HIGHER HOLONOMY OF FORMAL HOMOLOGY
CONNECTIONS AND BRAID COBORDISMS
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ABSTRACT. We construct a representation of the homotopy 2-groupoid of a man-
ifold by means of K.-T. Chen’s formal homology connections. By using the idea
of this 2-holonomy map, we describe a method to obtain a representation of the
category of braid cobordisms.

1. INTRODUCTION

The notion of formal homology connections was developed by K.-T. Chen in the
framework of the theory of iterated integrals of differential forms. The original
motivation of K.-T. Chen was to describe the homology group of the loop space of
a manifold M by the chain complex formed by the tensor algebra of the homology
group of M equipped with a derivation appearing in the formal homology connection
(see [6], [7] and [8]). By means of the formal homology connection we obtain a chain
map from the singular chain complex of the loop space to the above complex obtained
from the tensor algebra of the homology group of M of positive degrees.

The formal homology connection can be used to construct a holonomy map from
the homotopy path groupoid. In particular, we obtain representations of fundamen-
tal groups. This was used to describe the holonomy of KZ connection in [16] and
[17]. The purpose of this paper is to show that the notion of the holonomy can be
extended to a 2-holonomy map from the homotopy 2-groupoid by means of formal
homology connections. In order to formulate the 2-holonomy we employ the notion
of 2-categories. We refer the reader to [4] for an introduction to 2-categories from
the viewpoint of higher gauge theory.

Then we apply such method to construct a holonomy representation of the cate-
gory of braid cobordisms. There is a work by Cirio and Martins [12] on the categori-
fication of the KZ connection by means of 2-Yang-Baxter operator for sly(C) (see
also [10], [11] and [21]). In this paper we propose a universal construction based on
the formal homology connections.

The paper is organized in the following way. In Section 1 we briefly review K.-T.
Chen’s iterated integrals and their basic properties. In Section 2 we describe the
notion of formal homology connections. In Section 3 we construct representations
of homotopy 2-groupoids by means of the formal homology connection. In Section
4 is we describe a method to construct a representation of the category of braid
cobordisms.

2. PRELIMINARIES ON K.-T. CHEN’S ITERATED INTEGRALS

First, we briefly recall the notion of iterated integrals of differential forms due to
K.-T. Chen. We refer the reader to [6], [7] and [8] for details. Let M be a smooth
manifold and wy, - - - ,w; be differential forms on M. We fix two points x¢ and x; in



M and consider the space of piecewise smooth paths v : [0,1] — M with v(0) = xg
and (1) = x;. We denote by P(M;x¢,x1) the above space of paths. In particular,
in the case xg = x; the path space P(M;xg,x1) is called the based loop space of
M. We consider the simplex
Ap=A{(t1,--- i) ERF; 0< i < <ty <13

and the evaluation map

©: A X P(M;%x0,%x1) > M X -+ x M

—_—
k

defined by @(t1, -+ ,tg;y) = (v(t1),- -+ ,v(tx)). The iterated integral of wy, - ,wg

is defined as
Ak

/ QO*(OJlx-"XOJk)
Ag

is the integration along the fiber with respect to the projection

p:Ag X P(M, X0, Xl) — P(M, X0, Xl).
The above iterated integral is considered as a differential form on the path space
P(M;x9,x1) with degree p; + --- + py — k, where we set p; = degw;. To justify
differential forms on the path space P(M;xg,x1) we use the notion of plots. A plot
a:U — P(M;xp,x1) is a family of piecewise linear paths smoothly parametrized

by a convex open set U in a finite dimensional Euclidean space. Given a plot a we
denote the corresponding iterated integral

(fors),

as a differential form on U obtained by pulling back by the iterated integral [wy -« - wy
by the plot «. In particular, in the case wi, -+ ,w; are 1-forms, the iterated integral
J w1+ wy is a function on the path space and its value on a path ~ : [0,1] — M is
the iterated line integral

/wl---wkz Filta) - fulte) dir - dty
Y Ay

where v*w; = f;(t) dt, 1 < j < k.
Let us go back to the iterated integral of differential forms of arbitrary degrees.
We take an extra point x2 in M and consider the plots

a:U— P(M;xg,x1), B:U— P(M;x1,X2).
The composition of the plots o and 5
af: U— P(M;xo,X2)

where the expression

is defined by
a(z)(2t), 0<t<
5 <

P = { Ba)2t - 1),

for x € U. Asis shown by K.-T. Chen, we have the following rule for the composition
of plots.

1
2
t<1



Proposition 2.1. The relation

(o) = 5, (o) (o),

0<i<k
holds.

For a path o we define its inverse path a~! by
a”l(t) = a(l —1t).

we have

(fov-s),_ o

As a differential form on the path space P(M;xg,x1) we have the following.

For the composition ca™!

Proposition 2.2. For the iterated integral [ wy ---wy, we have

d/wl---wk

— vj—1+1 . Yy

= (—1) J /wl"'w]—ldwj w]+1wk
j=1
k

Ed

—_

j=1

where we put v; = degwy + - -+ + degw; — J.

3. FORMAL HOMOLOGY CONNECTIONS

For a smooth manifold M we put Hy(M) = @©40Hq(M;R) and consider the
tensor algebra

k
TH(M) =P (@ H+(M)> :

k>0

We suppose that dim H; (M) is finite. We denote by Q*(M) the algebra of differen-
tial forms on M and consider the tensor product Q*(M) ® TH(M). We suppose
that the differential d acts trivially on TH{(M;R) and we extend naturally the
wedge product and iterated integrals on Q*(M) ® TH(M). the powers of the aug-
mentation ideal. When H (M) has a basis X7, - - - , X, the tensor algebra TH_ (M)
is the ring of non-commutative polynomials R(Xy,---, X,,). We denote by J the
ideal of the above ring generated by é,\ -, Xy, which is called the augmentation
ideal. We consider the completion/Tiju(M ) with respect to the powers of the aug-
mentation ideal J. We see that TH (M) is regarded as the ring of non-commutative
formal power series R((X1,- -+, Xp)). We denote by J the completed augmentation
ideal. Namely, J consists of the formal power series of the form

m
ZaiXi+"'+ Z az'1~~-z'kXi1"'Xik + ...
i=1 (ARER I

with zero constant term.



—

Then Q*(M) ® THy (M) is identified with the ring of non-commutative formal

power series
O (M)((Xn, -+ X))
over *(M). For a differential operator w we define the parity operator ¢ as e(w) = w
when w is of even degree and e(w) = —w when w is of odd degree. This operator is
naturally extended to Q*(M) ® TH4(M). Namely, for a differential form 7 and a
monomial Z in X, ---, X, weset e(7Z) = e(7)Z. We define a generalized curvature
Kk by
k=dw—¢e(w) A w.

According to K.-T. Chen a formal homology connection

—

w e O (M) @ TH, (M)

is an expression

m
i=1 i1

with differential forms of positive degrees wj;,...;, together with a derivation ¢ satis-

fying the following properties. We put degx; = p; — 1 for z; € Hy,, (M).

[wi], 1 <1i < m is the dual basis of X;, 1 <i < m.

deg w;,...;,, = deg X;, --- X;, + 1.

dw+ Kk =0.

¢ is a derivation of degree —1.

0X; € J? where J is the completed augmentation ideal.

Here we suppose that the derivation § satisfies the Leibniz rule
S(uv) = (u)v + (—1)9°8 4y (v).

From the above condition we can show that § o6 = 0 and (Tm ),0) forms a

—

complex. We denote by TH, (M), the degree k part of TH (M) with respect to

—

the above degrees. We denote by T m )< the completed subalgebra of TH (M)
generated by the homogeneous elements of degree less than or equal to k. For the
formal homology connection w we define its transport by

oo
Tzl—i—z /w---w.
k=1 k

The following proposition plays a key role of for the construction of holonomy maps.

Proposition 3.1. Given a formal homology connection (w,d) for a manifold M the
transport T satisfies dT = 0T.

Proof. By Proposition 2.2 we have



Substituting kK = —dw in the above equation and applying the Leibniz rule for §, we
obtain the equation d1T = 7. O

Although the formal homology connection w with the derivation § is not uniquely
determined, we can construct it inductively starting from the initial term ;" ; w; X;.
Here are some examples.

Examples : (1) Let T = S' x S! be the 2-dimensional torus. Let p; : S' x S,
i = 1,2, the projection to the i-th factor. We denote by v a volume form of S'. The
de Rham cohomology H*(T') has a basis represented by pjv, piv, pjv A p3v and we
put X7, Xo,Y its dual basis of the homology. The formal homology connection is
given as
w = pjvX1 + pvXs + (piv A pav)Y
with the derivation defined by
6(X1) =0, 6(X2) =0, 6(Y) = —[X3, Xo].

(2) Let G be the unipotent Lie group consisting of the matrices

1 » =z
g=10 1 y|, z,y2€R
0 0 1

and Gz its subgroup consisting of the above matrices with z,y, z € Z. We denote by
M the quotient space of G' by the left action of Gz. We see that M has a structure
of a compact smooth 3-dimensional manifold. The 1-forms

w) =dx, we =dy, wig = —xdy + dz

on G are invariant under the left action of Gz and define 1-forms on M. There is a
relation
w1 N\ wy = —dwia.

We observe that H'(M) has a basis represented by wi,ws and H2(M) has a basis
represented by wi A wie,ws A wie. These are typical examples of non-trivial Massey
product. We denote by X1, X9 € Hi(M) the dual basis of [w], [we] and by Y1,Y> €
Hy(M) the dual basis of [w; Awia], [w2 Awiz]. By means of the condition dw + dw =
£(w) A w we obtain that the derivation ¢ is given by

0(X1) =0, §(X2) =0, 6(Y1) = [[X1, X2], X1], 6(Y2) = [[X1, Xo], Xo.

4. PATH GROUPOIDS, 2-PATH GROUPOIDS AND THEIR REPRESENTATIONS

We introduce the path groupoid P;(M) and its 2-category extension Po(M).
The path groupoid P;(M) is a category whose objects are points in M and whose
morphisms are piecewise smooth paths between points up to reparametrization and
a thin homotopy. Here a thin homotopy is a homotopy sweeping on the path. We
see that Py (M) has a structure of a groupoid since there is an associativity and each
morphism has its inverse by means of the invariance of iterated integrals under the
thin homotopy.

Now we discuss its extension to 2-categories. In general, a 2-category consists of
objects, morphims and 2-morphims, which are morphims between morphims. There
are two kinds of compositions for 2-morphisms, horizontal compositions and vertical
compositions and there are several consistency conditions among them. We do not



give here a full definition of a 2-category. We refer the reader to [4] for an introduc-
tion to the notion of 2-categories. The path 2-groupoid Py (M) is a 2-category whose
morphisms are piecewise smooth paths between points up to reparametrization and
a thin homotopy and whose 2-morphisms are piecewise smooth discs [0,1]> — M
spanning 2 paths up to reparametrization and a thin homotopy. As in the case of
the path groupoid, a thin homotopy is a homotopy sweeping on the disc.

The homotopy equivalence classes of the path groupoid P;(M) is the homotopy
path groupoid denote by II;(M). In a similar way, we define the homotopy 2-
groupoid II3(M) whose 2-morphisms are relative piecewise smooth homotopy classes
of piecewise smooth homotopies between paths. We refer the reader to [13] for a
general construction of a homotopy 2-groupoid of a topological space.

Let w be a formal homology connection for M with the derivation §. We decom-
pose w as

w=w'+wl+ w4
where wP is the sum consisting of p-forms and is called the p-form part of w. First,

we consider the 1-form part w!. For a piecewise smooth path v in M the holonomy
of the connection w' is given the transport as

Hol(y) =1 +; /7w1 ";-wl

which is an element of TH/+(\]\/[ )o- For the composition of paths we have
Hol(aB) = Hol(a)Hol(B)
by Proposition 2.1. Moreover, the relation
Hol(a™) = Hol(a)™*

holds. Therefore, we obtain a representation of the path groupoid
Hol : Py (M) — TH, (M),

We denote by TH (M) the group of invertible elements in Tm )o- The above

Hol is considered to be a map of groupoids from P;(M) to THy(M);. Here the
map Hol is regarded as a functor.

Let us consider the homotopy path groupoid II3(M). In this case we have a
holonomy map

o —

Hol : TIy(M) —s TH(M),/To

where Zj is the ideal generated by the image of the derivation

§: TH, (M), — TH,(M)y,.
This can be verified by means of Proposition 3.1 and the Stokes theorem. Here the
curvature of w! is
k= dw! +wt AW,
which is zero modulo the ideal Zg. The above holonomy functor is a categorical
formulation of the holonomy of Chen’s formal homology connection. By fixing a
base point xg € M we have a holonomy map

o —

Hol : m(M,x¢) — TH{(M),



and one of the main results due to K.-T. Chen is that the holonomy map induces
an isomorphism

—_—

R7T1(M,X0) =~ TH. (M)O

where R (M, x¢) is the completion of the group ring R (M, xg) with respect to
the powers of the augmentation ideal. The algebra R (M, xg) is called the Malcev
completion of the fundamental group 71 (M, xg).

Now we construct representations of the homotopy 2-groupoid P2(M). For two
paths 7o and 1 in P(M; xq, x1) we consider a piecewise smooth disc F : [0,1]> — M
with

F(t,0) = (), F(t,1) =7()
F(0,s) =xq, F(1,s) =xq,
which is considered to be a 2-morphism between vy and 7;. Putting ¢(s)(t) = F(t, s),
we obtain a family of paths
¢:10,1] — P(M;x0,x1),

which is considered to be a 1-chain in P(M;xg,x1). For the formal homology con-
nection we consider the transport

o0
T:HZ/W...M
k=1 k

and denote by (T, ¢) its integration on the 1-chain ¢. We define the 2-holonomy

Holy : Po(M) — TH (M)
by Holay(c) = (T, c). The above holonomy map is additive with respect to the sum
as 1-chains and for the composition of paths we have

Hols(ap) = Hola(a)Hola ()

by means of Proposition 2.1. The above two types of compositions correspond to to
horizontal and vertical compositions of 2-morphisms in the 2-category. We obtain
that the 2-holonomy map Hols gives a representation of the path 2-groupoid Py (M).

Theorem 4.1. The above 2-holonomy map gives a representation of the homotopy
2-groupoid

—

Holy : (M) — TH{ (M), /Ty

where Iy is the ideal generated by the image of the derivation

—_—

§:TH (M), — TH, (M),

Proof. As is shown in the above argument we have a representation of the path
2-groupoid given by

HOlQ : PQ(M) — TH+(M)§1.

Suppose that for paths vy and v in P(M;xo,x1) piecewise smooth discs Fj :
[0,1]> = M, j = 1,2 with

Fj(tvo) = 70(75)7 Fj(tv 1) = 'Yl(t)
Fj(O,S) = Xp, Fj(l,s) = X1,



are connected by a piecewise smooth homotopy preserving the above boundary con-
ditions. This gives homologous 1-chains ¢; and c2 in P(M;xp,x1) and there is a
2-chain y such that ¢; — cg = dy. We have

Hols(c1) — Hola(c2) = Hola(0y)

which is by definition (T, dy). By Stokes theorem we have
(T, 0y) = (dT, y).
On the other hand we have dT' = 6T by Proposition 3.1. This shows that Hols(c1) =
Holy(cz) in Tm )<1/Z1 and the 2-holonomy map from the homotopy 2-groupoid
IIo(M) is well-defined. The fact that this give a representation of the 2-groupoid
I (M) follows from the corresponding properties such as
Hols(a8) = Holy(a)Hols(B)

for the path 2-groupoid Po(M). This completes the proof. O

We refer the reader to [1] and [2] for a different approach to higher holonomies
based on iterated integrals.

5. HOLONOMY OF BRAIDS AND ITS EXTENSION TO BRAID COBORDISMS

We apply a method explained in the previous sections to holonomy of braids
and representation of the category of braid cobordisms. We start by recalling basic
facts on hyperplane arrangements. Let A = {Hy,---, Hy} be a collection of finite
number of complex hyperplanes in C". We call A a hyperplane arrangement. Let f;,
1 < j </, be linear forms dining the hyperplanes H;. We consider the complement

MA)=C"\ | J H
HeA
and denote by Q*(M(.A)) the algebra of differential forms on M (A) with values in
C. The Orlik-Solomon algebra OS(.A) is the subalgebra of Q*(M (A)) generated by
the logarithmic forms w; = dlog f;, 1 < j < {. We refer the reader to [22] and [23]

for basic properties of the Orlik-Solomon algebra. The fundamental fact is that the
inclusion map

i:0S(A) — Q" (M(A))
induces an isomorpshim of cohomology, where the differential on OS(A) is trivial.
In particular, we have an isomorpshim of algebras

OS(A) 2 H*(M(A);C).
A formal homology connection for M (.A) is given as follows. Let {Z;} be a basis
of H{(M(A);C) and {¢,} be its dual basis in the Orlik-Solomon algebra OS(.A).

Then we can take a formal homology connection given as
m
w=Y ¢;Z
j=1

where the derivation 0 : THJF/(J\T(A))}, — THI]\?(.A))ID*1 is the dual of the wedge
product. More explicitly, as is described in [18], when the wedge product is given
by

(i) Npj = ZCZ%
k



the derivation ¢ is defined as
5Zk = Z ij [ZZ‘, Zj].
i7j
This is a consequence of the formality of M(.A) in the sense of rational homotopy
theory. There are no non-trivial Massey products and the derivation § is completely
determined by the product structure of the Orlik-Solomon algebra.

We consider the configuration space of ordered distinct n points in the complex
plane C. Namely, we put

Xy ={(21,-+,20) €C" 5 z; # 25 if i # j}
The configuration space X, is the complement of the union of big diagonal hyper-
planes H;; defined by z; = z; in C" for 1 <7 < j < n. By considering the action of
the symmetric group &,, by the permutation of coordinates, we set
Y, =X,/6,.
We have a covering map
m: X, —Y,

and the fundamental group m1(Y},) is the braid group of n strings denoted by B,
and 71(X,,) is the pure braid group of n strings denoted by P,.

We denote by OS(X,,) the Orlik-Solomon algebra for the above arrangement of
hyperplanes {H;j}1<i<j<n. We set

wij =dlog(z — z;), 1<i<j<n.
Then the Orlik-Solomon algebra OS(X,,) is generated by w;j, 1 <i < j < n. We
have
wij/\wjk—i-wjk/\wik—kwik/\wij:O, 1<i<ji<k<n
and it was shown by Arnol’d [3] that these are actually fundamental relations.
Namely, the Orlik-Solomon algebra OS(X,,) is isomorphic to the exterior algebra
generated by e;;, 1 <4 < j < n, modulo the ideal generated by e;;e;r+ejreik+ee;j.
It turns out that the degree ¢ part of OS(X,,) has a basis represented by
Wiy N AN Wiggg,  J1 <+ < Jg-

This is called the normal form of a basis of OS(X,). We denote by Xj, ... i,j, its
dual basis of the homology H,(X,). The formal homology connection is given by

w = E Wiy /\"'/\wiqquhjl,'",iqjq'
J1<<Jg,1<q<n
Since dw = 0 the generalized curvature k = dw — e(w) A w is decomposed as
k=w Al + (W AW - AW+

according the degrees of differential forms.
The 1-form part of the formal homology connection is

wl = Z winz-j
i<j
where X;;, 1 <i < j <n, is a basis of Hi(Xy;C) corresponding to the hyperplanes
H;; and the representation of the path groupoid described in the previous section is
give as

Hol : Py(X,,) — C((Xy;))



where C((X;;)) is the ring of non-commutative formal power series with indetermi-
nates X;;, 1 < i < j < n. This induces the representation of the homotopy path
groupoid

The generators of the ideal Zy are determined in the following way. We express the
2-form part of x by the normal form of the basis of OS(X),,) as

wh Awl = Z Wiy sy N Wigja Ziyj1inga-
J1<j2

Then by the condition dw + x = 0 we have 6(X;,j, inj1) = —Zi1jy,iajn- It turns out
that the generators of Zy are infinitesimal pure braid relations:

[Xilw Xij + Xjk], [sz + Xij, Xjk] (i,j, k diStinCt),

[Xij7 ng], (7,, j, k, l distinct).
In particular, we obtain a holonomy homomorphism

Hol : Pn — C<<XZ]>>/IQ

which is a prototype of the Kontsevich integral [19] for knots and gives a universal
finite type invariants for pure braids (see [16], [17] and [9]).
Now we consider the 2-holonomy map

—

Holy : 1Ix(X,) — TH (Xn)gl/Il.
We deal with the 1-form and the 2-form

w! = sz’inja w? = Z Wirji N Wiggs Xy ju inga-

i<j J1<J2
In the expression of w? we consider the sum for the normal basis of the degree 2
part of OS(X,,) and our formulation is slightly different from the one by Cirio and
Martins ([10], [11] and [12]). Although we do not give an explicit form here, we
explain a method to determine the generators of the ideal Z;. We express the 3-
form part of the generalized curvature x by the normal form of a basis of OS(X,,)
as

1 2 2 1 _ o L T
w AW —w Aw = E Wipjr N Winja N Wisjs Liy g1 jinga,izjs
J1<j2<7J3
Then we have (X}, ivjoinjs) = —Zivjr,injasizjs and the ideal 7; is generated by

Ziyjr injasings» Which are expressed by Lie brackets of X;; and X ;, iy, -

Based on the idea of the construction of the 2-holonomy map we discuss a method
to construct a representation of the category of braid cobordisms. First, we describe
the notion of the category of braid cobordisms. Let us recall that a braid is an
embedding of a 1-manifold which is a disjoint union of closed intervals into C x [0, 1]
so that the projection onto [0,1] has no critical points, and the boundary of the
1-manifold is mapped to 2n points

(1,0),(2,0),---,(n,0),(1,1),(2,1),--- ,(n,1) € C x [0, 1].

The isotopy classes of braids fixing the boundary form the braid group B,,. A braid
cobordism between braids g and h is a compact surface S with boundary and corners,
smoothly and properly embedded in C x [0, 1]2, such that the following conditions
are satisfied.

10



(1) The boundary of S is the union of 1-manifolds
SN(Cx[0,1] x {0}) :g,
SN(Cx[0,1] x{1}) =
SN (C x {0} x|, ])—{12 -,np x {0} x [0,1],
SN(Cx{1} x[0,1]) =41,2,--- ,n} x {1} x [0, 1].

(2) The projection of S onto [0,1]? is a branched covering with simple branch points
only.

Considering the set of braids as a category, we can equip the set of braid cobor-
disms with a structure of a 2-category, which is denoted by BC),. Here the 2-
morphisms are equivalence classes of braid cobordims with the isotopies fixing the
boundary. A braid cobordism is also called a braided surface (see [5] and [14]).

To extend the 2-holonomy map to BC,, we consider the integration of the trans-
port T on one-parameter deformation family of singular braids with double points
associated with a braid cobordism. To get a finite value we need to regularize the
integral at branched points. This regularization was described in a slightly different
setting in [12]. By a regularization we obtain a representation of the category of
braid cobordism

HOlQ BC —>TH+( )<1/Il

An approach for a regularization is as follows. In the expression of the transport
T an infinite sum of iterated integrals of 1-forms and 2-forms appear, but they
are convergent for a one-parameter deformation family of non-singular braids. A
possible divergence for a braid with double points for such iterated integrals can be
regularized by a method similar to the one used by Le and Murakami [20]. Details
of this construction will be discussed in a separate publication. Finally, we refer
the reader to Khovanov and Thomas [15] for interesting problems concerning the
extension of actions of braids to representations of the category of braid cobordisms.
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