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3 scales of crystal surfaces Macroscale
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Crystal facets (macro-plateaus)

STM image: faceted Pb crystallite (top view)
[Bonzel, 2003]

Sequence of STM images: Single-layer peeling
on facet [Thurmer et al. 2001]
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Crystal facets: Modeling

Macroscopic view:

free boundary [Spohn, 1993];

Complication:
Microscale motion on top

[Pb crys‘géillite: Thurmer et al., 2001]“\“\

[Israeli, Kandel, 1999;

\_\_\ﬁ DM, Fok,Aziz, Stone, 2006]

[Fok,Rosales,DM, 2008; Al Hajj Shehadeh, Kohn, Weare, 2011]
[Selke, Duxbury, 1995; Chame, Rousset, Bonzel, Villain, 1996/97; Chame, Villain, 2001 ]



Scope

 Continuum laws for crystal surface morphological evolution
are often viewed as limits of step motion.

« Facets are special parts of the crystal surface.

What predictions for facet evolution arise from PDE models?
How is facet evolution linked to step motion?
Heuristics...



Take-home message (roughly)

It has not been possible to develop a general theory so far;

our understanding has relied on specific settings...



STZP fIOW: BCF mOdel [Basics: Burton, Cabrera, Frank, 1951]
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Step motion and continuum limit

1-terrace
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(heuristics): Example in 1D
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Relaxation PDE in 2+1 dims, away from facet

Totgl step energy a — 0 1ll-defined on facet [DM, Kohn, 2006]
Step
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Can facet evolution be described by a
“fully” continuum theory?

Linearized Gibbs-Thomson relation:

* By PDE theory: Yes, via “extended gradient formalism™

based on continuum-scale singular surface energy, £[/].

[Kobayashi, Giga, 1999; Spohn, 1993; Shenoy, Freund, 2002; Odisharia, Thesis, 2006;
DM, Aziz, Stone, 2005; Kashima, 2004; Giga, Giga, 2010; Giga, Kohn, 2011]

* By step flow: Not always. Microscale condition for

motion of top steps may be needed
[DM, Fok, Aziz, Stone, 2006; Nakamura, DM, 2013; Schneider, Nakamura, DM, 2014]



Extended-gradient formalism in typical settings

Evolution PDE is everywhere replaced by
the rule that —0:h is an element of subdifferential
Oy E'|h] with minimal norm in Hilbert space H.

OnEh :={f €H : Elh+g]—Eh] > (f,9)n Vg€ H}
Typically: H = L?, g1

surface

" " oy diffusion:
Natural” boundary conditions at facet edges follow. DL kinetics

reflects kinetics

What should the above rule amount to, practically?

Suppose the facet is smoothed out by regularization
of E[h] by some parameter, v. Then, in the limit as vapproaches 0,
one should recover the evolution of the above formalism.



I. Facets and step flow

[Schneider, Nakamura, DM, 2014]



Surface diffusion: DL kinetics in radial geometry

%=—Q divj, j=je,; | (U =a’)
Ot
.__Dp, ou.
J= kB—TE’
oF

u=Q%=0g divg.g=¢e,

g1 a(hellt ﬂ()W

Ot Oh H™!
Elh] = /[\Vh\ +(g/3)|Vh)}]dz ; g =L

SE SE 7

B= (5 ) e =~ A% 3 <0

Discrete scheme:

d, __ Dpa
- (Ji+1 o Jz)
d k,T
1 —
1” = 1/ i , Diffusion-limited kinetics;
r; n(r b 1) linearized model
a’ 0

a
by [V (o) +V (7557:)]

g
ro 2 7 or
L
Step curvature Nearest-neighbor,

elastic-dipole
step-step interactions




Step trajectories
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Free-boundary approach:

Natural BC’s in radial setting

\

hy (1)

Height continuity: h(r}r, t)

e Slope continuity

e (Normal) Mass-flux e, - J: cont.

J

1 = —divE: extended continuously
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[Spohn, 1993; Shenoy, Freund, 2002;
DM, Aziz, Stone., 2005; DM, Fok,Aziz,Stone, 2006]

Boundary conditions
Jump conditions for p, &

Collapse times tp,— |

| Keep

Introduce:
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In close agreement with step simulations;
Q)(t) =~ const., n > 1




Numerics: conical initial data; self-similar regime (long 1)

Discrete slopes behave as self-similar for long times
Ansatz: . (r ) & M(rt /)
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Can we reconcile these two scales via resolving only few top steps?



"Hybrid" iterative scheme

==,

contintium

Top view

e =

~. -

2. Simulate M top steps, typically M = 3, terminated by

a ~ ~
=01, t,, <t<t,,,6 ng<n<n,
M(Tna M5 t)

Tn+M+l+1 = Tn+M+1 T

Initiation: no =0, n, >1; tH =0

3. Re-compute self-similar slope m using jump conditions at: £ = ¢,,_

4. Repeat: stage 2 with n, replaced by previous n. , and n. by n.+1;
and stage 3.  Iterate, advancing ¢.



Numerics; conical initial data - long ¢
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Conclusion and Pending issues. I.

PDE boundary conditions at facets may need step microstructure:
Microscale motion can be incorporated into jump discontinuities of
thermodynamic quantities, via discrete geom. factor in DL regime.

Thus far, progress has been made in radial setting, DL kinetics, self-
similar regime. Boundary conditions have been speculated
(empirically), motivating a hybrid iterative scheme (few steps).

Would the jump conditions emerge from limits of step flow?
Does the hybrid scheme really converge? Why?

Extensions to earlier times; richer kinetics, fully 2D setting?



IT. A PDE prediction (heuristics):
Asymmetry in crystal facets in 1+1 dimensions

[Liu, Lu, Marzuola, DM, preprint]



"Exponential-PDE" model for surface diffusion;
DL-regime

Oth = Aexp [—Bdiv g—Z+Q|Vh]Vh)] . B=T"1 ¢g>0
\ J

507 ) = / V(WA dz , ¥(p) = p+ (9/3)p°

What are the plausible predictions by this PDE?
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Reduction to 1+1 dimensions; periodic profile

9.1 Goal:
Oth = Oy €xXp [—833( - )] Formulate a system of ODEs
|00 / for facet height and position
Neglect of |hgy|h, term via free-boundary view

Assume h(—z,t) = h(x,t)

Formalism (across facet):
Oth = —0puev s Opv = —e %% £(hy) € Ov(hy) ; 0v(p) = { -1, 1] p=

How may one pick element &7

Claim: (By analogy with H—! gradient flow) Find ¢ = &(z,t) s.t. 9,v* = —
where v* is the minimizer of functional F : D — R defined by

Flv] = /_2(83;5,;@)2 dz, D(F)={ve H?[—{/{: visodd and d,v(£l) = 1}

Facet speed by mass conservation

Claim: "natural” BC’S:{
p(z,t) = —0.&(x,t) and &(x,t): continuous in x



Free-boundary approach (construction of a solution)

h

A

Top facet hy <0

SRR

Assumptions:

e Facet is symmetric in x, h(—x,t) = h(x,t).

—b

“rp(t) 0 x(t)

PDE structure:

e Facet has zero slope, d,.h = 0.

"z ® &(p) =p/|p| (p: slope) is extended onto facet

as odd function on R; &(x,t) = &(0,h).

Oth = _a:cja J = _axeuv M= _6$£;

On top facet, —x,(t) <z < x4(t):

—

2 .
— Ot =—J = p(x,t) =In [%hf + 02(75)];

2

h(x,0) = ho(x)

hp=—0pJ = J(x,t) = —xzhs + C1(t); C1(t) = 0 (by symmetry)

0= —p= E(x,t) = — /Ox 1n[%hf + Cz(t)_ ds 4+ C5(t); Cs(t) =0

Apply:

Mass conservation: i ¢[ho(xs) — hf] = hyxy
Continuity of &(-,t) and u(-,t) = Ca(t) =1 — x?hf/Q




A

Free-boundary approach: ODEs

hf<0

ODE system for (z¢,hy), top facet (hf < 0):

5 / /h
/ hf {2M1—|—X2ln 1+X2+X —2Xf_ |hf |f

hQ xf) hf] = hf X f The TOP facet expands

The bottom facet behaves differently:

ODE system for (zf,hs), bottom facet (hy > 0):

1— X2 -
T 1 f hf
~ t — —) l=—:; = , Xfi= —
h fpf (arc Y=g )+ T 2 (i X, G
7 QY(UJf) ; monotone, 0 < Q(q/;f) <1 (lf Xf 7é 0)
L d@ylho(zy) —hfl = hyxy
=T ONERER0 T
S~ / No evolution if facet size is below a “critical” value
T hyp 20



Numerical simulations of PDE vs ODEs

Numerics for PDE: Via regularization of E|h]

Crystal Height

PDE (regularized):
o, < Bz h

Oth = O V(82 h)2 412

hy

' 000000000 '

oo oo- E
ooo ’ 0.93
0o ,
2 3 4 5 6 0.92

) : ho(z) = sin(27x)

o

PDE dynamics




Numerical simulations of PDE vs ODEs (cont.)
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Conclusion and Pending Issues. IT.

Gibbs-Thomson formula at step flow yields an “exponential PDE”
as formal continuum limit.

In 1+1 dimensions and without elasticity, this PDE predicts:
distinct evolutions of top and bottom facets, discontinuous
surface height; cf. [Giga, Giga, 2010]

What is the rigorous continuum theory?
What is the connection of continuum prediction to step flow?

Effect of elasticity at continuum level?

Refined numerics?



