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Abstract. We describe a relationship between homological representations of
the braid groups due to R. Lawrence, D. Krammer and S. Bigelow and the mon-
odromy representations of the KZ connection. First, we describe the comparison
theorem in the case of generic parameters. Then we discuss the non-generic case
from the viewpoint of conformal field theory.

1. Introduction

The purpose of this paper is to establish a relation between the homological repre-
sentations of the braid groups and the monodromy representations of the Knizhnik-
Zamolodchikov (KZ) connection. The homological representations of the braid
groups are defined as the action of the braid groups on the homology of abelian
coverings of certain configuration spaces. They were studied by Lawrence [16] in
relation with Hecke algebra representations of the braid groups and were exten-
sively investigated by Bigelow [2] and Krammer [15]. It was shown independently
by Bigelow and Krammer that they provide faithful representations of braid groups.

On the other hand, it was shown by Schechtman-Varchenko [21] and others that
the solutions of the KZ equation are expressed by hypergeometric integrals. There
are two parameters λ and κ, which are related to the highest weight and the KZ con-
nection respectively. We consider the KZ equation with values in the space of null
vectors in the tensor product of Verma modules of sl2(C) and show that a specializa-
tion of the homological representation is equivalent to the monodromy representation
of such KZ equation for generic parameters λ and κ. A complete statement is given
in Theorem 7.1. We describe a sufficient condition for the parameters to be generic
so that the statement of the theorem holds. This result was studied in [12], [13] and
[14]. We first review the case of generic parameters investigated in these works.

There is other approach due to Marin [17] expressing representations of the braid
groups and their generalizations such as Artin groups as the monodromy of inte-
grable connections by an infinitesimal method. Our approach depends on integral
representations of the solutions of the KZ equation and is different from Marin’s
method.

The case of non-generic parameters is important from the viewpoint of conformal
field theory (see [7], [22] and [23]). There is a period integral map from the homology
of local systems over the configuration spaces to the space of conformal blocks. We
describe the kernel of this map to describe the fusion rule in conformal field theory
by means of homology of local systems.
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The paper is organized in the following way. In Section 2 we review fundamental
results on the homology of local systems on the complement of hyperplane arrange-
ments. In Section 3 we recall the construction of the homological representations of
braid groups. In Section 4 we describe the homology of local systems on configura-
tion spaces including the case of non-generic parameters. We recall the definition of
the KZ equation in Section 5 and describe its solutions by hypergeometric integrals
in Section 6. Section 7 is devoted to the comparison theorem for homological rep-
resentations and the holonomy of KZ connections in the case of generic parameters.
Finally in Section 8 we describe the case of non-generic parameters in relation with
conformal field theory.

2. Local systems on the complement of hyperplane arrangement

Let A = {H1, · · · , H`} be an arrangement of affine hyperplanes in the complex
vector space Cn. We consider the complement

M(A) = Cn \
⋃
H∈A

H.

Let us assume that the hyperplanes H1, · · · , H` are defined over R. In this case
H ∈ A is regarded as a complexification of the real hyperplane HR in VR = Rn.
The complement VR \

⋃
H∈AHR consists of finitely many connected components

called chambers.
The above real hyperplane arrangement {HR}H∈A determines a natural strat-

ification S of Rn, whose stratum is called a facet. For facets E and F we shall
say that E > F if and only if E ⊃ F holds. For an increasing sequence of facets
Fj0 < · · · < Fjp we take a point vjk in each facet Fjk , 0 ≤ k ≤ p, and consider
the simplex spanned by the vertices vjk , 0 ≤ k ≤ p. This simplex defined for
Fj0 < · · · < Fjp is denoted by

σ(Fj0 < · · · < Fjp).

For a facet F the dual cell is defined by

D(F ) =
⋃
σ(F i < F i−1 < · · · < F 0)

where the union is for all the increasing sequences of facets F i < F i−1 < · · · < F 0

with F i = F and codimF j = j.
Let π : M(A) −→ Rn be the projection corresponding to the real part. A facet

decomposition of the complexified complement M(A) is given by⋃
F

π−1(F ).

The associated dual complex is called the Salvetti complex S(A), which is an n
dimensional CW complex. It was shown by M. Salvetti [20] that the inclusion

S(A) −→M(A)

is a homotopy equivalence.
First, we recall some basic definition for local systems. Let M be a smooth mani-

fold and V a complex vector space. Given a linear representation of the fundamental
group

r : π1(M,x0) −→ GL(V )
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there is an associated flat vector bundle E over M . The local system L associated
to the representation r is the sheaf of horizontal sections of the flat bundle E. Let

π : M̃ → M be the universal covering. We denote by Zπ1 the group ring of the
fundamental group π1(M,x0). We consider the chain complex

C∗(M̃)⊗Zπ1 V

with the boundary map defined by ∂(c⊗ v) = ∂c⊗ v. Here Zπ1 acts on C∗(M̃) via
the deck transformations and on V via the representation r. The homology of this
chain complex is called the homology of M with coefficients in the local system L
and is denoted by H∗(M,L).

Let L be a complex rank one local system over M(A) associated with a represen-
tation of the fundamental group

r : π1(M(A), x0) −→ C∗.

For an arrangement A = {H1, · · · , H`} We denote by fj be a linear form defining
the hyperplane Hj , 1 ≤ j ≤ `. We associate a complex number aj = a(Hj) called
an exponent to each hyperplane and consider a multivalued function

Φ = fa11 · · · f
a`
` .

The homology H1(M(A);Z) is isomorphic to Z⊕`, where each generator corresponds
to a hyperplane. By associating to the generator of H1(M(A);Z) corresponding

to the hyperplane Hj the complex number e2π
√
−1aj we obtain a homomorphism

H1(M(A);Z) → C∗. Combining with the abelianization map π1(M(A), x0) →
H1(M(A);Z) we obtain a homomorphism

ρΦ : π1(M(A), x0) −→ C∗.

The associated local system is denoted by LΦ.
We shall investigate H∗(M(A),L) the homology of M(A) with coefficients in the

local system L. For our purpose the homology of locally finite chains H lf
∗ (M(A),L)

also plays an important role. It was shown by Z. Chen [4] that the complex associated
with the facet decomposition

⋃
F π
−1(F ) of M(A) can be used to compute the

homology of locally finite chains H lf
∗ (M(A),L).

We briefly summarize basic properties of the above homology groups. Let A be an
essential hyperplane arrangement. Namely, we suppose that maximal codimension
of a non-empty intersection of some subfamily of A is equal to n. We choose a
smooth compactification i : M(A) −→ X. Namely, M(A) is written as X \D, where
X is a smooth projective variety and D is a divisor with normal crossings. For the
local system L we consider the Leray spectral sequence.

Ep,q2 = Hp(X,Rqi∗L) =⇒ Hp+q(M(A),L).

We shall say that the local system L is generic if and only if there is an isomor-
phism

i∗L ∼= i!L
where i∗ is the direct image and i! is the extension by 0. This means that the
monodromy of L along any divisor at infinity is not equal to 1. The following
theorem was shown in [9].
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Theorem 2.1. If the local system L is generic in the above sense, then there is an
isomorphism

H∗(M(A),L) ∼= H lf
∗ (M(A),L)

We have Hk(M(A),L) = 0 for any k 6= n.

Proof. By the hypothesis that the local system L is generic we have

Rqi∗L = 0

for q > 0. The Leray spectral sequence degenerates at E2-term and we have

Ep,02
∼= Ep,0∞ = Hp(M(A),L),

where Ep,02 = Hp(X, i∗L). Thus we obtain an isomorpshim

H∗(X, i∗L) ∼= H∗(M(A),L).

On the other hand, there is an isomorpshim

H∗(X, i!L) ∼= H∗c (M(A),L)

where H∗c denotes cohomology with compact supports.
There are Poincaré duality isomorphisms:

H lf
k (M(A),L) ∼= H2n−k(M(A),L)

Hk(M(A),L) ∼= H2n−k
c (M(A),L).

By the hypothesis i∗L ∼= i!L we obtain an isomorphism

H lf
k (M(A),L) ∼= Hk(M(A),L).

It follows from the above Poincaré duality isomorpshims and the fact that M(A)
has a homotopy type of a CW complex of dimension n we have

H lf
k (M(A),L) ∼= 0, k < n

Hk(M(A),L) ∼= 0, k > n.

Therefore we obtain Hk(M(A),L) = 0 for any k 6= n. �

Let us suppose that each hyperplane in A is defined over R. We set M(A)R =
M(A) ∩Rn and denote by ∆ν , 1 ≤ ν ≤ s, the bounded chambers in M(A)R. We
denote by ∆ν the closure of ∆ν in X \D. Let

j : M(A) \ ∪ν∆ν −→ X

be the inclusion map. We denote by L0 the restriction of the local system L on
M(A) \ ∪j∆j . In this situation we have the following theorem.

Theorem 2.2. In addition to the condition that the local system L is generic we
suppose that there is an isomorphism

j∗L0
∼= j!L0.

Then the homology with locally finite chains H lf
n (M(A),L) is spanned by the homol-

ogy class of bounded chambers ∆ν , 1 ≤ ν ≤ s.
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Proof. We put ∆ = ∪ν∆ν . Let us consider the homology exact sequence of the triple
(X,D ∪∆, D) with the local system coefficient L:

−→ Hp(D ∪∆, D) −→ Hp(X,D) −→ Hp(X,D ∪∆) −→ Hp−1(D ∪∆, D) −→ · · ·

where L is extended by 0 on D ∪∆. Since we have

Hp(X,D) ∼= H lf
p (M(A))

there is a long exact sequence

−→ H lf
p (∪ν∆ν) −→ H lf

p (M(A)) −→ H lf
p (M(A) \ ∪j∆j) −→ H lf

p−1(∪ν∆ν) −→ · · ·

with the local system coefficient L. By the same argument as in the proof of Theorem
2.1 we have an isomorphism

Hk(M(A) \ ∪ν∆ν ,L0) ∼= H lf
k (M(A) \ ∪ν∆ν ,L0)

for any k and the vanishing

Hk(M(A) \ ∪ν∆ν ,L0) ∼= 0

for any k with k 6= n. Here we use the theorem of Zaslawsky saying that the number
of bounded chambers is equal to the absolute value of the Euler-Poincaré charac-
teristic |χ(M(A)| to conclude that the above vanishing holds for any k. Combining
with the above exact sequence, we obtain an isomorphism

H lf
n (∪ν∆ν ,L) ∼= H lf

n (M(A),L).

This leads to the statement of the theorem. �

3. Homological representations of braid groups

We denote by Bn the braid group with n strands. We fix a positive integer n and
a set of distinct n points in R2 as

Q = {(0, 0), · · · , (n− 1, 0)},

where we set p` = (`− 1, 0), ` = 1, · · · , n. We take a 2-dimensional disk in R2 con-
taining Q in the interior. We fix a positive integer m and consider the configuration
space of ordered distinct m points in Σ = D \Q defined by

Fm(Σ) = {(t1, · · · , tm) ∈ Σ ; ti 6= tj if i 6= j},

which is also denoted by Fn,m(D). The symmetric group Sm acts freely on Fm(Σ)
by the permutations of distinct m points. The quotient space of Fm(Σ) by this
action is by definition the configuration space of unordered distinct m points in Σ
and is denoted by Cm(Σ). We also denote this configuration space by Cn,m(D).

In the original papers by Bigelow [2], [3] and by Krammer [15] the case m = 2
was extensively studied, but for our purpose it is convenient to consider the case
when m is an arbitrary positive integer such that m ≥ 2.

We identify R2 with the complex plane C. The quotient space Cm/Sm defined
by the action of Sm by the permutations of coordinates is analytically isomorphic
to Cm by means of the elementary symmetric polynomials. Now the image of the
hyperplanes defined by ti = p`, ` = 1, · · · , n, and the diagonal hyperplanes ti = tj ,
1 ≤ i ≤ j ≤ m, are complex codimension one irreducible subvarieties of the quotient
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space Dm/Sm. This allows us to give a description of the first homology group of
Cn,m(D) as

(3.1) H1(Cn,m(D);Z) ∼= Z⊕n ⊕ Z

where the first n components correspond to meridians of the images of hyperplanes
ti = p`, ` = 1, · · · , n, and the last component corresponds to the meridian of the
image of the diagonal hyperplanes ti = tj , 1 ≤ i ≤ j ≤ m, namely, the discriminant
set. We consider the homomorphism

(3.2) α : H1(Cn,m(D);Z) −→ Z⊕ Z

defined by α(x1, · · · , xn, y) = (x1 + · · ·+ xn, y). Composing with the abelianization
map π1(Cn,m(D), x0)→ H1(Cn,m(D);Z), we obtain the homomorphism

(3.3) β : π1(Cn,m(D), x0) −→ Z⊕ Z.

Let π : C̃n,m(D)→ Cn,m(D) be the covering corresponding to Kerβ. Now the group
Z ⊕ Z acts as the deck transformations of the covering π and the homology group

H∗(C̃n,m(D);Z) is considered to be a Z[Z ⊕ Z]-module. Here Z[Z ⊕ Z] stands for
the group ring of Z ⊕ Z. We express Z[Z ⊕ Z] as the ring of Laurent polynomials
R = Z[q±1, t±1]. We consider the homology group

Hn,m = Hm(C̃n,m(D);Z)

as an R-module by the action of the deck transformations.
As is explained in the case of m = 2 in [2] it can be shown that Hn,m is a free

R-module of rank

(3.4) dn,m =

(
m+ n− 2

m

)
.

A basis of Hn,m as a free R-module is discussed in relation with the homology of
local systems in the next sections. Let M(D,Q) denote the mapping class group
of the pair (D,Q), which consists of the isotopy classes of homeomorphisms of D
which fix Q setwise and fix the boundary ∂D pointwise. The braid group Bn is nat-
urally isomorphic to the mapping class group M(D,Q). Now a homeomorphism f

representing a class inM(D,Q) induces a homeomorphism f̃ : Cn,m(D)→ Cn,m(D),

which is uniquely lifted to a homeomorphism of C̃n,m(D). This homeomorpshim
commutes with the deck transformations.

Therefore, for m ≥ 2 we obtain a representation of the braid group

(3.5) ρn,m : Bn −→ AutRHn,m

which is called the homological representation of the braid group or the Lawrence-
Krammer-Bigelow (LKB) representation. Let us remark that in the case m = 1 the
above construction gives the reduced Burau representation over Z[q±1].

4. Homology of local systems on configuration spaces

Let us consider the configuration space of ordered distinct n points in the complex
plane defined by

Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj if i 6= j}.
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The configuration space Xn is also denoted by Fn(C) as in the previous section.
The fundamental group of Xn is the pure braid group with n strands denoted by
Pn. For a positive integer m we consider the projection map

(4.1) πn,m : Xn+m −→ Xn

given by πn,m(z1, · · · , zn, t1, · · · , tm) = (z1, · · · , zn), which defines a fiber bundle
over Xn. For p ∈ Xn the fiber π−1

n,m(p) is denoted by Xn,m, which is also written as
Fn,m(C) Let (z1, · · · , zn) be the coordinates for p. Then, Xn,m is the complement
of hyperplanes defined by

(4.2) ti = z`, 1 ≤ i ≤ m, 1 ≤ ` ≤ n, ti = tj , 1 ≤ i < j ≤ m.
We call these hyperplanes Hi`, 1 ≤ i ≤ m, 1 ≤ ` ≤ n, and Dij , 1 ≤ i < j ≤ m. Such
arrangement of hyperplanes is called a discriminantal arrangement. The symmetric
group Sm acts on Xn,m by the permutations of the coordinates functions t1, · · · , tm.
We put Yn,m = Xn,m/Sm, which is also denoted by Cn,m(C).

Identifying R2 with the complex plane C, we have the inclusion map

(4.3) ι : Fn,m(D) −→ Xn,m,

which is a homotopy equivalence. By taking the quotient by the action of the
symmetric group Sm, we have the inclusion map

(4.4) ι : Cn,m(D) −→ Yn,m,

which is also a homotopy equivalence.
We fix p = (z1, z2 · · · , zn) as a base point. We consider a rank one local system

L associated with a representation

r : π1(Xn,m, x0) −→ C∗.

Let us consider the compactification

i0 : Xn,m −→ (CP 1)m = CP 1 × · · · ×CP 1︸ ︷︷ ︸
m

.

We denote by Hi∞ the hyperplane defined by ti =∞ for 1 ≤ ` ≤ n. We have

Xn,m = (CP 1)m \ (∪1≤i≤m, 1≤`≤nHi`) ∪ (∪1≤i≤mHi∞) ∪ (∪1≤i≤mDij)

Then we take blowing-ups at multiple points π : ̂(CP 1)m −→ (CP 1)m and obtain a

smooth compactification i : Xn,m → ̂(CP 1)m with normal crossing divisors. We are
able to write down the condition i∗L ∼= i!L explicitly by computing the monodromy
of the local system L along divisors at infinity.

We consider the local system associated with the multivalued function of the form

(4.5) Φ =
∏

1≤i≤m,1≤`≤n
(ti − z`)α`

∏
1≤i<j≤m

(ti − tj)2γ .

The local system L on Xn,m is invariant under the action of the symmetric group

Sm and induces the local system L on Yn,m.
We have the following proposition.

Proposition 4.1. There is an open dense subset V in C`+1 such that for (α1, · · ·α`, γ) ∈
V the associated local system L on Yn,m saitisfies

H∗(Yn,m,L) ∼= H lf
∗ (Yn,m,L)
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and Hk(Yn,m,L) = 0 for any k 6= m. Moreover, we have

(4.6) dimHm(Yn,m,L
∗
) = dn,m,

where we use the same notation as in equation (3.4) for dn,m.

Proof. We see that Yn,m is the complement of hypersurfaces in Cm. We consider
the embedding

(4.7) i0 : Yn,m −→ SmCP 1

where SmCP 1 is the symmetric product defined as (CP 1)m/Sm. We observe that
SmCP 1 is a smooth complex manifold. Now by taking blowing-ups we have a
smooth compactification

(4.8) i : Yn,m −→ ̂SmCP 1

with normal crossing divisors. Let us remark that the argument of the proof of The-
orem 2.1 can be applied to this situation and we have an isomorphism H∗(Yn,m,L) ∼=
H lf
∗ (Yn,m,L) and the vanishing Hk(Yn,m,L) = 0 for k 6= m if the condition i∗L ∼= i!L

is satisfied. Actually, by the Lefschetz hyperplane section theorem it is enough
to verify the condition for a generic 2 dimensional section. In this case by ex-
pressing the monodromy along divisors with normal crossings at infinity by the
parameter (α1, · · ·α`, γ) we can verify that the condition i∗L ∼= i!L is satisfied for
(α1, · · ·α`, γ) ∈ C`+1 in an open dense subset of C`+1. The dimension formula for

Hm(Yn,m,L
∗
) follows from the calculation of the Euler-Poincaré characteristic of

Yn,m. �

For the purpose of describing the homology group H lf
m (Xn,m,L) and H lf

m (Yn,m,L)
we introduce the following notation. We take the base point p = (1, · · · , n). For
non-negative integers m1, · · · ,mn−1 satisfying

m1 + · · ·+mn−1 = m

we define a bounded chamber ∆m1,··· ,mn−1 in Rm by

1 < t1 < · · · < tm1 < 2

2 < tm1+1 < · · · < tm1+m2 < 3

· · ·
n− 1 < tm1+···+mn−2+1 + · · ·+ tm < n.

We put M = (m1, · · · ,mn−1) and we write ∆M for ∆m1,··· ,mn−1 . We denote by

∆M the image of ∆M by the projection map πn,m. The bounded chamber ∆M

defines a homology class [∆M ] ∈ H lf
m (Xn,m,L) and its image ∆M defines a homology

class [∆M ] ∈ H lf
m (Yn,m,L). We shall show in Section 7 that under certain generic

conditions [∆M ] for M = (m1, · · · ,mn−1) with m1 + · · · + mn−1 = m form a basis

of H lf
m (Yn,m,L).

As we have shown in Theorem 2.1 there is an isomorphism Hm(Xn,m,L) ∼=
H lf
m (Xn,m,L) if the condition i∗L ∼= i!L is satisfied. In this situation we denote

by [∆̃M ] the homology class in Hm(Xn,m,L) corresponding to [∆M ] in the above

isomorphism and call [∆̃M ] the regularized cycle for [∆M ]. In general regularized
cycles can be constructed by means of the boundary of the tubular neighborhood of
divisors at infinity. We refer the reader to [1] for more details about this subject.
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For the purpose of dealing with non-generic case we need some refined criteria for
the vanishing of cohomology of local systems. For the multivalued function Φ given
in equation (4.5) we set

ξ` = e2π
√
−1α` , 1 ≤ ` ≤ n, δ = e4π

√
−1γ .

We consider the local system L over Xn,m associated with Φ The monodromy of L
around the hyperplanes Hi` and Dij is ξ` and δ respectively. We denote by ξ∞ the
monodromy around Hi∞.

The following proposition is due to R. Silvotti [22].

Proposition 4.2 (Silvotti [22]). If there exists at least one ` ∈ {1, · · · , n,∞} such
that

ξk` δ
1
2
k(k−1) 6= 1

holds for 1 ≤ k ≤ m, then

H i(Xn,m,L) ∼= 0

for i 6= m.

We consider the case n = 1, namely, the configuration space X1,m = Fm(C\{0}).
We write ξ for ξ1. The following Proposition4.3 and Proposition4.4 are also due to
R. Silvotti [22]. We provide the proofs of the reader’s convenience.

Proposition 4.3. The vanishing of cohomology

H i(X1,m,L) ∼= 0

holds for any i if and only if the condition

ξmδ
1
2
m(m−1) 6= 1

is satisfied.

Proof. The case m = 1 is clear. We write C∗ for C \ {0} and consider the map

σ : C∗ ×Fm−1(C \ {0, 1}) −→ Fm(C \ {0})
defined by

σ(w;w1, · · ·wm−1) = (w,ww1, · · · , wwm−1).

We see that the map σ is a diffeomorphism and there is an isomorphism

H∗(Fm(C \ {0}),L) ∼= H∗(Fm−1(C \ {0, 1}), σ∗L)

The monodromy of the local system σ∗L around w = 0 is ξmδ
1
2
m(m−1). Let us

suppose that ξmδ
1
2
m(m−1) 6= 1. We denote the inclusion maps by

i1 : C∗ −→ C∗ ×Fm−1(C \ {0, 1})
i2 : Fm−1(C \ {0, 1}) −→ C∗ ×Fm−1(C \ {0, 1})

By the Künneth formula there is an isomorphism

Hj(C∗ ×Fm−1(C \ {0, 1}), σ∗L)

∼=⊗p+q=j Hp(C∗, i∗1σ
∗L)⊗Hq(Fm−1(C \ {0, 1}), i∗2σ∗L).

By the hypothesis ξmδ
1
2
m(m−1) 6= 1 the local system i∗1σ

∗L on C∗ is non-trivial and
we have

Hp(C∗, i∗1σ
∗L) ∼= 0
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for any p. This shows that
H i(X1,m,L) ∼= 0

for any i. Conversely, if ξmδ
1
2
m(m−1) = 1, then the local system i∗1σ

∗L on C∗ is
trivial and we have

Hp(C∗, i∗1σ
∗L) ∼=

{
C, p = 0, 1

0, p 6= 0, 1.

Since χ(Fm−1(C\{0, 1}) 6= 0 the cohomology H∗(Fm(C\{0}),L) cannot vanish. �

Proposition 4.4. If ξmδ
1
2
m(m−1) = 1 and

ξkδ
1
2
k(k−1) 6= 1

for any k with 1 ≤ k ≤ m− 1, then

H i(X1,m,L) ∼= 0, i 6= m− 1,m

holds. Moreover, we have

dimHm−1(X1,m,L) = dimHm(X1,m,L) = (m− 1)!.

Proof. We use the notation in the proof of the previous proposition. By the hypoth-
esis the local system i∗1σ

∗L on C∗ is trivial. By using the fact that |χ(X2,m−1| =
(m− 1)! and Proposition 4.2, we obtain

Hq(Fm−1(C \ {0, 1}), i∗1σ∗L) ∼=

{
C(m−1)!, q = m− 1

0, q 6= m− 1

Combining with the Künneth formula, we obtain the desired statement. �

Under the same hypothesis as in Proposition 4.4 we can show for Y1,m = X1,m/Sm

that
H i(Y1,m,L) ∼= 0, i 6= m− 1,m

and that
dimHm−1(Y1,m,L) = dimHm(Y1,m,L) = 1

by a similar argument.

5. KZ connection

Let g be a complex semi-simple Lie algebra and {Iµ} be an orthonormal basis of
g with respect to the Cartan-Killing form. We set Ω =

∑
µ Iµ ⊗ Iµ. Let ri : g →

End(Vi), 1 ≤ i ≤ n, be representations of the Lie algebra g. We denote by Ωij the
action of Ω on the i-th and j-th components of the tensor product V1 ⊗ · · · ⊗ Vn. It
is known that the Casimir element c =

∑
µ Iµ · Iµ lies in the center of the universal

enveloping algebra Ug. Let us denote by ∆ : Ug → Ug ⊗ Ug the coproduct, which
is defined to be the algebra homomorphism determined by ∆(x) = x⊗ 1 + 1⊗ x for
x ∈ g. Since Ω is expressed as Ω = 1

2 (∆(c)− c⊗ 1− 1⊗ c) we have the relation

(5.1) [Ω, x⊗ 1 + 1⊗ x] = 0

for any x ∈ g in the tensor product Ug⊗Ug. By means of the above relation it can
be shown that the infinitesimal pure braid relations:

[Ωik,Ωij + Ωjk] = 0, (i, j, k distinct),(5.2)

[Ωij ,Ωk`], (i, j, k, ` distinct)(5.3)
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hold. Let us briefly explain the reason why we have the above infinitesimal pure
braid relations. For the first relation it is enough to show the case i = 1, j = 3, k = 2.
Since we have

[Ω⊗ 1, (Iµ ⊗ 1 + 1⊗ Iµ)⊗ Iµ] = 0

by the equation (5.1) we obtained the desired relation. The equation (4.3) in the
infinitesimal pure braid relations is clear from the definition of Ω on the tensor
product.

We define the Knizhnik-Zamolodchikov (KZ) connection as the 1-form

(5.4) ω =
1

κ

∑
1≤i<j≤n

Ωijd log(zi − zj)

with values in End(V1 ⊗ · · · ⊗ Vn) for a non-zero complex parameter κ.
We set ωij = d log(zi − zj), 1 ≤ i, j ≤ n. It follows from the above infinitesimal

pure braid relations among Ωij together with Arnold’s relation

(5.5) ωij ∧ ωjk + ωjk ∧ ωk` + ωk` ∧ ωij = 0

that ω∧ω = 0 holds. This implies that ω defines a flat connection for a trivial vector
bundle over the configuration space Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj if i 6= j}
with fiber V1 ⊗ · · · ⊗ Vn. A horizontal section of the above flat bundle is a solution
of the total differential equation

(5.6) dϕ = ωϕ

for a function ϕ(z1, · · · , zn) with values in V1 ⊗ · · · ⊗ Vn. This total differential
equation can be expressed as a system of partial differential equations

(5.7)
∂ϕ

∂zi
=

1

κ

∑
j,j 6=i

Ωij

zi − zj
ϕ, 1 ≤ i ≤ n,

which is called the KZ equation. The KZ equation was first introduced in [8] as the
differential equation satisfied by n-point functions in Wess-Zumino-Witten conformal
field theory.

Let φ(z1, · · · , zn) be the matrix whose columns are linearly independent solutions
of the KZ equation. By considering the analytic continuation of the solutions with
respect to a loop γ in Xn with base point x0 we obtain the matrix θ(γ) defined by

(5.8) φ(z1, · · · , zn) 7→ φ(z1, · · · , zn)θ(γ).

Since the KZ connection ω is flat the matrix θ(γ) depends only on the homotopy
class of γ. The fundamental group π1(Xn, x0) is the pure braid group Pn. As
the above holonomy of the connection ω we have a one-parameter family of linear
representations of the pure braid group

(5.9) θ : Pn → GL(V1 ⊗ · · · ⊗ Vn).

The symmetric group Sn acts on Xn by the permutations of coordinates. We
denote the quotient space Xn/Sn by Yn. The fundamental group of Yn is the braid
group Bn. In the case V1 = · · · = Vn = V , the symmetric group Sn acts diagonally
on the trivial vector bundle over Xn with fiber V ⊗n and the connection ω is invariant
by this action. Thus we have one-parameter family of linear representations of the
braid group

(5.10) θ : Bn → GL(V ⊗n).

11



It is known by [5] and [10] that this representation is described by means of quantum
groups. We call θ the quantum representation of the braid group.

6. Solutions of KZ equation by hypergeometric integrals

In this section we describe solutions of the KZ equation for the case g = sl2(C)
by means of hypergeometric integrals following Schechtman and Varchenko [21]. A
description of the solutions of the KZ equation was also given by Date, Jimbo,
Matsuo and Miwa [6]. We refer the reader to [1] and [19] for general treatments of
hypergeometric integrals.

Let us recall basic facts about the Lie algebra sl2(C) and its Verma modules. As
a complex vector space the Lie algebra sl2(C) has a basis H,E and F satisfying the
relations:

(6.1) [H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

For a complex number λ we denote by Mλ the Verma module of sl2(C) with highest
weight λ. Namely, there is a non-zero vector vλ ∈ Mλ called the highest weight
vector satisfying

(6.2) Hvλ = λvλ, Evλ = 0

and Mλ is spanned by F jvλ, j ≥ 0. The elements H,E and F act on this basis as

(6.3)


H · F jvλ = (λ− 2j)F jvλ

E · F jvλ = j(λ− j + 1)F j−1vλ

F · F jvλ = F j+1vλ.

It is known that if λ ∈ C is not a non-negative integer, then the Verma module Mλ

is irreducible.
For Λ = (λ1, · · · , λn) ∈ Cn we put |Λ| = λ1 + · · · + λn and consider the tensor

product Mλ1⊗· · ·⊗Mλn . For a non-negative integer m we define the space of weight
vectors with weight |Λ| − 2m by

(6.4) W [|Λ| − 2m] = {x ∈Mλ1 ⊗ · · · ⊗Mλn ; Hx = (|Λ| − 2m)x}
and consider the space of null vectors defined by

(6.5) N [|Λ| − 2m] = {x ∈W [|Λ| − 2m] ; Ex = 0}.
The KZ connection ω commutes with the diagonal action of g on Vλ1 ⊗ · · · ⊗ Vλn ,

hence it acts on the space of null vectors N [|Λ| − 2m].
For parameters κ and λ we consider the multi-valued function

(6.6) Φn,m =
∏

1≤i<j≤n
(zi − zj)

λiλj
2κ

∏
1≤i≤m,1≤`≤n

(ti − z`)−
λ`
κ

∏
1≤i<j≤m

(ti − tj)
2
κ

defined over Xn+m. The function Φn,m is called the master function. Let L denote
the local system associated to the multi-valued function Φn,m.

The symmetric group Sm acts on Xn,m by the permutations of the coordinate
functions t1, · · · , tm. The function Φn,m is invariant by the action of Sm. The local

system L over Xn,m defines a local system on Yn,m, which we denote by L. The
local system dual to L is denoted by L∗.

We put v = vλ1⊗· · ·⊗vλn and for J = (j1, · · · , jn) set F Jv = F j1vλ1⊗· · ·⊗F jnvλn ,
where j1, · · · , jn are non-negative integers. The weight space W [|Λ| − 2m] has a
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basis F Jv for each J with |J | = j1 + · · · + jn = m. For the sequence of integers
(i1, · · · , im) = (1, · · · , 1︸ ︷︷ ︸

j1

, · · · , n, · · · , n︸ ︷︷ ︸
jn

) we set

(6.7) SJ(z, t) =
1

(t1 − zi1) · · · (tm − zim)

and define the rational function RJ(z, t) by

(6.8) RJ(z, t) =
1

j1! · · · jn!

∑
σ∈Sm

SJ(z1, · · · , zn, tσ(1), · · · , tσ(m)).

For example, we have

R(1,0,··· ,0)(z, t) =
1

t1 − z1
, R(2,0,··· ,0)(z, t) =

1

(t1 − z1)(t2 − z1)

R(1,1,0,··· ,0)(z, t) =
1

(t1 − z1)(t2 − z2)
+

1

(t2 − z1)(t1 − z2)

and so on.
Since πn,m : Xm+n → Xn is a fiber bundle with fiber Xn,m the fundamental group

of the base space Xn acts naturally on the homology group Hm(Xn,m,L∗). Thus we
obtain a representation of the pure braid group

(6.9) rn,m : Pn −→ AutHm(Xn,m,L∗)

which defines a local system on Xn denoted by Hn,m. In the case λ1 = · · · = λn
there is a representation of the braid group

(6.10) rn,m : Bn −→ AutHm(Yn,m,L
∗
)

which defines a local system Hn,m on Yn,m. For any horizontal section c(z) of the
local system Hn,m we consider the hypergeometric type integral

(6.11)

∫
c(z)

Φn,mRJ(z, t) dt1 ∧ · · · ∧ dtm

for the above rational function RJ(z, t).
The twisted de Rham complex (Ω∗(Xn,m),∇) is a complex with differential ∇ :

Ωj(Xn,m)→ Ωj+1(Xn,m) defined by

∇ω = dω + d log Φn,m ∧ ω.

for ω ∈ Ωj(Xn,m). There is a pairing between the homology of the local system L∗
and the cohomology of the twisted de Rham complex

Hm(Xn,m,L∗)×Hm(Ω∗(Xn,m),∇)→ C

defined by

(c, ω) 7→
∫
c
Φn,mω.

Such integrals are called hypergeometric integrals. We refer the reader to [19] for
a detailed treatment of hypergeometric integrals in the more general situation of
hyperplane arrangements.

We define a map

ρ : W [λ− 2m]→ Ωm(Xn,m)
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given by

ρ(w) = RJ(t, z)dt1 ∧ · · · ∧ dtm
for w = F Jv using the rational function RJ(t, z). It turns out that ρ induces a map
to the cohomology of the twisted de Rham complex

N [λ− 2m] −→ Hm(Ω∗(Xn,m),∇).

By this construction we obtain a map

φ : Hm(Yn,m,L∗) −→ N [λ− 2m]∗

defined by

〈φ(c), w〉 =

∫
c
Φρ(w).

A lot of works have been done on the expression of the solutions of the KZ equation
by means of hypergeometric type integrals (see [6] and [21]). According to the
formulation due to V. Schechtman and A. Varchenko [21] the integral∫

c
Φρ(w)

is a horizontal section of the KZ connection with values in N [λ− 2m].

Theorem 6.1 (Schechtman and Varchenko [21]). The integral∑
|J |=m

(∫
c(z)

Φn,mRJ(z, t) dt1 ∧ · · · ∧ dtm

)
F Jv

lies in the space of null vectors N [|Λ| − 2m] and is a solution of the KZ equation.

7. Relation between homological representation and KZ connection

We fix a complex number λ and consider the space of null vectors

N [nλ− 2m] ⊂M⊗nλ
by putting λ1 = · · · = λn = λ in the definition of Section 6. As the monodromy of
the KZ connection

ω =
1

κ

∑
1≤i<j≤n

Ωijd log(zi − zj)

with values in N [nλ− 2m] we obtain the linear representation of the braid group

θλ,κ : Bn −→ AutN [nλ− 2m].

We put

F (z1, · · · , zn) =
∏

1≤i<j≤n
(zi − zj)

λ2

2κ .

The multivalued function F gives an abelian representation of the braid group.

an : Bn −→ C∗

and the representation θλ,κ is expressed in the form an ⊗ θ̃λ,κ. The next theorem
describes a relationship between a specialization of the homological representation
ρn,m and the representation θ̃λ,κ.
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Theorem 7.1. There exists an open dense subset U in (C∗)2 such that for (λ, κ) ∈ U
the homological representation ρn,m with the specialization

q = e−2π
√
−1λ/κ, t = e2π

√
−1/κ

is equivalent to the monodromy representation of the KZ connection θ̃λ,κ with values
in the space of null vectors

N [nλ− 2m] ⊂M⊗nλ .

We assume the conditions i∗L ∼= i!L and i∗L ∼= i!L in the following. By means
of the argument in Section 4 these conditions are satisfied for (λ, κ) in an open
dense subset in (C∗)2. By the assumption we have an isomorphism Hm(Xn,m,L) ∼=
H lf
m (Xn,m,L) and we can take the regularized cycles [∆̃M ] ∈ Hm(Xn,m,L) for the

bounded chamber ∆M .
We will consider the integral∑

|J |=m

(∫
∆M

Φn,mRJ(z, t) dt1 ∧ · · · ∧ dtm
)
F Jv

in the space of null vectorsN [|Λ|−2m]. In general the above integral is divergent. We

replace the integration cycle by the regularized cycle [∆̃M ] to obtain the convergent
integral. This is called the regularized integral. We refer the reader to [1] for details
on this aspect.

The rest of this section is devoted to the proof of the above theorem. We first
show the following proposition.

Proposition 7.1. There exists an open dense subset U in (C∗)2 such that for
(λ, κ) ∈ U the following properties (1) and (2) are satisfied.

(1) The integrals in Theorem 6.1 over [∆̃M ] for M = (m1, · · · ,mn−1) with m1 +
· · ·+mn−1 = m are linearly independent.

(2) The homology classes [∆M ] for M = (m1, · · · ,mn−1) with m1 +· · ·+mn−1 =

m form a basis of H lf
m (Yn,m,L

∗
) ∼= Hm(Yn,m,L

∗
).

Here m1, · · · ,mn−1 are non-negative integers.

Proof. We prepare notation for a basis of N [|Λ| − 2m]. We suppose that λ1 is not
a non-negative integer. Let us observe that for Λ = (λ1, · · · , λn) the space of null
vectors N [|Λ| − 2m] has dimension dn,m. This can be shown as follows. First, let us
consider the weight space

Mλ2 ⊗ · · · ⊗Mλn [λ2 + · · ·+ λn − 2m]

= {x ∈Mλ2 ⊗ · · · ⊗Mλn ; Hx = (λ2 + · · ·+ λn − 2m)x}.

There is an isomorphism

ξ : Mλ2 ⊗ · · · ⊗Mλn [λ2 + · · ·+ λn − 2m] −→ N [|Λ| − 2m]

defined by

u 7→ vλ1 ⊗ u−
1

λ1
Fvλ1 ⊗ Eu+

1

λ1(λ1 − 1)
F 2vλ1 ⊗ E2u− · · ·

This shows that N [|Λ|− 2m] has a basis indexed by J ′ = (j1, j2, · · · , jn) with j1 = 0
and j2 + · · ·+ jn = m, where j2, · · · , jn are non-negative integers. Let us denote by
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Sn,m the set of such indices J ′. The above weight space has a basis uJ ′ indexed by
J ′ ∈ Sn,m. We have the corresponding basis ξ(uJ ′) of N [|Λ| − 2m].

We put

(7.1) Φ̃n,m =
∏

1≤i≤m,1≤`≤n
(ti − z`)α`

∏
1≤i<j≤m

(ti − tj)2γ

and for J ′ ∈ Sn,m put

(7.2) α′J =
n∏
k=2

(jk)!αk(αk + γ) · · · (αk + (jk − 1)γ).

We assume that α1, · · · , αn and γ are positive. We express the integral in Theorem
6.1 over the cycle ∆M in the linear combination for the basis ξ(uJ ′) of N [|Λ| − 2m]

and we donote by R̃J ′(z, t) the corresponding rational function. In [24] Varchenko
gave a formula for the determinant

(7.3) det
M,J ′

(
αJ ′

∫
∆M

Φ̃n,mR̃J ′(z, t)dt1 ∧ · · · ∧ dtm
)
,

where M = (m1, · · · ,mn−1) with m1 + · · · + mn−1 = m and J ′ ∈ Sn,m. According
to Varchenko’s formula the above determinant is expressed as a non-zero constant
times the gamma factor given by

(7.4)

m−1∏
i=0

(
Γ((i+ 1)γ + 1)n−1

Γ(γ + 1)n−1

Γ(α1 + iγ + 1) · · · (αn + iγ + 1)

Γ(α1 + · · ·+ αn + (2m− 2− i)γ + 1)

)νi
where νi is defined by

(7.5) νi =

(
m+ n− i− 3
m− i− 1

)
.

Since the gamma function does not has zeros and has only poles of order one at non-
positive integers, it is clear that the determinant is zero only when the denominator
of the gamma factor has a pole. Considering the regularized integrals over the cycles

[∆̃M ] we can analytically continue the determinant formula to complex numbers
α1, · · · , αn and γ.

Let us recall that we deal with the case

α` = −λ
κ
, 1 ≤ ` ≤ n, γ =

1

κ
.

From the determinant formula we observe that the linearly independence for the
solutions of the KZ equation in (1) in the statement of the proposition is satisfied
for (λ, κ) in an open dense subset in (C∗)2. Under the same condition we have the
linear independence for the homology classes [∆M ] for M = (m1, · · · ,mn−1) with

m1 + · · · + mn−1 = m. Since we have dimH lf
m (Yn,m,L

∗
) = dm,n we obtain the

property (2). This completes the proof of our proposition. �

Let us consider the specialization map

(7.6) s : R = Z[q±1, t±1] −→ C

defined by the substitutions q 7→ e−2π
√
−1λ/κ and t 7→ e2π

√
−1/κ. This induces in a

natural way a homomorphism

(7.7) Hm(C̃n,m(D);Z) −→ Hm(Yn,m,L
∗
).
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We take a basis [cM ] of Hm(C̃n,m(D);Z) as the R-module for M = (m1, · · · ,mn−1)
with m1 + · · ·+mn−1 = m in such a way that [cM ] maps to the regularized cycle for
[∆M ] by the above specialization map. We observe that the homological represen-

tation specialized at q 7→ e−2π
√
−1λ/κ and t 7→ e2π

√
−1/κ is identified with the linear

representation of the braid group rn,m : Bn → AutHm(Yn,m,L
∗
).

Since the basis of N [nλ− 2m] is indexed by the set Sn,m we have an isomorphism

Hm(Yn,m,L
∗
) ∼= N [nλ− 2m].

Now the fundamental solutions of the KZ equation with values in N [nλ − 2m] is
give by the matrix of the form (∫

∆̃M

ωM ′

)
M,M ′

with M = (m1, · · · ,mn−1) and M ′ = (m′1, · · · ,m′n−1) such that m1+· · ·+mn−1 = m
and m′1 + · · ·+m′n−1 = m. Here ωM ′ is a multivalued m-form on Xn,m. The column
vectors of the above matrix form a basis of the solutions of the KZ equation with
values in N [nλ − 2m]. Thus the representation rn,m : Bn → AutHm(Yn,m,L

∗
) is

equivalent to the action of Bn on the solutions of the KZ equation with values in
N [nλ− 2m]. This completes the proof of Theorem 7.1.

8. Space of conformal blocks

We take distinct n+1 points p1, · · · , pn+1 ∈ CP 1 with pn+1 =∞ and we associate
to these points the highest weights λ1, · · · , λn, λn+1. Then the space of coinvariants

(Mλ1 ⊗ · · · ⊗Mλn ⊗M∗λn+1
)/g

is identifined with

N [λn+1] = N [λ− 2m]

for

m =
1

2
(λ1 + · · ·+ λn − λn+1),

where M∗λn+1
denotes the dual representation of Mλn+1 .

Let us briefly discuss a relation between the space of conformal blocks in conformal
field theory on the Riemann sphere and the space of coinvariants N [λ − 2m]. We
deal with the Lie algebra g = sl2(C).

First, we recall the definition of the space of conformal blocks. We refer the reader
to [11] for an introductory treatment of this subject. We fix a positive integer
K called the level. and put κ = K + 2. We suppose that the highest weights
λ1, · · · , λn+1 associated with the points p1, · · · , pn+1 ∈ CP 1 with pn+1 = ∞ are
non-negative integers and satisfy 0 ≤ λ1, · · · , λn+1 ≤ K.

For a non-negarive integer λ we denote by Vλ the irreducible representation of
g with highest weight λ. Namely, Vλ is an irreducible representation containing a
non-zero vector v such that Ev = 0. A basis of Vλ is given by {v, Fv, · · · , F λv}.
The representation space Vλ is obtained as a quotient of the Verma module Mλ. We
consider the representations Vλ1 , · · · , Vλn+1 associated with the above n + 1 points

p1, · · · , pn+1 ∈ CP 1.
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Let us recall the notion of affine Lie algebras. We start from the loop algebra
g⊗C((ξ)), where C((ξ)) denotes the ring of Laurent series. We consider the central
extension ĝ = g⊗C((ξ))⊕Cc defined by

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg + 〈X,Y 〉 Resξ=0(df g)

where 〈X,Y 〉 = Tr(XY ) is the Cartan-Killing form. We call ĝ the affine Lie algebra.
We denote by A+ the subalgebra of C((ξ)) consisting of the series with only positive
powers. Similarly, A− denotes the subalgebra consisting of the series with only
negative powers. We define Lie subalgebras N+, N0, N− by

N+ = [g⊗A+]⊕CE, N0 = CH ⊕Cc, N+ = [g⊗A−]⊕CF.

We have a direct sum decomposition

ĝ = N+ ⊕N0 +N−

as Lie algebras.
Let λ be an integer with 0 ≤ λ ≤ K. We construct an irreducible representation

Hλ starting from the finite dimensional irreducible representation Vλ of g. We
consider the Verma module Mλ defined as Mλ = U(N−)Vλ satisfying N+Vλ = 0,
where the action of U(N−) is free and the central elements c acts as the multiplication
by K. It turns out that the Verma moduleMλ contains a null vector, which means
that there exists a non-zero vector χ ∈ Mλ such that N+χ = 0. We consider the
quotient module

Hλ =Mλ/U(N−)χ

and it can be shown that Hλ is an irreducible ĝ-module. We call Hλ the integral
highest weight module of ĝ with highest weight λ of level K.

We regard the Riemann sphere CP 1 as the one point compactification C ∪ {∞}
and fix an affine coordinate function z for C. We take local coordinates around
pj , 1 ≤ j ≤ n as ξj = z − z(pj) and take ξn+1 = 1/t as a local coordinate around
pn+1 =∞. We denote by Mp the set of meromorphic functions on CP 1 with poles
of any order at most at p1, · · · , pn+1. Then g⊗Mp has a structure of a Lie algebra
and acts diagonally on the tensor product Hλ1 ⊗ · · ·⊗Hλn ⊗H∗λn+1

by means of the

Laurent expansions of a meromorphic function at the points p1, · · · , pn+1 ∈ CP 1

with respect to the above local coordinates. Here we notice that this action is well-
defined since the affine Lie algebra is defined by means of a central extension given
by a 2-cocycle expressed by the residue of a 1-form and the sum of the residues is
zero on CP 1.

The space of conformal blocks is defined as the space of coinvariants

H(p, λ) = (Hλ1 ⊗ · · · ⊗ Hλn ⊗H∗λn+1
)/(g⊗Mp).

There is also a dual formulation as follows. We define H(p, λ)∗ as the space of
invariant multilinear forms by

H(p, λ)∗ = Homg⊗Mp(Hλ1 ⊗ · · · ⊗ Hλn ⊗H∗λn+1
,C)

where the action of g⊗Mp on C is supposed to be trivial. This means that the dual
space of conformal blocks H(p, λ)∗ is defined as the space of invariant multilinear
forms by the action of g⊗Mp.

It is a basic result in conformal field theory that the spaces of conformal blocks
form a vector bundle over the configuration space Xn equipped with a flat con-
nection. This connection is explicitly give by the KZ connection. Therefore, the
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pure braid group Pn acts on the space of conformal blocks H(p, λ)∗ by means of the
holonomy of this connection.

It turns out that there is a surjective map

(Vλ1 ⊗ · · · ⊗ Vλn ⊗ V ∗λn+1
)/g −→ H(p, λ)

and the kernel is described by some algebraic equations coming from the definition of
the space of conformal blocks. The reason that the above map is not an isomorphism
is that the integrable highest module Hλ is not a Verma module and there exists
a null vector in Mλ. The existence of such null vectors yields the above algebraic
equations.

In general the dimension of the space of conformal blocks is given by the Verlinde
formula. The most fundamental one is the case n = 2, namely the Riemann sphere
with 3 marked points. In this case it can be shown that the space of conformal
blocks H(p1, p2, p3;λ1, λ2, λ3) is isomorphic to C if the condition

|λ1 − λ2| ≤ λ3 ≤ λ1 + λ2

λ1 + λ2 + λ3 ∈ 2Z

λ1 + λ2 + λ3 ≤ 2K

is satisfied and is 0 otherwise. The above condition is called the quantum Clebsch-
Gordan condition. The first two lines correspond to the usual Clebsch-Gordan con-
dition. It is a necessary and sufficient condition so that the tensor product Vλ1⊗Vλ2
contains Vλ3 as a g-submodule. We notice that in our case there is an extra condi-
tion coming from the level K. The above dimension of the space of conformal blocks
describes so called the fusion rule in Wess-Zumino-Witten conformal field theory.

We apply the construction of solutions of the horizontal section of the KZ connec-
tion by hypergeometric integrals described in Section 7. It was shown by B. Feigin,
V. Schechtman and A. Varchenko [7] that the map to the twisted de Rham complex
ρ : W [λ− 2m]→ Ωm(Yn,m) and induces a map

H(p, λ)→ Hm(Ω∗(Xn,m),∇).

This means that the algebraic equations appearing in the construction of the space
of conformal blocks correspond to exact forms. Therefore we obtain a map

φ : Hm(Yn,m,L
∗
)→ H(p, λ)∗

defined by

〈φ(c), w〉 =

∫
c
Φρ(w).

The map φ is equivariant with respect to the action of the pure braid group Pn and
is considered to be a period integral for the space of conformal blocks. It was shown
by A. Varchenko [23] that the above map φ is surjective.

We will see that the map φ : Hm(Yn,m,L
∗
)→ H(p, λ)∗ is not in general injective.

Our local system L might not be generic in the sense of previous sections since κ and
the highest weights are integers and we have rational numbers as exponents in the
master function Φn,m in (6.6). We investigate such non-generic situation especially
in the case n = 2.

In the following we consider the compactification Xn,m → (CP 1)m and

i : Yn,m −→ SmCP 1
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by means of the symmetric product. As in Section 4 there are hyperplanes

Hi`, 1 ≤ i ≤ m, 1 ≤ ` ≤ n, Hi∞, 1 ≤ i ≤ m, Dij , 1 ≤ i < j ≤ m

and we associate the exponents

a(Hi`) = −λ`
κ

a(Hi∞) =
1

κ
(λ1 + · · ·+ λn − 2(m− 1))

a(Dij) =
2

κ

so that the monodromy of the local system L associated with Φn,m along the above
hyperplanes are given by

ξ` = e2π
√
−1a(Hi`), ξ∞ = e2π

√
−1a(Hi∞), δ = e2π

√
−1a(Dij)

respectively.
A non-empy intersection of subfamily of the above hyperplane is called an edge.

For a subset {i1, · · · , ip} ⊂ {1, · · · ,m} we consider the edge

Li1···ip = Hi1∞ ∩ · · · ∩Hip∞.

By blowing up (CP 1)m we consider the situation where the complement of Xn,m is a
divisor with normal crossings. We say that the edge L is resonant if the monodromy
of the local system L along the divisor corresponding to L is trivial.

In the following we consider the case n = 2.

Proposition 8.1. If the inequality

λ1 + λ2 + λ3 > 2K

holds, there exists a resonant edge of the form Li1···ip.

Proof. We set

a(Li1···ip) = a(Hi1∞) + · · ·+ a(Hip∞) +
∑

{i,j}⊂{i1,··· ,ip}

a(Dij).

The the monodromy of the local system L along the divisor corresponding to Li1···ip
is given by e2π

√
−1a(Li1···ip ). We have

a(Li1···ip) =
p

K + 2
(λ1 + λ2 − 2m+ p+ 1).

We put s = K − λ3. The the inequality λ1 + λ2 + λ3 > 2K is equivalent to m > s.
If we set p = s+ 1, then we have p ≤ m and

a(Li1···ip) = s+ 1,

which is an integer. In this case the monodromy of the local system L along the
divisor corresponding to the edge Li1···ip is trivial. This completes the proof. �

In the above situation we say that the local system L has a resonance at infinity.
In [22] R. Silvotti investigated the structure of Em,0∞ for the Leray spectral sequence
associated with the compactification i : Yn,m −→ SmCP 1. We consider the case
n = 2. First we describe the generic case.
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Proposition 8.2. If the condition

ξk` δ
1
2
k(k−1) 6= 1, ` = 1, 2,∞, 1 ≤ k ≤ m

δ
1
2
k(k−1) 6= 1, 2 ≤ k ≤ m

is satisfied, then the Leray spectral sequence degenerates at E2 term and there is an
isomorphism.

Em,0∞
∼= Hm(Y2,m,L).

Furthermore, we have dimEm,0∞ = 1.

Proof. Under the condition we have Rqi∗L ∼= 0 for q > 0 and i∗L ∼= i!L. Thus the
Leray spectral sequence degenerates at E2 term and we have

Em,02
∼= Hm(SmCP 1, i!L) ∼= Hm

c (Y2,m,L).

We have an isomorphism Hm
c (Y2,m,L) ∼= Hm(Y2,m,L). We have a vanishing

H i(Y2,m,L) ∼= 0, i 6= m

and by means of the calculation of the Euler-Poincaré characteristic of Y2,m we

conclude that dimHm(Y2,m,L) = 1. This completes the proof. �

Proposition 8.3. Let us suppose that the condition in Proposition 8.2 is satisfied
with the only one exception

ξk∞δ
1
2
k(k−1) = 1

for some 1 ≤ k ≤ m. Then we have Em,0∞ ∼= 0.

Proof. By means of an explicit computation together with Proposition 4.3 and
Proposition 4.4 we have the following description of the direct images. In the fol-
lowing we suppose k > 1. The argument for the case k = 1 is similar.

(1) Rqi∗L ∼= 0, q 6= 0, k − 1, k,
(2) We have i∗L ∼= i!L,
(3) Rk−1i∗L ∼= Rki∗L is a rank one local system L′ supported on a subset Z

homeomorphic to Y2,m−k.

We have

Ep,02
∼= Hp

c (Y2,m,L)

and Ep,02
∼= 0 if p 6= m. There are isomorphisms

Ep,k−1
2

∼= Ep,k2
∼= Hp(Z,L′) ∼= 0

if p 6= m− k. Therefore only possible non-vanishing E2 terms are

Em,02 , Em−k,k−1
2 , Em−k,k2

and the only non-trivial portion in the spectral sequence occurs at Ek term:

dk : Em−k,k−1
k −→ Em,0k

so that Em−k,k−1
∞ ∼= Ker dk and Em,0∞ ∼= Em,0k / Im dk. Since Hm−1(Y2,m,L) ∼= 0 we

conclude that dk is injective. Since |χ(Y2,m)| = 1 we have dimEm,02 = dimEm,0k = 1.

Similarly by using |χ(Y2,m−k)| = 1 we have dimEm−k,k−1
k = 1. Therefore dk is an

isomorphism. This shows that Em,0∞ = 0. �
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Let us consider the natural map

α : Hm(Yn,m,L
∗
)→ H lf

m (Yn,m,L
∗
).

It is shown by Z. Chen [4] that Imα is generated by cycles represented by bounded
chambers. Let us describe the space of conformal blocks in terms of homology of
local systems in the case n = 2. In the following we assume that κ is a prime
number.

Theorem 8.1. The period integral

φ : Hm(Y2,m,L
∗
)→ H(p, λ)∗

induces an isomorpshim

Hm(Y2,m,L
∗
)/Kerα ∼= H(p, λ)∗.

Proof. We have seen that the period integral

Hm(Y2,m,L
∗
)→ H(p, λ)∗

is well-defined and is surjective. First, we suppose that the highest weights λ1, λ2, λ3

satisfy the quantum Clebsch-Gordan condition. We observe that the exponents

a(Hi`) = −λ`
κ
, a(Hi∞) =

1

κ
(λ1 + λ2 − 2(m− 1)) , a(Dij) =

2

κ

satisfy the condition of Proposition 8.2. In this case

dimHm(Y2,m,L
∗
) = dimH(p, λ)∗ = 1

and α is an isomorphism. We conclude that the period integral φ is an isomorphism.
In the case the quantum Clebsch-Gordan condition is not satisfied it is enough to
deal with the case of resonance at infinity as in Proposition 8.1. In this case the
situation of Proposition 8.3 happens and we have Em,0∞ ∼= 0. We have

Em,02
∼= Hm

c (Y2,m,L
∗
)

and Em,0∞ is identified with the image of the natural map

Hm
c (Y2,m,L

∗
)→ Hm(Y2,m,L

∗
).

Considering the dual homomorphim it follows from Em,0∞ ∼= 0 that

Hm(Y2,m,L
∗
)/Kerα ∼= 0.

This shows that

Hm(Y2,m,L
∗
)/Kerα ∼= H(p, λ)∗.

is an isomorphism in both cases. This completes the proof. �

We put Imα = H lf
m (Yn,m,L

∗
)reg. We call H lf

m (Yn,m,L
∗
)reg the space of regulariz-

able cycles. We conclude that the period integral φ induces an isomorphism

H lf
m (Y2,m,L

∗
)reg ∼= H(p1, p2, p3;λ1, λ2, λ3)∗.
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