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  Introduction: 4-dimensional special phenomena
Recall:   Dimension 4 is special! 
An instance of special phenomena in dim 4: 
There are (many) compact 4-manifolds (e.g.  surface) that admit 
infinitely many smooth structures. 
Two comparisons: 
• dim 4 vs. other dim: This infiniteness never happens in .  
•  vs. : There is a big difference between the topological and 
smooth categories in dimension 4.

K3

dim ≠ 4
C0 C∞

Upshot: The 4-dim smooth category has specially high “complexity”!

How to detect? Gauge theory



  Introduction: Gauge theory
Idea: Use the moduli space of solutions to a certain non-linear PDE 
on a 4-manifold  to study the topology of !X4 X

• Witten (1994) Seiberg-Witten equations ⋯ {F+
A = σ(Φ, Φ),

DAΦ = 0

• Donaldson (1983)  Yang-Mills ASD equation ⋯ F+
A = 0

e.g.

How to use PDE? Typical way: “Count” the the moduli space to get 
a numerical invariant to distinguish smooth structures.



 Introduction: from manifolds to diffeomorphisms
Given a smooth manifold , the topological group called  
diffeomorphism group 

 
is a natural object to study (automorphism group of a manifold).

X

Diff(X) = {f : X → X ∣ f is a diffeomorphism}

Classification of manifolds Diffeomorphism group

dim > 4

dim = 4
Gauge theory 

(since Donaldson in 1983)

Major developments (later) in 
the last two decades 

by Galatius, Randal-Williams…

Gauge theory for families

Kirby-Siebenmann theory 
(announced in 1969) 
based on surgery



  Introduction: Gauge theory for families
Basic idea of gauge theory for families: 
1. Given a smooth fiber bundle  with smooth 4-manifold fiber , 

consider gauge-theoretic PDEs along fibers. 
2. Count the “parameterized moduli space” (i.e. the union of moduli spaces 

on fibers) over  and get an invariant of . 
3. Distinguish smooth fiber bundles ’s by this invariant 

E → B X

B E
E

Give “lower bounds” on complexity of , which is 
used to define fiber bundles with fiber .

Diff(X)
X

History: Ruberman (1998) gave the 1st application of gauge theory for 
families to topology. After that, sporadic for a while: Ruberman (1998‒
2001), Nakamura (2003, 2010). However, it has been actively studied in 
recent years.



Topics: 

  Introduction: Special phenomena for Diff(X4)

Using gauge theory for families, we give several answers to these questions:

(1) Homological instability 
(2) Infiniteness of Diff 
(3) Exotic diffeomorphisms

Question 1: Discover new special phenomena in dimension 4 
by studying diffeomorphism groups  of 4-manifolds . 
Question 2: Study comparison  vs.  .

Diff(X) X

Homeo(X4) Diff(X4)



  Plan of the talk
(1) Homological instability 
(2) Infiniteness of Diff 
(3) Exotic diffeomorphisms
(4) Other topics and prospects



  : Moduli space of manifoldsBDiff(X)
For a smooth manifold , the classifying space  of  is called 
the moduli space of manifolds (diffeomorphic to ). 

X BDiff(X) Diff(X)
X

Basic problem:   
Compute  (or )H*(BDiff(X)) H*(BDiff(X))

This is very hard: not solved even when  are surfaces.X

Given a (“good”) space , B
Map(B, BDiff(X))
(homotopic)

1:1↔ {fiber bundles with fiber X over B}/ ≅ .

But in (even) , this is solvable after enough stabilizations.dim ≠ 4

An important invariant:  H*(BDiff(X)) 1:1↔ {characteristic classes of X-bundles}



  Homological stability in dim ≠ 4

Theorem (Harer (1985) for , Galatius and Randal-
Williams (2018) for ): 
Let  be a simply-connected compact smooth manifold of 
dimension , and let . Then the stabilization maps 

 
are isomorphic for all .

dim = 2
dim > 4

W
2n ≠ 4 k ≥ 0

s* : Hk(BDiff∂(W#NSn × Sn); ℤ) → Hk(BDiff∂(W#N+1Sn × Sn); ℤ)

N ≫ k

Stabilization map: For a manifold  with , set  
. We can define a map 

 (extend by ).

W2n ∂W ≠ ∅

Diff∂(W) := {f ∈ Diff(W) ∣ f is id near ∂W}

s : Diff∂(W) ↪ Diff∂(W#Sn × Sn) idSn×Sn



  Homological stability in dim ≠ 4
Theorem (Harer (1985) for , Galatius and Randal-
Williams (2018) for ): 
Let  be a simply-connected compact smooth manifold of 
dimension , and let . Then the stabilization maps 

 
are isomorphic for all .

dim = 2
dim > 4

W
2n ≠ 4 k ≥ 0

s* : Hk(BDiff∂(W#NSn × Sn); ℤ) → Hk(BDiff∂(W#N+1Sn × Sn); ℤ)

N ≫ k

  Thus  for  is identified with the stable homology 
, which is computed by homotopy theory:

Hk(BDiff∂(W#NSn × Sn)) N ≫ k

lim
N→+∞

Hk(BDiff∂(W#NSn × Sn))

 is generated by MMM classes (Mumford conjecture) 

 (Madsen and Weiss in , Galatius and Randal-Williams in other even dimensions)

lim
N→+∞

Hk(BDiff∂(W#NSn × Sn); ℚ)

dim = 2



  Homological instability in dim = 4

Theorem (K.-Lin (2022)): 
Let  be a simply-connected closed smooth 4-manifold, and let . 
Then there exists a sequence  such that, for 
each , the stabilization map 

 
is not isomorphic.

X k > 0
0 < N1 < N2 < ⋯ → + ∞

Ni

s* : Hk(BDiff∂(X̊#Ni
S2 × S2); ℤ) → Hk(BDiff∂(X̊#Ni+1S2 × S2); ℤ)

Focus on punctured manifolds:  for closed 4-manifolds .W = X̊ = X∖Int(D4) X

Thus, unlike , the homology of the moduli space never stabilizes by !dim ≠ 4 #S2 × S2

The theorem suggests that the computation of  appears to be beyond 
the scope of homotopy theory.

Hk(BDiff(X4))



  Homological instability in : proofdim = 4

Idea of definition: Count solutions to families of Seiberg-Witten equations along the 
universal bundle  over each -cell of .EDiff+(X) ×Diff+(X) X → BDiff+(X) k BDiff+(X)

Tool: Gauge-theoretic characteristic class: 
 ( : orientation-preserving). 

This is a variant of the characteristic class by K. (2018) with the idea of a 
numerical families Seiberg-Witten invariant by Ruberman (2001).

𝕊𝕎k(X) ∈ Hk(BDiff+(X4); ℤ/2) Diff+

Property:   is an unstable characteristic class (i.e. the pull-back of  
under the stabilization map is zero).

𝕊𝕎k(X) 𝕊𝕎k(X)

 captures certain complexity (instability) of 𝕊𝕎k(X) H*(BDiff(X))

Compute  for a concrete family: Key is a gluing theorem for 
families by Baraglia-K. (2018) (geometric analysis).

𝕊𝕎k(X)



(1) Homological instability 

(2) Infiniteness of Diff 

(3) Exotic diffeomorphisms 

(4) Other topics and prospects

  Plan of the talk



  Fineteness of Diff in dim ≠ 4

Conjecture:  
Let  be a closed smooth manifold  with finite . If , 

 and  are finitely generated for all degrees .
X X π1(X) dim X ≠ 4

πk(Diff(X)) Hk(BDiff(X); ℤ) k

Theorem (Bustamante-Krannich-Kupers (2021)):  
The above conjecture is true if .dim X = even > 4

Question:  
Is there a counterexample to the 4-dimensional analog of Conjecture?
(Diff-analog of infiniteness of smooth structures on 4-manifolds?)

For a manifold ,  and  are typically infinite groups.X πk(Diff(X)) Hk(BDiff(X); ℤ)
Question: Are  and/or  finitely generated?πk(Diff(X)) Hk(BDiff(X); ℤ)



  Infinite generation of  for πk(Diff(X4)) k > 0
Theorem (Baraglia (2021)):  

 is not finitely generated.π1(Diff(K3))
Later, Lin generalized this result to many 4-manifolds, including all 
elliptic surfaces and complete intersections.

Anything else? 
We shall consider: 
(1)  (mapping class group) 
(2)  for all .

π0(Diff(X))
Hk(BDiff(X)) k > 0

Theorem (Auckly-Ruberman (2025)):  
For every ,  closed smooth 4-manifold  such that 

 is not finitely generated.
k > 0 ∃ X4

πk(Diff(X))



  Finete generation of  in π0(Diff(X)) dim ≠ 4
Theorem (Sullivan (1977)):  
Let  be a simply-connected closed smooth manifold of 

. Then  is finitely generated.
X

dim > 4 π0(Diff(X))

Remark: One cannot drop the simple-connectivity. 
e.g.  is not finitely generated for  (Hatcher (1978)). 
Also in dimension 4, it is known  with  s.t.  is not 
finitely generated (Budney-Gabai (2019)/Watanabe (2020)).

π0(Diff(Tn)) n > 4

∃X4 π1(X) ≠ 1 π0(Diff(X))



Summary in dim :   is finitely generated 
for every simply-connected  if .

≠ 4 π0(Diff(X))
X dim X ≠ 4

Theorem (K. (2023)/Baraglia (2023)):  
There exist simply-connected closed smooth 4-manifolds  
such that  are not finitely generated.

X
π0(Diff(X))

e.g. For  with ,  is not finitely 
generated.

X = E(n)#S2 × S2 n ≥ 2 π0(Diff(X))

  Infinite generation of π0(Diff(X4))



Theorem (K. (2023)/Baraglia (2023)):  
There exist simply-connected closed smooth 4-manifolds  
such that  are not finitely generated.

X
π0(Diff(X))

  Infinite generation of π0(Diff(X4))

Remark: Freedman and Quinn’s result (with a recent correction 
by Gabai-Gay-Hartman-Krushkal-Powell),  is finitely 
generated for a simply-connected closed topological 4-manifold .

π0(Homeo(X))
X

Infinite generation of mapping class group (under ) is 
a special phenomenon of the 4-dim & smooth category.

π1 = 1



Theorem (K. (2023)): For every , there exist simply-
connected closed smooth 4-manifolds  such that 

 are not finitely generated.

k ≥ 1
X

Hk(BDiff(X); ℤ)

  Infinite generation of Hk(BDiff(X4))

Remark: Theorem for  implies that  is infinitely generated.k = 1 π0(Diff(X))

e.g. For  with ,  is not finitely generated.X = E(n)#kS2 × S2 n ≥ 2 Hk(BDiff(X); ℤ)

i.e. Families of 4-manifolds can have particularly many characteristic classes.



  Infinite generation of : ProofHk(BDiff(X4))

Gauge-theoretic characteristic class again: 
1. Define infinitely many characteristic classes 

, 
indexed by  (which related to  structures on ). 

2. Show the linear independence of ’s by evaluating infinitely 
many (concrete) fiber bundles with fiber .

𝕊𝕎k(X, 𝒮) ∈ Hk(BDiff+(X); ℤ/2)
𝒮 spinc X

𝕊𝕎k(X, 𝒮)
X

Theorem (K. (2023)): For every , there exist simply-
connected closed smooth 4-manifolds  such that 

 are not finitely generated.

k ≥ 1
X

Hk(BDiff(X); ℤ)

   captures certain complexity (infiniteness) of .𝕊𝕎k(X, 𝒮) H*(BDiff(X))



(1) Homological instability 

(2) Infiniteness of Diff 

(3) Exotic diffeomorphisms 

(4) Other topics and prospects

  Plan of the talk



  Exotic diffeomorphism
Definition:  Given a smooth manifold , a diffeomorphism  is called 
an exotic diffeomorphism if  is topologically isotopic to the identity but 
smoothly not.  
In other words,  is exotic if  gives a non-trivial element of  

.

X f : X → X

f

f f

ker(π0(Diff(X)) → π0(Homeo(X))))

Remark: If ,  is a weak homotopy equivalence. 
So there is no exotic diffeomorphism of .

dim X ≤ 3 Diff(X) ↪ Homeo(X)
X

First examples in 4D…Ruberman (1998):  
This is the first topological application of gauge theory for families too. 



  Dehn twists on 4-manifolds
A 4-dimensional analog of Dehn twists often turns out to give a natural 
example of an exotic diffeomorphism.
Dehn twist: 
For a (3-)manifold  with a loop  based at , we define a 
diffeomorphism rel boundary called the Dehn twist on : 

. 
When , we call the Dehn twist near the boundary  the 
boundary Dehn twist.

Y ϕ : S1 → Diff(Y) idY

Y × [0,1]
Y × [0,1] → Y × [0,1] ; (y, t) ↦ (ϕ(t) ⋅ y, t)

Y = ∂M4 ( ∈ Diff∂(M))

e.g.  is said to be a Seifert fibered 3-manifold 
if  admits an -action without fixed-point. 
Then we can consider the Dehn twist along .

Y3

Y S1

Y M
Y



  Dehn twists on 4-manifolds

K3K3 K3

Many approaches to 4-dimensional Dehn twists from families Seiberg-
Witten theory appeared since 2020. They often give examples of exotic 
diffeomorphisms.

• Twists along Seifert fibered 3-manifolds:  
K.-Mallick-Taniguchi, K.-Lin-Mukherjee-Muñoz-Echániz, Kang-Park-Taniguchi, 
Miyazawa…

• Twists along :  
Kronheimer-Mrowka ( ), Lin…

S3

K3#K3

Further: The study of Dehn twists also gives 4-dimensional special phenomena.



   vs. Diff(Dn) Diff(contractible)

Theorem (Galatius̶Randal-Williams (2023)/Krannich̶Kupers (2024)): 
Let  be a contractible compact smooth manifold of . Then, for 
any , the map  is a weak homotopy equivalence.

W dim = n ≥ 5
Dn ↪ W i : Diff∂(Dn) ↪ Diff∂(W)

Given an embedding of a disk  into an -manifold , it induces a map 
 (extend by ).

Dn ↪ Wn n W
i : Diff∂(Dn) ↪ Diff∂(W) id

Namely,  is as simple as .Diff∂(contractible) Diff∂(Dn)

Theorem (Krushkal̶Mukherjee̶Powell̶Warren (2024)/K.̶Lin̶
Mukherjee̶Muñoz-Echániz (2024)): 
There exists a contractible compact smooth 4-manifold  such that 

 is not surjective for any .
W

i* : π0(Diff∂(D4)) → π0(Diff∂(W)) D4 ↪ W

In our work (KLMME), the boundary Dehn twist along some Seifert 
3-manifold gives a mapping class not coming from .D4 D4

W

This fails in 4D:



  Milnor fibration
Milnor fibration and Milnor fiber:  Let  be a polynomial with 
isolated singularity at  with .  

  ( ) 
is a fiber bundle with trivialized boundary family (Milnor’s fibration theorem). 
This fibration is called the Milnor fibration and its fiber  is called the Milnor 
fiber of the singularity.

f : ℂ3 → ℂ
0 ∈ ℂ3 f(0) = 0

f : f −1(Bδ(ℂ)∖{0}) ∩ Bϵ(ℂ3) → Bδ(ℂ)∖{0} 1 ≫ ϵ ≫ δ > 0

M

Bδ(ℂ)

Bϵ(ℂ3)

f −1(0)f −1(t)

0t

M

↓ f

0

Monodromy: The most basic invariant of the 
Milnor fibration is the monodromy . 
The action of  on  is classically studied, 
but not much studied as an element of .

μ ∈ π0(Diff∂(M))
μ H2(M; ℤ)

π0(Diff∂(M))



  Monodromy of a Milnor fibration
Suppose  is weighted homogeneous, i.e. 

  for   

e.g. Brieskorn singularity, ADE singularity

f

f(λw1z1, λw2z2, λw3z3) = λdf(z1, z2, z3) λ ∈ ℂ* (∃d, w1, w2, w3 > 0)

Theorem (K.̶Lin̶Mukherjee̶Muñoz-Echániz (2024)): 
Suppose  is a weighted homogeneous isolated singularity. Then 
the monodromy  of the Milnor fibration for  has finite order in  
if and only if  is an ADE singularity.

f : ℂ3 → ℂ
μ f π0(Diff∂(M))

f

Bδ(ℂ)

Bϵ(ℂ3)

f −1(0)
f −1(t)

0t

M

↓ f

0

“If part” is due to Brieskorn (1971). The theorem follows from that 
 for weighted homogeneous , and the 

Dehn twist turns out to be an infinite order (and exotic!)
(monodromy)d = boundary Dehn twist f



  Monodromy of a Milnor fibration
Theorem (K.̶Lin̶Mukherjee̶Muñoz-Echániz (2024)): 
Suppose  is a weighted homogeneous isolated singularity. Then 
the monodromy  of the Milnor fibration for  has finite order in  
if and only if  is an ADE singularity.

f : ℂ3 → ℂ
μ f π0(Diff∂(M))

f

Namely,  has infinite order in , except for the ADEs.μ π0(Diff∂(M))
Remark: Under the weighted homogeneous assumption, the 
monodromy  is finite order for the topological category and for the 
higher-dimensional Milnor fibers under a mild assumption (“the link is 
a homology sphere”).

μ

A natural diffeomorphism (monodromy of a Milnor fibration) also 
gives a special phenomenon of the 4-dim & smooth category!



  Exotic diffeomorphism of closed 4-manifolds

Answer (so far): Yes, but not of an “interesting” closed 4-manifold.

Question: Does a Dehn twist give an exotic diffeomorphism of a closed 4-
manifold?

Interesting/important closed 4-manifolds: 
Typically, Kähler/complex surfaces, symplectic 4-manifolds. 
After blowing-down, such a 4-manifold is irreducible, i.e.  non-trivial connected 
sum decomposition (“building block” of 4D topology).

∄

Question: Can an irreducible 4-manifold admit an exotic diffeomorphism?

Theorem (Baraglia-K. (2024)): Yes, many minimal complex surfaces (elliptic 
surfaces/complete intersections) can admit exotic diffeomorphisms.
Proof: A constraint on smooth families of 4-manifolds from families SW 
theory (Baraglia-K, 2022) and the families index theorem.



(1) Homological instability 

(2) Infiniteness of Diff 

(3) Exotic diffeomorphisms 

(4) Other topics and prospects
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 Constraints on smooth families of 4-manifolds
Big source for application…Constraints on smooth families of 4-manifolds from 
families Seiberg-Witten theory (Kato-K.-Nakamura (2019), Baraglia-K. (2019), Baraglia 
(2019), K.-Taniguchi (2020)).  
e.g. Baraglia’s result is a family version of Donaldson’s diagonalization

This idea can also be used to detect non-smoothable group actions on 4-manifolds 
via the Borel construction (Nakamura (2003, 2010), Baraglia (2019)).

A typical application… Detect a non-smoothable topological family of 4-
manifolds, i.e. a fiber bundle with structure group  that does not reduce 
to .  

Homeo(X4)

Diff(X4)

B → BHomeo(X)

BDiff(X)
∄



 Secondary invariant

This type includes: 
1. Configurations of surfaces in 4-manifolds (K. (2016, 2022)) 
2. Exotic embeddings of surfaces/3-manifolds into 4-manifolds (Baraglia (2020), 

Iida-K.-Mukherjee-Taniguchi (2022), K.-Mukherjee-Taniguchi (2022), Auckly-
Ruberman (2025)…) 

3. Space of positive scalar curvature metrics of 4-manifolds (Ruberman (2001), 
K. (2019), Auckly-Ruberman (2025)) 

4.  vs.  (Kronheimer (1997), Smirnov (2020, 2022), Lin (2022))Symp(X4, ω) Diff(X4)

Another type of application…given a certain vanishing theorem for solutions 
to the Seiberg-Witten equations, and we could get a secondary families invariant 
to study the space of “vanishing reasons”.



  Kontsevich characteristic classes
Theorem (Watanabe (2018)): 

 is not homotopy equivalent to .Diff(S4) O(5)

Another important recent advance in the study of  was initiated by:Diff(X4)

Watanabe’s proof uses Kontsevich characteristic classes based on configuration 
space integral (totally different method from gauge theory).
Theorem (Lin-Xie (2023)): 
Kontsevich characteristic classes are well-defined on the classifying space 

 of “formally smooth” families of 4-manifolds (i.e. topological families 
equipped with linear structures on vertical tangent microbundles).
ℳfs(X)

 BDiff(X4) = ℳs(X) ℳfs(X) ℳt(X) = BHomeo(X4)
Detected by gauge theory

Smooth moduli space Topological moduli spaceFormally smooth 
moduli space

Special to dim=4 Similar to dim>4

Detected by Kontsevich char.



  Problems and Prospects
1. Ring structure of ? 

2. Instability and/or infiniteness of )? (cf. Advances in ) 

3. Relation between exotic/complex/symplectic structures on 4-manifolds and 

their diffeomorphism groups? (cf. Exotic diffeo. of irreducible 4-manifolds) 

4. Is the algebraic (as opposed to topological) structure of  special?

H*(BDiff(X4))

H*(BDiff(X4); ℚ dim ≠ 4

Diff(X4)

!ank you for your a"en#on!


