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Isotropic surface diffusion in the plane

Evolving simple (embedded - no intersections) planar closed curve Γ(t).

Let ~x(ρ, t), ρ ∈ I := R/Z (periodic [0, 1]), be a parameterization of Γ(t).

Arclength s → unit tangent ~τ = ~xs =
~xρ
|~xρ|

.

Curvature vector ~κ = ~τs = ~xss =
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

.

Unit normal ~ν → ~κ ≡ κ ~ν, where κ is the curvature.

Let D(t) be the region bounded by Γ(t).

If ~ν is the outward normal, then κ is negative if D(t) is locally convex.
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Isotropic surface diffusion in the plane

For the evolution of Γ(t), it suffices to prescribe its normal velocity

V ≡ ~xt . ~ν.

Note that tangential velocities just change the parameterization ~x(ρ, t).

Surface diffusion: V = −κss
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Isotropic surface diffusion in the plane

V = −κss

Surface diffusion has important applications in e.g. Materials Science. It is
the H−1 gradient flow for the energy |Γ(t)|, and so it has the following
properties.

d

dt
|Γ(t)| =−

∫
Γ(t)
V κ ds = −

∫
Γ(t)

(κs)2 ds ≡ −‖V‖2
H−1(Γ(t)) ≤ 0 .

d

dt
|D(t)| =

∫
Γ(t)
V ds = −

∫
Γ(t)

κss ds = 0 .
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Numerical methods for surface diffusion

Depending on how the free surface Γ(t) is represented, there exist different
types of numerical approaches:

Front tracking methods: • Bower, Freund (1995); Kraft, Arzt (1997);
Xia, Bower, Suo, Shih (1997);
Dziuk, Kuwert, Schätzle (2002);
Bänsch, Morin, Nochetto (2005);
Barrett, Garcke, Nürnberg (2007); . . .

Phase field methods: • Mahadevan, Bradley (1999);
Bhate, Kumar, Bower (2000);
Barrett, Nürnberg, Styles (2004);
Barrett, Garcke, Nürnberg (2006); . . .

Level set methods: • Chopp, Sethian (1999); Li, Zhao, Gao (1999);
Averbuch, Israeli, Ravve, Yavneh (2001); . . .
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Front tracking methods

The discrete tangential motion induced by the numerical scheme can lead
to coalesence in practice.

DKS BMN

BGN
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BGN formulation

Dziuk, Kuwert, Schätzle (2002) is based on the formulation

~xt = −κss ~ν ≡ −~κss − 3
2 (|~κ|2 ~xs)s + 1

2 |~κ|
2 ~κ, ~κ = ~xss .

Bänsch, Morin, Nochetto (2005) is based on the formulation

~xt = V ~ν, V = −κss , κ = ~κ . ~ν, ~κ = ~xss .

Both approaches have in common that they evolve the parameterization ~x
only in the normal direction.

We use the following formulation of surface diffusion:

~xt . ~ν = −κss , κ ~ν = ~xss .

Note that because the tangential component ψ = ~xt . ~τ of the velocity ~xt
is not prescribed, there exists a whole family of solutions ~x , even though
the evolution of Γ is uniquely determined.
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BGN formulation

Weak formulation:
For smooth test functions ϕ ∈ V := H1(R/Z;R) and
~ϕ ∈ V := H1(R/Z;R2) it holds that∫

Γ
~xt . ~ν ϕ ds =

∫
Γ
κs ϕs ds ,

∫
Γ
κ ~ν . ~ϕ ds +

∫
Γ
~xs . ~ϕs ds = 0 .

For the discretization, we approximate Γ(tm) by a polygonal curve Γm.

V h ⊂ V and V h ⊂ V are piecewise linear finite element spaces.

〈·, ·〉Γm is the L2–inner product on Γm.

〈·, ·〉hΓm is the mass-lumped L2–inner product on Γm.
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Parametric finite element approximation

(Ph) Find (~Xm+1, κm+1) ∈ V h × V h such that〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
κm+1
s , χs

〉
Γm = 0 ∀ χ ∈ V h,

〈
κm+1 ~νm, ~η

〉h
Γm +

〈
~Xm+1
s , ~ηs

〉
Γm

= 0 ∀ ~η ∈ V h;

Existence, Uniqueness
Under mild assumptions on ~Xm, ∃! (~Xm+1, κm+1) ∈ V h × V h.
Stability For all k = 1→ M it holds that

|Γk |+
k−1∑
m=0

τm
〈
κm+1
s , κm+1

s

〉
Γm ≤ |Γ0| .

Area conservation for a continuous in time semidiscrete scheme.
Equidistribution of mesh points for ~X (t), where ~X (t) not locally
parallel, for any t > 0, for a continuous in time semidiscrete scheme.
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Equidistribution of mesh points

Although equidistribution cannot be shown for the fully discrete scheme,
(eventual) equidistribution is observed in practice.
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Anisotropy

For the currently chosen interface energy

|Γ| =

∫
Γ

1 ds

the energy minimizers for a given area are circles.
However, in materials science and physics other shapes are of interest:

Morgan, French & Greenleaf (1988)

Salt crystals
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Anisotropy

For the currently chosen interface energy

|Γ| =

∫
Γ

1 ds

the energy minimizers for a given area are circles.
However, in materials science and physics other shapes are of interest:

Solidification to metallic dendrites
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Anisotropy

For the currently chosen interface energy

|Γ| =

∫
Γ

1 ds

the energy minimizers for a given area are circles.
However, in materials science and physics other shapes are of interest:

www.snowcrystals.com

Snow crystals
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Anisotropy

These crystalline shapes, and other non-isotropic shapes, can be modelled
with an anisotropic surface energy

|Γ|γ =

∫
Γ
γ̂(~ν) ds .

Here γ̂ : S1 → R>0 is an anisotropic surface energy density, which models
the effect of the underlying crystal structure on the surface energy.
For mathematical convenience, it is common to extend γ̂ from S1 to all of
R2 via the one-homogeneous extension

γ(~z) := |~z | γ̂
(
~z

|~z |

)
∀ ~z ∈ R2 \ {~0} .

Assuming that γ̂ is smooth and even, i.e. γ̂(−~ν) = γ̂(~ν), we hence obtain
that γ ∈ C 2(R2 \ {~0}) ∩ C (R), with γ(~z) > 0 for ~z 6= ~0, is absolutely
homogeneous of degree 1:

γ(λ~z) = |λ| γ(~z) ∀ ~z ∈ R2 , ∀ λ ∈ R .
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Anisotropy
Examples

Isotropic case: γ(~p) = |~p| ⇐⇒ γ̂(~n) = 1.

l r -norm: γ(~p) = |~p|l r =
(∑2

k=1 |pk |r
) 1

r
.

Weighted norm: γ(~p) = (~p .G ~p)
1
2 ,

for G ∈ R2×2 symmetric, positive definite.

Kobayashi (1993):
γ̂(~n) = 1 + δ cos(k θ(~n)), θ(~n) = arctan(n2

n1
), for δ ∈ R>0, k ∈ N.
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Anisotropy

Different anisotropies can be visualized by their Frank diagram

F := {~p ∈ R2 : γ(~p) ≤ 1}

and their Wulff shape

W := {~q ∈ R2 : γ∗(~q) ≤ 1} ,

which was first introduced by Wulff (1901). Here γ∗ is the dual to γ and
is defined by

γ∗(~q) = sup
~p∈R2\{~0}

~q . ~p

γ(~p)
= sup

~n∈S1

~q . ~n

γ(~n)
.

Wulff shapes are always convex, and they represent the equilibrium shapes
of the anisotropic surface energy. Hence they give an indication of the
shape of the underlying crystal structure that is modelled.
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Anisotropy
Wulff shapes

Isotropic case: γ(~p) = |~p| ⇐⇒ γ̂(~n) = 1.

Frank diagram Wulff shape
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Anisotropy
Wulff shapes

l1-norm: γ(~p) = |~p|l1 =
∑2

i=1 |pi |.

Frank diagram Wulff shape
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Anisotropy
Wulff shapes

Weighted norm: γ(~p) = (~p .G ~p)
1
2 , G =

(
1 0
0 0.25

)
.

Frank diagram Wulff shape
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Anisotropy
Wulff shapes

Kobayashi (1993):
γ̂(~n) = 1− 0.3 cos(4 θ(~n)), θ(~n) = arctan(n2

n1
).

Frank diagram “Wulff shape”
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Anisotropic surface energy

|Γ|γ =

∫
Γ
γ̂(~ν) ds =

∫
Γ
γ(~ν) ds

where γ : R2 → R≥0 is absolutely homogeneous of degree one, i.e.

γ(λ ~p) = |λ| γ(~p) ∀ ~p ∈ R2, ∀ λ ∈ R .

Let Γ(ε) := {~z + ε ~g(~z) : ~z ∈ Γ}. First variation of this energy yields

d

dε
|Γ(ε)|γ |ε=0= −

∫
Γ
~κγ . ~g ds ;

where
~κγ = κγ ~ν = [γ′(~ν)]⊥s

is the anisotropic mean curvature vector, and ~ν = −~x⊥s .
In the isotropic case, γ(~p) = |~p|, we have that |Γ|γ ≡ |Γ|, ~κγ ≡ ~κ and
κγ ≡ κ.
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Anisotropic surface diffusion in the plane

This leads to the geometric evolution equation

Anisotropic surface diffusion: V = −[κγ ]ss .

Similarly to the isotropic case, γ(~p) = |~p|, we have that

d

dt
|Γ(t)|γ = −

∫
Γ(t)
V κγ ds = −

∫
Γ(t)

([κγ ]s)2 ds

and

d

dt
|D(t)| =

∫
Γ(t)
V ds = −

∫
Γ(t)

[κγ ]ss ds = 0 .

It is also possible to introduce an anisotropic mobility β : Sd−1 → R>0 and
then consider the more general flow

V = −(β(~ν) [κγ ]s)s .

For simplicity, we fix β = 1 throughout.
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Weak formulation

For smooth test functions ϕ ∈ V = H1(R/Z;R) and
~ϕ ∈ V = H1(R/Z;R2) it holds that∫

Γ
~xt . ~ν ϕ ds =

∫
Γ
[κγ ]s ϕs ds ,∫

Γ
κγ ~ν . ~ϕ ds +

∫
Γ
γ′(~x⊥s ) . ~ϕ⊥s ds = 0 .

For a general anisotropy, it does not appear possible to approximate the
term ∫

Γ
γ′(~x⊥s ) . ~ϕ⊥s ds

on say, Γm, in terms of ~νm and ~Xm+1, such that the overall finite element
approximation is unconditionally stable.
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BGN class of anisotropies

The desired stability properties lead us to consider sums of weighted
norms. They allow us to model a wide variety of anisotropies, including
crystalline surface energy densities.

In particular, from now on we consider anisotropies of the form

γ(~p) =
L∑
`=1

γ`(~p), γ`(~p) = [~p .G` ~p]
1
2 , ∀ ~p ∈ R2 ,

where G` ∈ R2×2, for ` = 1, . . . , L, are symmetric and positive definite
matrices.

This class of anisotropies was first proposed in Barrett, Garcke & Nürnberg
(2008). Hence we call an anisotropy of the above form a BGN anisotropy.

For later use we note that

γ′(~p) =
L∑
`=1

[γ`(~p)]−1 G` ~p ∀ ~p ∈ R2 \ {~0} .
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BGN Anisotropies
Examples

Regularized l1-norm: γ(~p) =
2∑
`=1

[
δ2 |~p|2 + p2

` (1− δ2)
] 1

2 , δ = 1
2 .

Frank diagram Wulff shape
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BGN Anisotropies
Examples

Regularized l1-norm: γ(~p) =
2∑
`=1

[
δ2 |~p|2 + p2

` (1− δ2)
] 1

2 , δ = 0.01 .

Frank diagram Wulff shape
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BGN Anisotropies
Examples

Hexagonal anisotropy: γ(~p) =
3∑
`=1

[
~p .RT

`

(
1 0

0 δ2

)
R` ~p

] 1
2

, δ = 1
2 .

Frank diagram Wulff shape
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BGN Anisotropies
Examples

Hexagonal anisotropy: γ(~p) =
3∑
`=1

[
~p .RT

`

(
1 0

0 δ2

)
R` ~p

] 1
2

, δ = 0.01 .

Frank diagram Wulff shape
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Parametric finite element approximation

Recall∫
Γ
~xt . ~ν ϕ ds =

∫
Γ
[κγ ]s . ϕs ds ,

∫
Γ
κγ ~ν . ~ϕ ds +

∫
Γ
γ′(~x⊥s ) . ~ϕ⊥s ds = 0 ,

where γ′(~x⊥s ) =
L∑
`=1

[γ`(~x
⊥
s )]−1 G` ~x

⊥
s =

L∑
`=1

[γ`(~ν)]−1 G` ~x
⊥
s .

(Ph
γ ) Find (~Xm+1, κm+1

γ ) ∈ V h × V h such that〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
[κm+1
γ ]s , χs

〉
Γm = 0 ∀ χ ∈ V h ,

〈
κm+1
γ ~νm, ~η

〉h
Γm +

L∑
`=1

〈
[γ(`)(~νm)]−1 G (`) [~Xm+1

s ]⊥, ~η⊥s

〉
Γm

= 0 ∀ ~η ∈ V h .

Note that for γ(~p) = |~p| the scheme (Ph
γ ) collapses to the isotropic

scheme (Ph
0 ) discussed earlier.
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Existence, uniqueness and stability

Existence, Uniqueness
The scheme is linear. So under mild assumptions on ~Xm, there exists
a unique solution (~Xm+1, κm+1

γ ) ∈ V h × V h to (Ph
γ ).

Stability For all k = 1→ M it holds that

|Γk |γ +
k−1∑
m=0

τm
〈
[κm+1
γ ]s , [κ

m+1
γ ]s

〉
Γm ≤ |Γ0|γ .

Area conservation for a continuous in time semidiscrete scheme.
Equidistribution of mesh points for ~X (t), where ~X (t) not locally
parallel, for any t > 0, for a continuous in time semidiscrete scheme,
with respect to a non-trivial anisotropic weighting function.
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Tangential Movement

γ(~p) =
√
p2

1 + 0.1 p2
2 ⇒ Wulff shape is

√
10 : 1 ellipse

γ(~p) =
√
p2

1 + 0.01 p2
2 ⇒ Wulff shape is 10 : 1 ellipse
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Numerical results

Regularized l1-norm: γ(~p) =
2∑
`=1

[
δ2 |~p|2 + p2

` (1− δ2)
] 1

2 .

δ = 10−1 δ = 10−2 δ = 10−3
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Crystalline surface diffusion

γ(~p) =
2∑
`=1

√
10−5 |~p|2 + p2

` (1− 10−5) ⇒ W is close to a square

New facets appear in evolution.
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Other crystalline shapes

γ(~p) =
L∑
`=1

[
~p .RT (θ`)

(
1 0

0 δ2

)
R(θ`) ~p

] 1
2

, δ = 0.01 .

(θ1, . . . , θL) = (π4 ,
3π
4 ), (0, π3 ,

2π
3 ), (0, π4 ,

π
2 ,

3π
4 ), (0, π4 ,

π
3 ), (0, π10 ,

π
9 ,

3π
4 ).
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Isotropic surface diffusion in 3d

Family of evolving hypersurfaces (Γ(t))t∈[0,T ], without boundary.

V = −∆s κ on Γ(t) ,

where ∆s = ∇s .∇s is the Laplace–Betrami operator on Γ(t), with ∇s .
and ∇s denoting the surface divergence and the surface gradient operators.

As before we have

d

dt
|Γ(t)| =−

∫
Γ(t)
V κ ds = −

∫
Γ(t)
|∇s κ|2 ds ≡ −‖V‖2

H−1(Γ(t)) ≤ 0

and

d

dt
|D(t)| =

∫
Γ(t)
V ds = −

∫
Γ(t)

∆s κ ds = 0 .

BGN formulation:

~xt . ~ν = −∆s κ , κ ~ν = ∆s ~x on Γ(t) .
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Parametric finite element approximation

(Ph) Find (~Xm+1, κm+1) ∈ V h(Γ(m)× V h(Γm) such that〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
∇s κm+1,∇s χ

〉
Γm = 0 ∀ χ ∈ V h(Γm) ,

〈
κm+1 ~νm, ~η

〉h
Γm +

〈
∇s ~Xm+1,∇s ~η

〉
Γm

= 0 ∀ ~η ∈ V h(Γm) .

Existence, Uniqueness
Under mild assumptions on ~Xm, ∃! (~Xm+1, κm+1) ∈ V h × V h.
Stability For all k = 1→ M it holds that

|Γk |+
k−1∑
m=0

τm
〈
∇s κm+1,∇s κm+1

〉
Γm ≤ |Γ0| .

Volume conservation for a continuous in time semidiscrete scheme.
Good mesh properties.

R. Nürnberg (Imperial College London) Numerical approximation of anisotropic SD Tokyo, 27 October 2017 28 / 61



Tangential distribution of mesh points

No heuristical redistribution necessary.
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Numerical results

Surface Diffusion leading to pinch-off. Rounded cylinder 8× 1× 1.
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Anisotropic surface diffusion in 3d

V = −∆s κγ on Γ(t) ,

where κγ is the anisotropic mean curvature, defined as before via the first
variation of the anisotropic surface energy |Γ|γ =

∫
Γ γ(~ν) ds. In particular,

it holds that
d

dε
|Γ(ε)|γ |ε=0= −

∫
Γ
~κγ . ~g ds ;

where
~κγ = κγ ~ν , κγ = −∇s . ~νγ , ~νγ = γ′(~ν) .

As before we have

d

dt
|Γ(t)|γ =−

∫
Γ(t)
V κγ ds = −

∫
Γ(t)
|∇s κγ |2 ds ≡ −‖V‖2

H−1(Γ(t)) ≤ 0

and

d

dt
|D(t)| =

∫
Γ(t)
V ds = −

∫
Γ(t)

∆s κγ ds = 0 .
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Variational formulation of anisotropic curvature

Prior to BGN (2008), all parametric approaches to anisotropic geometric
evolution equations were based on the identity

~κγ = κγ ~ν = −[∇s γ′(~ν)]~ν

= −∇s . (~ν [γ′(~ν)]T ) +∇s . (γ(~ν)∇s ~x)− γ(~ν) ∆s ~x .

The above identity uses isotropic differential operators, and does not lead
to stable schemes upon discretization.

Key idea: Use anisotropic differential operators that are induced by the
metrics that make up the BGN anisotropy γ.

Recall that in 2d we had:∫
Γ
κγ ~ν . ~ϕ ds = −

L∑
`=1

∫
Γ
[γ`(~ν)]−1 G` ~x

⊥
s . ~ϕ⊥s ds ∀ ~ϕ ∈ V ,

which can be viewed as involving inner products between “anisotropic
surface gradients”.
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BGN Anisotropies

Currently, for d = 2 or d = 3, we consider the class of BGN anisotropies

γ(~p) =
L∑
`=1

γ`(~p), γ`(~p) = [~p .G` ~p]
1
2 , ∀ ~p ∈ Rd ,

where G` ∈ Rd×d , for ` = 1, . . . , L, are symmetric and positive definite
matrices.

In 2d, it turns out that the above class of anisotropies is rich enough to
(approximatively) model any even, convex anisotropy.

However, in 3d this is not the case. For example, in the crystalline limit,
the above class always leads to parallel opposing facets in the Wulff shape.
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BGN Anisotropies
Examples

Regularized l1-norm: γ(~p) =
3∑
`=1

[
δ2 |~p|2 + p2

` (1− δ2)
] 1

2 , δ = 0.01 .

Frank diagram Wulff shape
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BGN Anisotropies
Examples

Hexagonal anisotropy: γ(~p) =
4∑
`=1

[
~p .RT

` diag(1, δ2, δ2)R` ~p
] 1

2
, δ = 0.01 .

Frank diagram Wulff shape
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BGN Anisotropies
Examples

Cylindrical anisotropy: γ(~p) =
[
~p . diag(δ2, δ2, 1) ~p

] 1
2 +
[
~p . diag(1, 1, δ2) ~p

] 1
2 ,

δ = 0.01.

Frank diagram Wulff shape
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BGN Anisotropies

It turns out that on considering the l r -norm of weighted norms it is
possible to model a large class of even, convex anisotropies in 3d.

In particular, for r ≥ 1, we consider

γ(~p) =

[
L∑
`=1

[γ`(~p)]r

] 1
r

, γ`(~p) = [~p .G` ~p]
1
2 , ∀ ~p ∈ Rd .

This class of anisotropies was first proposed in Barrett, Garcke & Nürnberg
(2008). We call an anisotropy of the above form an r-BGN anisotropy.

For later use we note that

γ′(~p) =
L∑
`=1

[
γ`(~p)

γ(~p)

]r−1

γ′`(~p) ∀ ~p ∈ Rd \ {~0} .
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BGN Anisotropies
Example

Cubic anisotropy: γ(~p) =

[
3∑
`=1

[
δ2 |~p|2 + p2

` (1− δ2)
] r

2

] 1
r

, δ = 0.01, r = 30 .

Frank diagram Wulff shape
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Variational formulation of anisotropic curvature

Let G ∈ R3×3 be symmetric and positive definite. Let G̃ = [detG ]
1
2 G−1,

and let (·, ·)
G̃

be the inner product on R3 induced by G̃ .

At a point ~z ∈ Γ, let {~t1, ~t2} be an orthonormal basis of the tangent space
T~z Γ with respect to the inner product (·, ·)

G̃
.

Then for g : Γ→ R we define the anisotropic surface gradient

(∇G̃
s g)(~z) :=

2∑
i=1

(∂~ti g)(~z)~ti .

Similarly, for ~g : Γ→ R2 we define the anisotropic surface divergence

(∇G̃
s . ~g)(~z) :=

2∑
i=1

(∂~ti ~g)(~z) . G̃ ~ti

and the anisotropic surface gradient

(∇G̃
s ~g)(~z) :=

2∑
i=1

(∂~ti ~g)(~z)⊗ G̃ ~ti .
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Variational formulation of anisotropic curvature

Finally, we also define the inner product

(∇G̃
s ~u,∇G̃

s ~v)
G̃

:=
2∑

i=1

(∂~ti ~u, ∂~ti ~v)
G̃
.

Then it can be shown for the r -BGN anisotropy that

κγ ~ν =
L∑
`=1

γ`(~ν) G̃`∇G̃`
s .

[[
γ`(~ν)

γ(~ν)

]r−1

∇G̃`
s ~x

]
,

which implies the weak form∫
Γ
κγ ~ν . ~ϕ ds +

L∑
`=1

∫
Γ

[
γ`(~ν)

γ(~ν)

]r−1

(∇G̃`
s ~x ,∇G̃`

s ~ϕ)
G̃`
γ`(~ν) ds = 0

for all ~ϕ ∈ [H1(Γ)]3.
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Parametric finite element approximation

(Ph
γ ) Find (~Xm+1, κm+1

γ ) ∈ V h(Γm)× V h(Γm) such that〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
∇s κm+1

γ ,∇s χ
〉

Γm = 0 ∀ χ ∈ V h(Γm) ,

〈
κm+1
γ ~νm, ~η

〉h
Γm +

L∑
`=1

∫
Γm

[
γ`(~ν

m+1)

γ(~νm+1)

]r−1

(∇G̃`
s

~Xm+1,∇G̃`
s ~η)

G̃`
γ`(~ν

m) ds

= 0 ∀ ~η ∈ V h(Γm) .

r = 1: Linear system. Existence, uniqueness and unconditional stability.
r > 1: Nonlinear system. Unconditional Stability.
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Numerical results

Cube (r = 1, L = 3), Hexagonal Prism (r = 1, L = 4),

Octahedron (r = 30, L = 3), Cylinder Wulff Shape (r = 1, L = 2).
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Numerical results

Cubic Wulff shape (r = 1, L = 3)

Dumbbell
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Numerical results

Cubic Wulff shape (r = 1, L = 3)

Facet breaking
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Other applications

The presented treatment of the anisotropy in the parametric framework
easily extends to other applications.

Anisotropic mean curvature flow: V = κγ .

Anisotropic mean curvature flow and surface diffusion of curve
networks and surface clusters.

Anisotropic Stefan problems, including applications to snow crystal
growth.
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Numerical results
Anisotropic mean curvature flow

V = κγ Cubic Wulff shape (r = 1, L = 3)

Dumbbell leading to pinch-off.
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Numerical results
Anisotropic surface diffusion for curve networks

V = −[κγ ]ss + triple junction conditions
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Numerical results
Anisotropic surface diffusion for curve networks

V = −[κγ ]ss + triple junction conditions

Anisotropic double bubbles.
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Numerical results
Anisotropic surface diffusion for surface clusters

V = −∆s κγ + triple junction conditions

Anisotropic double bubble.
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Numerical results
Anisotropic surface diffusion for surface clusters

V = −∆s κγ + boundary conditions

Isotropic and anisotropic equilibrium shapes.
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Numerical results
Anisotropic Stefan problem with kinetic undercooling

Find the temperature u(·, t) : Ω→ R and the interface Γ(t) ⊂ Ω such that
for t ∈ (0,T ]

ϑ ut −K∆u = 0 in Ω \ Γ(t),[
K ∂u
∂~ν

]
Γ(t)

= −λV on Γ(t),

ρV = ακγ − a u on Γ(t).
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Numerical results
Snow crystal growth
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Phase field approximations
Isotropic Cahn–Hilliard equation

The following degenerate Cahn–Hilliard equation is a phase field model for
isotropic surface diffusion.

ε ut = ∇ . (b(u)∇w) in ΩT = Ω× [0,T ] ,

w = −ε∆ u + ε−1 Ψ′(u) in ΩT .

For example, b(s) = (1− s2)2 and Ψ(s) = 1
4 (1− s2)2, or b(s) = 1− s2

and Ψ is the obstacle potential: Ψ(s) =

{
1
2 (1− s2) s ∈ [−1, 1] ,

∞ s /∈ [−1, 1] .

As ε→0, the zero-level sets of u move by surface diffusion: σΨV =−∆s κ.

See e.g. Lee, Münch & Süli (2016).
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Phase field approximations
Isotropic Cahn–Hilliard equation

A possible semi-implicit finite element approximation, based on a mixed
formulation, using piecewise linear finite elements, is given as follows.

Find (Un+1,W n+1) ∈ Sh(Ω)× Sh(Ω) such that, for all η, χ ∈ Sh(Ω),

ε

(
Un+1 − Un

∆t
, η

)h

+ (b(Un)∇W n+1,∇ η)h = 0 ,

ε (∇Un+1,∇χ) + ε−1 (Ψ′+(Un+1) + Ψ′−(Un), χ)h = (W n+1, χ)h .

Here (·, ·) and (·, ·)h are the standard and mass-lumped L2–inner products
on Ω, respectively.

Moreover, the splitting Ψ = Ψ+ + Ψ− is such that Ψ+ is convex, and Ψ−
is concave.

Nonlinear system. Existence, uniqueness and unconditional stability.
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Phase field approximations
Isotropic Cahn–Hilliard equation

Phase field approximations replace the sharp interface Γ with a diffuse
interfacial layer, {|u| < 1}.

This allows the application of standard PDE solution techniques, and
topological changes are trivially captured.

Topological change.
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Phase field approximations
Anisotropic Cahn–Hilliard equation

The following degenerate Cahn–Hilliard equation is a phase field model for
anisotropic surface diffusion, for a given anisotropy function γ.

ε ut = ∇ . (b(u)∇w) in ΩT ,

w = −ε∇ . (γ(∇ u) γ′(∇ u)) + ε−1 Ψ′(u) in ΩT .

As ε→0, the zero-level sets of u move by surface diffusion: σΨV =−∆s κγ .

For a general anisotropy, the discretization of the nonlinear term

∇ . (γ(∇ u) γ′(∇ u))

is highly nontrivial, with stability and efficient solvability being the main
challenges.

However, for an r -BGN anisotropy, we can introduce a natural linearization
that leads to an unconditionally stable finite element approximation.
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Phase field approximations
BGN Anisotropies

Recall that

γ(~p) γ′(~p) = γ(~p)
L∑
`=1

[
γ`(~p)

γ(~p)

]r−1

[γ`(~p)]−1 G` ~p ∀ ~p ∈ Rd \ {~0} .

Given a ~q close to ~p, we now “linearize” γ(~p) γ′(~p) by Br (~q, ~p) ~p, where

Br (~q, ~p) :=


γ(~q)

L∑
`=1

[
γ`(~p)

γ(~p)

]r−1

[γ`(~q)]−1 G` ~q 6= ~0 ,

L
1
r

L∑
`=1

[
γ`(~p)

γ(~p)

]r−1

G` ~q = ~0 ,

∀ ~p ∈ Rd .

Clearly it holds that lim~q→~p Br (~q, ~p) ~p = γ(~p) γ′(~p) for all ~p ∈ Rd .

In addition, Br (~q, ~p) is symmetric, positive definite for all ~q, ~p ∈ Rd .
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Phase field approximations
Anisotropic Cahn–Hilliard equation

Find (Un+1,W n+1) ∈ Sh(Ω)× Sh(Ω) such that, for all η, χ ∈ Sh(Ω),

ε

(
Un+1 − Un

∆t
, η

)h

+ (b(Un)∇W n+1,∇ η)h = 0 ,

ε (Br (∇Un,∇Un+1)∇Un+1,∇χ)

+ ε−1 (Ψ′+(Un+1) + Ψ′−(Un), χ)h = (W n+1, χ)h .

r = 1: Nonlinear system, as nonlinear as in the isotropic case.
Existence, uniqueness and unconditional stability.

r > 1: Highly nonlinear system. Unconditional stability.
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Numerical results
Anisotropic Cahn–Hilliard equation
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Other applications

The presented treatment of the anisotropy in the phase field framework
easily extends to other applications.

Anisotropic Allen–Cahn equation:

εϕt = ε∇ . (γ(∇ϕ) γ′(∇ϕ))− ε−1 Ψ′(ϕ) .

(as a phase field model for anisotropic mean curvature flow)

General anisotropic phase field equations:

ϑwt + 1
2 λϕt −K∆w = 0 ,

1
2 σΨ a w = ρ εϕt − α ε∇ . (γ(∇ϕ) γ′(∇ϕ)) + α ε−1 Ψ′(ϕ) .

(as a phase field model for anisotropic Stefan problems)
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Numerical results
Anisotropic phase field model

Ice crystal growth in 2d.

Ice crystal growth in 3d.
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Numerical results
Anisotropic phase field model

Dendritic growth in 2d.

Dendritic growth in 3d.
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