growth dynamics and characterizing various structural features of 2D materials

(3) Growth processes of 2D materials

- ✓ Rapid progress in crystal quality and versatility
- ✓ Comparatively little knowledge about growth mechanism

COLLABORATORS

NTT BRL, C. M. Orofeo, S. Wang, H. Kageshima Waseda Univ., G. Odahara, C. Oshima Tokyo Univ. of Science, Y. Homma Kyushu Univ., S. Mizuno, Y. Ogawa, H. Ago Nagoya Univ., R. Kitaura, H. Shinohara Tokyo Metropolitan Univ., Y. Miyata Kwasnei Gakuin Univ., R. Makino

32