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Abstract. We construct a representation of the homotopy 2-groupoid of a man-
ifold by means of K.-T. Chen’s formal homology connections. By using the idea
of this 2-holonomy map, we describe a method to obtain a representation of the
category of braid cobordisms.

1. Introduction

The notion of formal homology connections was developed by K.-T. Chen in the
framework of the theory of iterated integrals of differential forms. The original
motivation of K.-T. Chen was to describe the homology group of the loop space of
a manifold M by the chain complex formed by the tensor algebra of the homology
group of M equipped with a derivation appearing in the formal homology connection
(see [6], [7] and [8]). By means of the formal homology connection we obtain a chain
map from the singular chain complex of the loop space to the above complex obtained
from the tensor algebra of the homology group of M of positive degrees.

The formal homology connection can be used to construct a holonomy map from
the homotopy path groupoid. In particular, we obtain representations of fundamen-
tal groups. This was used to describe the holonomy of KZ connection in [16] and
[17]. The purpose of this paper is to show that the notion of the holonomy can be
extended to a 2-holonomy map from the homotopy 2-groupoid by means of formal
homology connections. In order to formulate the 2-holonomy we employ the notion
of 2-categories. We refer the reader to [4] for an introduction to 2-categories from
the viewpoint of higher gauge theory.

Then we apply such method to construct a holonomy representation of the cate-
gory of braid cobordisms. There is a work by Cirio and Martins [12] on the categori-
fication of the KZ connection by means of 2-Yang-Baxter operator for sl2(C) (see
also [10], [11] and [21]). In this paper we propose a universal construction based on
the formal homology connections.

The paper is organized in the following way. In Section 1 we briefly review K.-T.
Chen’s iterated integrals and their basic properties. In Section 2 we describe the
notion of formal homology connections. In Section 3 we construct representations
of homotopy 2-groupoids by means of the formal homology connection. In Section
4 is we describe a method to construct a representation of the category of braid
cobordisms.

2. Preliminaries on K.-T. Chen’s iterated integrals

First, we briefly recall the notion of iterated integrals of differential forms due to
K.-T. Chen. We refer the reader to [6], [7] and [8] for details. Let M be a smooth
manifold and ω1, · · · , ωk be differential forms on M . We fix two points x0 and x1 in
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M and consider the space of piecewise smooth paths γ : [0, 1]→M with γ(0) = x0

and γ(1) = x1. We denote by P(M ;x0,x1) the above space of paths. In particular,
in the case x0 = x1 the path space P(M ;x0,x1) is called the based loop space of
M . We consider the simplex

∆k = {(t1, · · · , tk) ∈ Rk ; 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}
and the evaluation map

ϕ : ∆k × P(M ;x0,x1)→M × · · · ×M︸ ︷︷ ︸
k

defined by ϕ(t1, · · · , tk; γ) = (γ(t1), · · · , γ(tk)). The iterated integral of ω1, · · · , ωk
is defined as ∫

ω1 · · ·ωk =

∫
∆k

ϕ∗(ω1 × · · · × ωk)

where the expression ∫
∆k

ϕ∗(ω1 × · · · × ωk)

is the integration along the fiber with respect to the projection

p : ∆k × P(M ;x0,x1) −→ P(M ;x0,x1).

The above iterated integral is considered as a differential form on the path space
P(M ;x0,x1) with degree p1 + · · · + pk − k, where we set pj = degωj . To justify
differential forms on the path space P(M ;x0,x1) we use the notion of plots. A plot
α : U −→ P(M ;x0,x1) is a family of piecewise linear paths smoothly parametrized
by a convex open set U in a finite dimensional Euclidean space. Given a plot α we
denote the corresponding iterated integral(∫

ω1 · · ·ωk
)
α

as a differential form on U obtained by pulling back by the iterated integral
∫
ω1 · · ·ωk

by the plot α. In particular, in the case ω1, · · · , ωk are 1-forms, the iterated integral∫
ω1 · · ·ωk is a function on the path space and its value on a path γ : [0, 1]→M is

the iterated line integral∫
γ
ω1 · · ·ωk =

∫
∆k

f1(t1) · · · fk(tk) dt1 · · · dtk

where γ∗ωj = fj(t) dt, 1 ≤ j ≤ k.
Let us go back to the iterated integral of differential forms of arbitrary degrees.

We take an extra point x2 in M and consider the plots

α : U −→ P(M ;x0,x1), β : U −→ P(M ;x1,x2).

The composition of the plots α and β

αβ : U −→ P(M ;x0,x2)

is defined by

αβ(x)(t) =

{
α(x)(2t), 0 ≤ t ≤ 1

2

β(x)(2t− 1), 1
2 ≤ t ≤ 1

for x ∈ U . As is shown by K.-T. Chen, we have the following rule for the composition
of plots.
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Proposition 2.1. The relation(∫
ω1 · · ·ωk

)
αβ

=
∑

0≤i≤k

(∫
ω1 · · ·ωi

)
α

∧
(∫

ωi+1 · · ·ωk
)
β

holds.

For a path α we define its inverse path α−1 by

α−1(t) = α(1− t).
For the composition αα−1 we have(∫

ω1 · · ·ωi
)
αα−1

= 0.

As a differential form on the path space P(M ;x0,x1) we have the following.

Proposition 2.2. For the iterated integral
∫
ω1 · · ·ωk we have

d

∫
ω1 · · ·ωk

=
k∑
j=1

(−1)νj−1+1

∫
ω1 · · ·ωj−1dωj ωj+1 · · ·ωk

+
k−1∑
j=1

(−1)νj+1

∫
ω1 · · ·ωj−1(ωj ∧ ωj+1)ωj+2 · · ·ωk

where we put νj = degω1 + · · ·+ degωj − j.

3. Formal homology connections

For a smooth manifold M we put H+(M) = ⊕q>0Hq(M ;R) and consider the
tensor algebra

TH+(M) =
⊕
k≥0

(
k⊗

H+(M)

)
.

We suppose that dimH+(M) is finite. We denote by Ω∗(M) the algebra of differen-
tial forms on M and consider the tensor product Ω∗(M) ⊗ TH+(M). We suppose
that the differential d acts trivially on TH+(M ;R) and we extend naturally the
wedge product and iterated integrals on Ω∗(M)⊗ TH+(M). the powers of the aug-
mentation ideal. When H+(M) has a basis X1, · · · , Xm, the tensor algebra TH+(M)
is the ring of non-commutative polynomials R〈X1, · · · , Xm〉. We denote by J the
ideal of the above ring generated by X1, · · · , Xm, which is called the augmentation

ideal. We consider the completion ̂TH+(M) with respect to the powers of the aug-

mentation ideal J . We see that ̂TH+(M) is regarded as the ring of non-commutative

formal power series R〈〈X1, · · · , Xm〉〉. We denote by Ĵ the completed augmentation

ideal. Namely, Ĵ consists of the formal power series of the form
m∑
i=1

aiXi + · · ·+
∑
i1···ik

ai1···ikXi1 · · ·Xik + · · ·

with zero constant term.
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Then Ω∗(M) ⊗ ̂TH+(M) is identified with the ring of non-commutative formal
power series

Ω∗(M)〈〈X1, · · · , Xm〉〉
over Ω∗(M). For a differential operator ω we define the parity operator ε as ε(ω) = ω
when ω is of even degree and ε(ω) = −ω when ω is of odd degree. This operator is

naturally extended to Ω∗(M) ⊗ ̂TH+(M). Namely, for a differential form τ and a
monomial Z in X1, · · · , Xm we set ε(τZ) = ε(τ)Z. We define a generalized curvature
κ by

κ = dω − ε(ω) ∧ ω.
According to K.-T. Chen a formal homology connection

ω ∈ Ω∗(M)⊗ ̂TH+(M)

is an expression

ω =
m∑
i=1

ωiXi + · · ·+
∑
i1···ik

ωi1···ikXi1 · · ·Xik + · · ·

with differential forms of positive degrees ωi1···ik together with a derivation δ satis-
fying the following properties. We put deg xi = pi − 1 for xi ∈ Hpi(M).

• [ωi], 1 ≤ i ≤ m is the dual basis of Xi, 1 ≤ i ≤ m.
• degωi1···ik = degXi1 · · ·Xik + 1.
• δω + κ = 0.
• δ is a derivation of degree −1.

• δXj ∈ Ĵ2 where Ĵ is the completed augmentation ideal.

Here we suppose that the derivation δ satisfies the Leibniz rule

δ(uv) = (δu)v + (−1)deg uu(δv).

From the above condition we can show that δ ◦ δ = 0 and ( ̂TH+(M), δ) forms a

complex. We denote by ̂TH+(M)k the degree k part of ̂TH+(M) with respect to

the above degrees. We denote by ̂TH+(M)≤k the completed subalgebra of ̂TH+(M)
generated by the homogeneous elements of degree less than or equal to k. For the
formal homology connection ω we define its transport by

T = 1 +

∞∑
k=1

∫
ω · · ·ω︸ ︷︷ ︸

k

.

The following proposition plays a key role of for the construction of holonomy maps.

Proposition 3.1. Given a formal homology connection (ω, δ) for a manifold M the
transport T satisfies dT = δT.

Proof. By Proposition 2.2 we have

dT = −
∫
κ+

(
−
∫
κω +

∫
ε(ω)κ

)
+ · · ·

=
∞∑
k=0

k∑
i=0

(−1)i+1

∫
ε(ω) · · · ε(ω)︸ ︷︷ ︸

i

κ ω · · ·ω︸ ︷︷ ︸
k−i−1

.
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Substituting κ = −δω in the above equation and applying the Leibniz rule for δ, we
obtain the equation dT = δT . �

Although the formal homology connection ω with the derivation δ is not uniquely
determined, we can construct it inductively starting from the initial term

∑m
i=1 ωiXi.

Here are some examples.

Examples : (1) Let T = S1 × S1 be the 2-dimensional torus. Let pi : S1 × S1,
i = 1, 2, the projection to the i-th factor. We denote by v a volume form of S1. The
de Rham cohomology H∗(T ) has a basis represented by p∗1v, p

∗
2v, p

∗
1v ∧ p∗2v and we

put X1, X2, Y its dual basis of the homology. The formal homology connection is
given as

ω = p∗1vX1 + p∗2vX2 + (p∗1v ∧ p∗2v)Y

with the derivation defined by

δ(X1) = 0, δ(X2) = 0, δ(Y ) = −[X1, X2].

(2) Let G be the unipotent Lie group consisting of the matrices

g =

1 x z
0 1 y
0 0 1

 , x, y, z ∈ R

and GZ its subgroup consisting of the above matrices with x, y, z ∈ Z. We denote by
M the quotient space of G by the left action of GZ. We see that M has a structure
of a compact smooth 3-dimensional manifold. The 1-forms

ω1 = dx, ω2 = dy, ω12 = −xdy + dz

on G are invariant under the left action of GZ and define 1-forms on M . There is a
relation

ω1 ∧ ω2 = −dω12.

We observe that H1(M) has a basis represented by ω1, ω2 and H2(M) has a basis
represented by ω1 ∧ ω12, ω2 ∧ ω12. These are typical examples of non-trivial Massey
product. We denote by X1, X2 ∈ H1(M) the dual basis of [ω1], [ω2] and by Y1, Y2 ∈
H2(M) the dual basis of [ω1 ∧ω12], [ω2 ∧ω12]. By means of the condition δω+ dω =
ε(ω) ∧ ω we obtain that the derivation δ is given by

δ(X1) = 0, δ(X2) = 0, δ(Y1) = [[X1, X2], X1], δ(Y2) = [[X1, X2], X2].

4. Path groupoids, 2-path groupoids and their representations

We introduce the path groupoid P1(M) and its 2-category extension P2(M).
The path groupoid P1(M) is a category whose objects are points in M and whose
morphisms are piecewise smooth paths between points up to reparametrization and
a thin homotopy. Here a thin homotopy is a homotopy sweeping on the path. We
see that P1(M) has a structure of a groupoid since there is an associativity and each
morphism has its inverse by means of the invariance of iterated integrals under the
thin homotopy.

Now we discuss its extension to 2-categories. In general, a 2-category consists of
objects, morphims and 2-morphims, which are morphims between morphims. There
are two kinds of compositions for 2-morphisms, horizontal compositions and vertical
compositions and there are several consistency conditions among them. We do not
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give here a full definition of a 2-category. We refer the reader to [4] for an introduc-
tion to the notion of 2-categories. The path 2-groupoid P2(M) is a 2-category whose
morphisms are piecewise smooth paths between points up to reparametrization and
a thin homotopy and whose 2-morphisms are piecewise smooth discs [0, 1]2 → M
spanning 2 paths up to reparametrization and a thin homotopy. As in the case of
the path groupoid, a thin homotopy is a homotopy sweeping on the disc.

The homotopy equivalence classes of the path groupoid P1(M) is the homotopy
path groupoid denote by Π1(M). In a similar way, we define the homotopy 2-
groupoid Π2(M) whose 2-morphisms are relative piecewise smooth homotopy classes
of piecewise smooth homotopies between paths. We refer the reader to [13] for a
general construction of a homotopy 2-groupoid of a topological space.

Let ω be a formal homology connection for M with the derivation δ. We decom-
pose ω as

ω = ω1 + ω2 + · · ·+ ωp + · · ·
where ωp is the sum consisting of p-forms and is called the p-form part of ω. First,
we consider the 1-form part ω1. For a piecewise smooth path γ in M the holonomy
of the connection ω1 is given the transport as

Hol(γ) = 1 +

∞∑
k=1

∫
γ
ω1 · · ·ω1︸ ︷︷ ︸

k

which is an element of ̂TH+(M)0. For the composition of paths we have

Hol(αβ) = Hol(α)Hol(β)

by Proposition 2.1. Moreover, the relation

Hol(α−1) = Hol(α)−1

holds. Therefore, we obtain a representation of the path groupoid

Hol : P1(M) −→ ̂TH+(M)0.

We denote by ̂TH+(M)×0 the group of invertible elements in ̂TH+(M)0. The above

Hol is considered to be a map of groupoids from P1(M) to ̂TH+(M)×0 . Here the
map Hol is regarded as a functor.

Let us consider the homotopy path groupoid Π1(M). In this case we have a
holonomy map

Hol : Π1(M) −→ ̂TH+(M)0/I0

where I0 is the ideal generated by the image of the derivation

δ : ̂TH+(M)1 −→ ̂TH+(M)0.

This can be verified by means of Proposition 3.1 and the Stokes theorem. Here the
curvature of ω1 is

κ = dω1 + ω1 ∧ ω1,

which is zero modulo the ideal I0. The above holonomy functor is a categorical
formulation of the holonomy of Chen’s formal homology connection. By fixing a
base point x0 ∈M we have a holonomy map

Hol : π1(M,x0) −→ ̂TH+(M)0
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and one of the main results due to K.-T. Chen is that the holonomy map induces
an isomorphism

̂Rπ1(M,x0) ∼= ̂TH+(M)0

where ̂Rπ1(M,x0) is the completion of the group ring Rπ1(M,x0) with respect to

the powers of the augmentation ideal. The algebra ̂Rπ1(M,x0) is called the Malcev
completion of the fundamental group π1(M,x0).

Now we construct representations of the homotopy 2-groupoid P2(M). For two
paths γ0 and γ1 in P(M ;x0,x1) we consider a piecewise smooth disc F : [0, 1]2 →M
with

F (t, 0) = γ0(t), F (t, 1) = γ1(t)

F (0, s) = x0, F (1, s) = x1,

which is considered to be a 2-morphism between γ0 and γ1. Putting c(s)(t) = F (t, s),
we obtain a family of paths

c : [0, 1] −→ P(M ;x0,x1),

which is considered to be a 1-chain in P(M ;x0,x1). For the formal homology con-
nection we consider the transport

T = 1 +

∞∑
k=1

∫
ω · · ·ω︸ ︷︷ ︸

k

and denote by 〈T, c〉 its integration on the 1-chain c. We define the 2-holonomy

Hol2 : P2(M) −→ ̂TH+(M)≤1

by Hol2(c) = 〈T, c〉. The above holonomy map is additive with respect to the sum
as 1-chains and for the composition of paths we have

Hol2(αβ) = Hol2(α)Hol2(β)

by means of Proposition 2.1. The above two types of compositions correspond to to
horizontal and vertical compositions of 2-morphisms in the 2-category. We obtain
that the 2-holonomy map Hol2 gives a representation of the path 2-groupoid P2(M).

Theorem 4.1. The above 2-holonomy map gives a representation of the homotopy
2-groupoid

Hol2 : Π2(M) −→ ̂TH+(M)≤1/I1

where I1 is the ideal generated by the image of the derivation

δ : ̂TH+(M)2 −→ ̂TH+(M)1

Proof. As is shown in the above argument we have a representation of the path
2-groupoid given by

Hol2 : P2(M) −→ ̂TH+(M)≤1.

Suppose that for paths γ0 and γ1 in P(M ;x0,x1) piecewise smooth discs Fj :
[0, 1]2 →M , j = 1, 2 with

Fj(t, 0) = γ0(t), Fj(t, 1) = γ1(t)

Fj(0, s) = x0, Fj(1, s) = x1,
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are connected by a piecewise smooth homotopy preserving the above boundary con-
ditions. This gives homologous 1-chains c1 and c2 in P(M ;x0,x1) and there is a
2-chain y such that c1 − c2 = ∂y. We have

Hol2(c1)−Hol2(c2) = Hol2(∂y)

which is by definition 〈T, ∂y〉. By Stokes theorem we have

〈T, ∂y〉 = 〈dT, y〉.
On the other hand we have dT = δT by Proposition 3.1. This shows that Hol2(c1) =

Hol2(c2) in ̂TH+(M)≤1/I1 and the 2-holonomy map from the homotopy 2-groupoid

Π2(M) is well-defined. The fact that this give a representation of the 2-groupoid
Π2(M) follows from the corresponding properties such as

Hol2(αβ) = Hol2(α)Hol2(β)

for the path 2-groupoid P2(M). This completes the proof. �

We refer the reader to [1] and [2] for a different approach to higher holonomies
based on iterated integrals.

5. Holonomy of braids and its extension to braid cobordisms

We apply a method explained in the previous sections to holonomy of braids
and representation of the category of braid cobordisms. We start by recalling basic
facts on hyperplane arrangements. Let A = {H1, · · · , H`} be a collection of finite
number of complex hyperplanes in Cn. We call A a hyperplane arrangement. Let fj ,
1 ≤ j ≤ `, be linear forms dining the hyperplanes Hj . We consider the complement

M(A) = Cn \
⋃
H∈A

H

and denote by Ω∗(M(A)) the algebra of differential forms on M(A) with values in
C. The Orlik-Solomon algebra OS(A) is the subalgebra of Ω∗(M(A)) generated by
the logarithmic forms ωj = d log fj , 1 ≤ j ≤ `. We refer the reader to [22] and [23]
for basic properties of the Orlik-Solomon algebra. The fundamental fact is that the
inclusion map

i : OS(A) −→ Ω∗(M(A))

induces an isomorpshim of cohomology, where the differential on OS(A) is trivial.
In particular, we have an isomorpshim of algebras

OS(A) ∼= H∗(M(A);C).

A formal homology connection for M(A) is given as follows. Let {Zj} be a basis
of H+(M(A);C) and {ϕj} be its dual basis in the Orlik-Solomon algebra OS(A).
Then we can take a formal homology connection given as

ω =
m∑
j=1

ϕjZj

where the derivation δ : ̂TH+(M(A))p −→ ̂TH+(M(A))p−1 is the dual of the wedge

product. More explicitly, as is described in [18], when the wedge product is given
by

ε(ϕi) ∧ ϕj =
∑
k

ckijϕk
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the derivation δ is defined as

δZk =
∑
i,j

ckij [Zi, Zj ].

This is a consequence of the formality of M(A) in the sense of rational homotopy
theory. There are no non-trivial Massey products and the derivation δ is completely
determined by the product structure of the Orlik-Solomon algebra.

We consider the configuration space of ordered distinct n points in the complex
plane C. Namely, we put

Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj if i 6= j}.
The configuration space Xn is the complement of the union of big diagonal hyper-
planes Hij defined by zi = zj in Cn for 1 ≤ i < j ≤ n. By considering the action of
the symmetric group Sn by the permutation of coordinates, we set

Yn = Xn/Sn.

We have a covering map
π : Xn −→ Yn

and the fundamental group π1(Yn) is the braid group of n strings denoted by Bn
and π1(Xn) is the pure braid group of n strings denoted by Pn.

We denote by OS(Xn) the Orlik-Solomon algebra for the above arrangement of
hyperplanes {Hij}1≤i<j≤n. We set

ωij = d log(zi − zj), 1 ≤ i < j ≤ n.
Then the Orlik-Solomon algebra OS(Xn) is generated by ωij , 1 ≤ i < j ≤ n. We
have

ωij ∧ ωjk + ωjk ∧ ωik + ωik ∧ ωij = 0, 1 ≤ i < j < k ≤ n
and it was shown by Arnol’d [3] that these are actually fundamental relations.
Namely, the Orlik-Solomon algebra OS(Xn) is isomorphic to the exterior algebra
generated by eij , 1 ≤ i < j ≤ n, modulo the ideal generated by eijejk+ejkeik+eikeij .
It turns out that the degree q part of OS(Xn) has a basis represented by

ωi1j1 ∧ · · · ∧ ωiqjq , j1 < · · · < jq.

This is called the normal form of a basis of OS(Xn). We denote by Xi1j1,··· ,iqjq its
dual basis of the homology Hq(Xn). The formal homology connection is given by

ω =
∑

j1<···<jq ,1≤q≤n
ωi1j1 ∧ · · · ∧ ωiqjqXi1j1,··· ,iqjq .

Since dω = 0 the generalized curvature κ = dω − ε(ω) ∧ ω is decomposed as

κ = ω1 ∧ ω1 + (ω1 ∧ ω2 − ω2 ∧ ω1) + · · ·
according the degrees of differential forms.

The 1-form part of the formal homology connection is

ω1 =
∑
i<j

ωijXij

where Xij , 1 ≤ i < j ≤ n, is a basis of H1(Xn;C) corresponding to the hyperplanes
Hij and the representation of the path groupoid described in the previous section is
give as

Hol : P1(Xn) −→ C〈〈Xij〉〉
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where C〈〈Xij〉〉 is the ring of non-commutative formal power series with indetermi-
nates Xij , 1 ≤ i < j ≤ n. This induces the representation of the homotopy path
groupoid

Hol : Π1(Xn) −→ C〈〈Xij〉〉/I0.

The generators of the ideal I0 are determined in the following way. We express the
2-form part of κ by the normal form of the basis of OS(Xn) as

ω1 ∧ ω1 =
∑
j1<j2

ωi1j1 ∧ ωi2j2Zi1j1,i2j2 .

Then by the condition δω + κ = 0 we have δ(Xi1j1,i2j1) = −Zi1j1,i2j2 . It turns out
that the generators of I0 are infinitesimal pure braid relations:

[Xik, Xij +Xjk], [Xik +Xij , Xjk] (i, j, k distinct),

[Xij , Xk`], (i, j, k, ` distinct).

In particular, we obtain a holonomy homomorphism

Hol : Pn −→ C〈〈Xij〉〉/I0

which is a prototype of the Kontsevich integral [19] for knots and gives a universal
finite type invariants for pure braids (see [16], [17] and [9]).

Now we consider the 2-holonomy map

Hol2 : Π2(Xn) −→ ̂TH+(Xn)≤1/I1.

We deal with the 1-form and the 2-form

ω1 =
∑
i<j

ωijXij , ω2 =
∑
j1<j2

ωi1j1 ∧ ωi2j2Xi1j1,i2j2 .

In the expression of ω2 we consider the sum for the normal basis of the degree 2
part of OS(Xn) and our formulation is slightly different from the one by Cirio and
Martins ([10], [11] and [12]). Although we do not give an explicit form here, we
explain a method to determine the generators of the ideal I1. We express the 3-
form part of the generalized curvature κ by the normal form of a basis of OS(Xn)
as

ω1 ∧ ω2 − ω2 ∧ ω1 =
∑

j1<j2<j3

ωi1j1 ∧ ωi2j2 ∧ ωi3j3Zi1j1,i2j2,i3j3

Then we have δ(Xi1j1,i2j2,i3j3) = −Zi1j1,i2j2,i3j3 and the ideal I1 is generated by
Zi1j1,i2j2,i3j3 , which are expressed by Lie brackets of Xij and Xi1j1,i2j2 .

Based on the idea of the construction of the 2-holonomy map we discuss a method
to construct a representation of the category of braid cobordisms. First, we describe
the notion of the category of braid cobordisms. Let us recall that a braid is an
embedding of a 1-manifold which is a disjoint union of closed intervals into C× [0, 1]
so that the projection onto [0, 1] has no critical points, and the boundary of the
1-manifold is mapped to 2n points

(1, 0), (2, 0), · · · , (n, 0), (1, 1), (2, 1), · · · , (n, 1) ∈ C× [0, 1].

The isotopy classes of braids fixing the boundary form the braid group Bn. A braid
cobordism between braids g and h is a compact surface S with boundary and corners,
smoothly and properly embedded in C × [0, 1]2, such that the following conditions
are satisfied.
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(1) The boundary of S is the union of 1-manifolds

S ∩ (C× [0, 1]× {0}) = g,

S ∩ (C× [0, 1]× {1}) = h,

S ∩ (C× {0} × [0, 1]) = {1, 2, · · · , n} × {0} × [0, 1],

S ∩ (C× {1} × [0, 1]) = {1, 2, · · · , n} × {1} × [0, 1].

(2) The projection of S onto [0, 1]2 is a branched covering with simple branch points
only.

Considering the set of braids as a category, we can equip the set of braid cobor-
disms with a structure of a 2-category, which is denoted by BCn. Here the 2-
morphisms are equivalence classes of braid cobordims with the isotopies fixing the
boundary. A braid cobordism is also called a braided surface (see [5] and [14]).

To extend the 2-holonomy map to BCn we consider the integration of the trans-
port T on one-parameter deformation family of singular braids with double points
associated with a braid cobordism. To get a finite value we need to regularize the
integral at branched points. This regularization was described in a slightly different
setting in [12]. By a regularization we obtain a representation of the category of
braid cobordism

Hol2 : BCn −→ ̂TH+(Xn)≤1/I1.

An approach for a regularization is as follows. In the expression of the transport
T an infinite sum of iterated integrals of 1-forms and 2-forms appear, but they
are convergent for a one-parameter deformation family of non-singular braids. A
possible divergence for a braid with double points for such iterated integrals can be
regularized by a method similar to the one used by Le and Murakami [20]. Details
of this construction will be discussed in a separate publication. Finally, we refer
the reader to Khovanov and Thomas [15] for interesting problems concerning the
extension of actions of braids to representations of the category of braid cobordisms.
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