
NOVIKOV HOMOLOGY, JUMP LOCI AND MASSEY PRODUCTS

TOSHITAKE KOHNO AND ANDREI PAJITNOV

ABSTRACT. LetX be a finite CW complex, and ρ : π1(X)→ GL(l,C)
a representation. Any cohomology class α ∈ H1(X,C) gives rise to
a deformation γt of ρ defined by γt(g) = ρ(g) exp(t〈α, g〉). We show
that the cohomology of X with local coefficients γgen correspond-
ing to the generic point of the curve γ is computable from a spectral
sequence starting from H∗(X, ρ). We compute the differentials of
the spectral sequence in terms of the Massey products. We show
that the spectral sequence degenerates in case when X is a Kähler
manifold and ρ is semi-simple.

If α ∈ H1(X,R) one associates to the triple (X, ρ, α) the twisted
Novikov homology (a module over the Novikov ring). We show that
the twisted Novikov Betti numbers equal the Betti numbers of X
with coefficients in the local system γgen. We investigate the de-
pendence of these numbers on α and prove that they are constant
in the complement to a finite number of proper vector subspaces in
H1(X,R).

1. INTRODUCTION

Let X be a finite connected CW-complex; denote its fundamental
group by G. Let ρ : G → GL(l,C) be a representation. Any coho-
mology class α ∈ H1(X,C) gives rise to the following deformation of
ρ:

γt : G→ GL(l,C), γt(g) = et〈α,g〉ρ(g).

The cohomology groups of X with local coefficients γt are isomor-
phic for all t except a subset containing only isolated points. The
cohomology group H∗(X, γgen) corresponding to the generic point of
the curve γt is the first main object of study in the present paper.
We prove that there is a spectral sequence E ∗r starting from the ho-
mology of X with coefficients in ρ, converging to H∗(X, γgen), and
the differentials in this spectral sequence are computable in terms
of some special higher Massey products with α. The first differential
in this spectral sequence is the homomorphism Lα of multiplication
by α in the ρ-twisted cohomology of X.
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This type of spectral sequences appeared in the paper of S.P. Novikov
[15] in the de Rham setting. It was generalized to the case of coho-
mology with coefficients in a field of arbitrary characteristic in the
paper [17] of the second author. See also the papers [6], [7] of M.
Farber. Our present construction is close to the original ideas of S.P.
Novikov. The main technical novelty of our present approach is the
systematic use of formal exponential deformations (see §§ 3, 4). This
allows to avoid the convergency issues for power series, which occur
in Novikov’s idea of the proof of the first main theorem of his paper
(see [15], page 553).

If ρ is the trivial representation, the differentials in the spectral
sequence above are the usual Massey products in the ordinary coho-
mology with slightly reduced indeterminacy: dr(x) = 〈α, . . . , α, x〉,
see § 3. Thus the spectral sequence degenerates when the space X
is formal, by the classical argument of P. Deligne, Ph. Griffiths, J.
Morgan, D. Sullivan [4] which applies here as well (§ 3). Thus we
have

(1) Ker Lα
/
Im Lα ≈ H∗(X, γgen).

In case when ρ is not trivial the situation is more complicated. The
spectral sequence degenerates, in particular, when X is a Kähler
manifold and ρ is a semi-simple representation (§6, Prop. 6.8). The
proof uses C. Simpson’s theory of Higgs bundles [23]. Thus the iso-
morphism (1) holds also in this case. We introduce a class of strongly
formal spaces for which all the spectral sequences E ∗r corresponding
to 1-dimensional representations degenerate in their second term.
An example from the work of H. Kasuya [11] shows that there exist
formal spaces which are not strongly formal.

In the literature there are several other constructions of the spec-
tral sequences related to the cohomology with twisted coefficients,
such as the equivariant spectral sequence, introduced and studied
by S. Papadima and A. Suciu [21]. The isomorphism (1) was ob-
tained also in the recent work [5] of A. Dimca and S. Papadima for
the case when ρ is the trivial representation. One of the advantages
of our method is that it allows an explicit computation of the higher
differentials of the spectral sequence and leads to the proof of the
isomorphism (1) for deformations of non-trivial representations.

If α is a real cohomology class, there is another geometric con-
struction related to ρ and α, namely, the twisted Novikov homology
introduced in the works of H. Goda and the second author see [9],
[19]. This construction associates to X, ρ and α a module over a
corresponding Novikov ring L̂m,α. The rank and torsion numbers of
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this module are called the twisted Novikov Betti numbers and twisted
Novikov torsion numbers; they provide lower bounds for numbers of
zeros of any Morse form belonging to the de Rham cohomology class
α (see §8 for details). These invariants detect the fibered knots in
S3 as it follows from the recent work of S. Friedl [8]. For a given
space X and the representation ρ the Novikov numbers depend on
the cohomology class α ∈ H1(X,R). The case of the torsion num-
bers was studied in [18] and [19]. It is proved there that the torsion
numbers are constant in the open polyhedral cones formed by finite
intersections of certain half-spaces in Rn, where n = rkH1(X,Z).
Similar analysis applies to the Novikov Betti numbers, which are of
main interest to us in the present work. We prove in §8 that these
numbers do not depend on α in the complement to a finite number
of proper vector subspaces. In general the set of all α for which the
Novikov Betti number b̂ρk(X,α) is greater by q than the generic value
(the jump loci for the Novikov numbers) is a union of a finite number
of proper vector subspaces, see §8, Prop. 8.6.

It is known that the Novikov homology and the homology with local
coefficients are related to each other. This was first observed in the
paper [16] of the second author, see also Novikov [15]. Similar result
holds also for the twisted Novikov homology, namely, we prove (see
§8, Prop. 9.2) that for α ∈ H1(X,R) we have

b̂ρk(X,α) = βk(X, γgen).

This implies several corollaries about both families of numerical in-
variants. One corollary is that for given ρ and α the jump loci for
βk(X, ρ, α) are unions of proper vector subspaces. On the other
hand the twisted Novikov Betti numbers are computable from the
Massey spectral sequence.integral hyperplanes In the case of de-
generacy of this spectral sequence, they equal the dimension of its
second term.

2. EXACT COUPLES

In this section we recall the definition of the spectral sequence of
an exact couple (following [12], [10]) and give an equivalent descrip-
tion of the successive terms of the spectral sequence, which will be
useful in the sequel.



4 TOSHITAKE KOHNO AND ANDREI PAJITNOV

Let C = (D,E, i, j, k) be an exact couple, so that we have an exact
triangle

D
i // D

j~~}}}}}}}}

E
k

``AAAAAAAA

We will usually abbreviate the notation to C = (D,E) and callD and
E the first, respectively the second component of the exact couple.
Following W. Massey we define the derived exact couple setting

E′ = Ker (jk)/Im (jk), D′ = i(D)

and defining j′, k′ suitably. Iterating the process we obtain a se-
quence of exact couples Cr = (Dr, Er), the initial couple being num-
bered as C1; this sequence is called the spectral sequence associated
to the exact couple C .

We will need an alternative description of the groups Er and the
maps jr, kr.

Definition 2.1. 1) For r > 2 let Zr be the subgroup of all ele-
ments x ∈ E such that k(x) = ir−1(y) for some y ∈ D. We
put Z1 = E.

2) For r > 1 let Br be the subgroup of all elements z ∈ E, such
that z = j(y) for some y ∈ D with ir−1(y) = 0.

The following properties are easy to check:

Z1 = E ⊃ Z2 = Ker (jk) ⊃ Z3 . . . ⊃ Zr ⊃ Zr+1 . . .

B1 = {0} ⊂ B2 = Im (jk) ⊂ B3 ⊂ . . . ⊂ Br ⊂ Br+1 ⊂ . . .
Bi ⊂ Zj for every i, j.

Put
Ẽr = Zr/Br, Dr = Im ir.

Define a homomorphism k̃r : Ẽr → Dr setting kr(x) = k(x) for
every x ∈ Zr. Define a homomorphism j̃r : Dr → Ẽr as follows: if
x ∈ Dr and x = ir(y), then put j̃r(x) = [j(y)]. It is easy to check
that these homomorphisms are well-defined and give rise to an exact
couple C̃r = (Dr, Ẽr):

Dr
i // Dr

j̃r~~||||||||

Ẽr

k̃r

``BBBBBBBB

The proof of the next is in a usual diagram chasing:
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Proposition 2.2. The exact couples Cr and C̃r are isomorphic for any
r. �

3. FORMAL DEFORMATIONS OF DIFFERENTIAL ALGEBRAS AND THEIR
SPECTRAL SEQUENCES

Let

A∗ = {Ak}k∈N = {A0 d // A1 d // . . .}
be a graded-commutative differential algebra (DGA) over a field K of
characteristic zero. Let N ∗ be a graded differential module (DGM)
over A∗ (that is, N ∗ is a graded module over A∗ endowed with a
differential which satisfies the Leibniz formula with respect to the
pairingA∗×N ∗ → N ∗). We will use the same symbol d to denote the
differentials in both A∗ and N ∗, since no confusion is possible. We
denote by A∗[[t]] the algebra of formal power series over A∗ endowed
with the differential extended from the differential of A∗. Let ξ ∈ A1

be a cocycle. Consider the A∗[[t]]-module N ∗[[t]] and endow it with
the differential

Dtx = dx+ tξx.

Then N ∗[[t]] is a DGM over A∗[[t]], and we have an exact sequence
of DGMs:

(2) 0 // N ∗[[t]] t // N ∗[[t]] π // N ∗ // 0

where π is the natural projection t � // 0. The induced long exact
sequence in cohomology can be considered as an exact couple

(3) H∗
(
N ∗[[t]]

) t // H∗
(
N ∗[[t]]

)
π∗wwooooooooooo

H∗(N ∗)
δ

ggOOOOOOOOOOO

Proposition 3.1. The spectral sequence induced by the exact couple
(3) depends only on the cohomology class of ξ.

Proof. Let ξ1, ξ2 ∈ A1 be cohomologous cocycles, ξ1 = ξ2 +df with
f ∈ A0. Let Dt = d+ tξ1, D

′
t = d+ tξ2 be the corresponding differ-

entials. Multiplication by etf ∈ A0[[t]] determines an isomorphism
F : N ∗[[t]] → N ∗[[t]], commuting with the differentials, namely,
F (Dtω) = D′t(F (ω)). Thus the exact sequences (2) corresponding to
ξ1 and ξ2 are isomorphic, as well as the exact couples (3) and their
spectral sequences. �
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Definition 3.2. Put α = [ξ]. The spectral sequence associated to the
exact couple (3) is called deformation spectral sequence and denoted
by

E ∗r (N ∗, α) =
(
D∗r(N

∗, α), E∗r(N
∗, α)

)
.

If the couple (N ∗, α) is clear from the context, we suppress it in the
notation and write E ∗r , respectively, D∗r , E

∗
r .

Denote by
Lα : H∗(N ∗)→ H∗(N ∗)

the multiplication by α. It is clear that the first differential in the
spectral sequence equals Lα and therefore

E∗2 = Ker Lα/Im Lα.

We are going to compute the higher differentials in this spectral
sequence in terms of special Massey products. Let a ∈ H∗(N ∗). An
r-chain starting from a is a sequence of elements ω1, . . . , ωr ∈ N ∗
such that

dω1 = 0, [ω1] = a, dω2 = ξω1, . . . , dωr = ξωr−1.

Denote by MZm(r) the subspace of all a ∈ Hm(N ∗) such that there
exists an r-chain starting from a. Thus

MZm(1) = Hm(N ∗), MZm(2) = Ker
(
Lα : Hm(N ∗)→ Hm+1(N ∗)

)
.

Denote by MBm
(r) the subspace of all β ∈ Hm(N ∗) such that there

exists an (r − 1)-chain (ω1, . . . , ωr−1) with ξωr−1 belonging to β. By
definition

MBm
(1) = 0, MBm

(2) = Im
(
Lα : Hm−1(N ∗)→ Hm(N ∗)

)
.

It is clear that MBm
(i) ⊂MZm(j) for every i, j. Put

MHm
(r) = MZm(r)

/
MBm

(r).

In the next definition we omit the upper indices and writeMH(r),MZ(r)

etc. in order to simplify the notation.

Definition 3.3. Let a ∈ H∗(N ∗), and r > 1. We say that the (r+ 1)-
tuple Massey product 〈ξ, . . . , ξ, a〉 is defined, if a ∈ MZ(r). In this
case choose any r-chain (ω1, . . . , ωr) starting from a. The cohomol-
ogy class of ξωr is in MZ(r) (actually it is in MZ(N) for every N )
and it is not difficult to show that it is well defined modulo MB(r).
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The image of ξωr in MZ(r)/MB(r) is called the (r+ 1)-tuple Massey
product of ξ and a:

〈ξ, a〉(r+1) =
〈
ξ, . . . , ξ︸ ︷︷ ︸

r

, a
〉
∈MZ(r)

/
MB(r).

Example 3.4. The double Massey product 〈ξ, a〉(2) equals ξa, the
triple Massey product 〈ξ, a〉(3) equals the cohomology class of ξω2

where dω2 = ξω1, and [ω1] = a, etc.

The correspondence a � // 〈ξ, a〉(r+1) gives rise to a well-defined
homomorphism of degree 1

∆r : MH(r)
// MH(r).

The next proposition is proved by an easy diagram chasing argu-
ment.

Proposition 3.5. For any r we have ∆2
r = 0, and the cohomology

group H∗(MH∗(r),∆r) is isomorphic to MH∗(r+1). �

Theorem 3.6. For any r > 2 there is an isomorphism

φ : MH∗(r)
≈ // E∗r

commuting with differentials.

Proof. Recall from Section 2 a spectral sequence Ẽ ∗r isomorphic to
E ∗r . It is formed by exact couples

Dr
i // Dr

~~||||||||

Ẽr

δ̃r

``BBBBBBBB

where D1 = H∗(N ∗), Dr = Im
(
tr−1 : D → D

)
, and Ẽr = Zr/Br

(the modules Zr, Br are described in the definition 2.1).

Lemma 3.7. 1) MZ(r) = Zr, 2) MB(r) = Br.

Proof. We will prove 1), the proof of 2) is similar. Let ζ ∈ H∗(N ∗)
and z be a cocycle belonging to ζ. Then δ(ζ) equals the cohomology
class of ξz ∈ N ∗[[t]]; and ζ ∈ Zr if and only if there is µ ∈ N ∗[[t]]
such that

(4) ξz −Dtµ ∈ tr−1N ∗[[t]].
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This condition is clearly equivalent to the existence of a sequence of
elements µ0, µ1, . . . ∈ N ∗[[t]] such that

(5) ξz = dµ0, and dµi + ξµi−1 = 0 for every 0 6 i 6 r − 2.

The condition (5) is in turn equivalent to the existence of an r-chain
starting from ζ. �

The Lemma implies that Ẽ∗r ≈MH∗(r) and it is not difficult to prove
that this isomorphism is compatible with the boundary operators. �

In view of the Proposition 3.1 we obtain the next Corollary.

Corollary 3.8. Let ξ ∈ A1 be a cocycle. The graded groups MH∗(r)
defined above depend only on the cohomology class of ξ, which is
denoted by α. �

Therefore the differentials in the spectral sequence {E ∗r } are equal
to the higher Massey products with the cohomology class of ξ. Ob-
serve that these Massey products, defined above, have smaller inde-
terminacy than the usual Massey products. The second term of the
spectral sequence is described therefore in terms of multiplication
by the cohomology class α = [ξ]. It is convenient to give a general
definition.

Definition 3.9. Let K∗ be a differential graded algebra, and θ be an
element of odd degree s. Denote by Lθ : K∗ → K∗+s the homomor-
phism of multiplication by θ. The quotient

Ker Lθ
/

Im Lθ

is a graded module which is denoted by H∗(K∗, θ) and is called θ-
cohomology ofK∗. The dimension ofHk(K∗, θ) is denoted by Bk(K∗, θ).

We have therefore

E∗2(N ∗, α) ≈ H∗(H∗(N ∗), α).

Let us consider some examples, which will be important for the
sequel.

Example 3.10. Let N ∗ = A∗. The homomorphism Lα is the mul-
tiplication by α in the cohomology H∗(A∗), and the differentials in
the spectral sequence Er are the higher Massey products induced by
the ring structure in H∗(A∗).

Example 3.11. LetA∗ be a DGA and η ∈ A1 be a cocycle. Endow the
algebra A∗ with the differential dη defined by the following formula:

dη(x) = dx+ ηx;
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we obtain a DGM overA, which we will denote by Ã∗η. For an element
α ∈ H1(A∗) we obtain a spectral sequence E ∗r with

E∗1 = H∗(Ã∗η); E∗2 = H∗(H∗(Ã∗η), α).

Example 3.12. Let M be a connected C∞ manifold, and E be an
l-dimensional complex flat bundle over M . Denote by ρ : π1(M) →
GL(l,C) the monodromy of E. Let A∗(M) be the algebra of com-
plex differential forms on M . The space A∗(M,E) of the differential
forms with coefficients in E is a DGM over A∗(M); its cohomology is
isomorphic to the cohomology H∗(M,ρ) with local coefficients with
respect to the representation ρ. For a de Rham cohomology class
α ∈ H1(M) we obtain therefore a spectral sequence Er with

E∗1 = H∗(M,ρ); E∗2 = H∗(H∗(M,ρ), α).

Now let us consider some cases when the spectral sequences con-
structed above, degenerate in its second term. Recall that a differ-
ential graded algebra A∗ is called formal if it has the same minimal
model as its cohomology algebra. Here is a useful characterization
of minimal formal algebras.

Theorem 3.13. (P. Deligne, Ph. Griffiths, J. Morgan, D. Sullivan, [4],
Th. 4.1) Let A∗ be a minimal algebra over a field of characteristic
zero, generated (as a free graded-commutative algebra) in degree k
by a vector space Vk; denote by Ck ⊂ Vk the subspace of the closed
generators. The algebra A∗ is formal if and only if in each Vk there is
a direct complement Nk to Ck in Vk, such that any cocycle in the ideal
generated by ⊕k(Nk) is cohomologous to zero.

This theorem leads to the proof of the well-known property that in
formal algebras all Massey products vanish (see [4]). We will show
that a similar result holds for the special Massey products (Example
3.10).

Theorem 3.14. Let A∗ be a formal differential algebra, α ∈ H1(A∗).
Then the spectral sequence E ∗r (A∗, α) degenerates at its second term,
and

E∗2(A∗, α) = H∗(H∗(A∗), α).

Proof. It suffices to establish the property for the case of formal
minimal algebras. LetA∗ be a formal minimal algebra with the space
of generators Vk in dimension k decomposed as Vk = Ck ⊕ Nk,
see 3.13. We will prove that MZ(2) = MZ(3) = . . . = MZ(r) and
MB(2) = MB(3) = . . . = MB(r) for every r > 2.
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Choose ξ ∈ A1 representing α ∈ H1(A∗). Let a ∈ MZ(r), and
(ω1, . . . , ωr) be an r-chain starting from a. so that

dω1 = 0, [ω1] = a, dω2 = ξω1, . . . , dωr = ξωr−1.

Denote by Λ(C∗) the algebra generated by the space of closed gen-
erators, so that M = Λ(C∗) ⊕ I(N∗). Write ωr = ω0

r + ω1
r with

ω0
r ∈ Λ(C∗), ω1

r ∈ I(N∗). Then ξωr−1 = dω1
r , and

d(ξω1
r) = d(ξωr) = ξ2ωr−1 = 0,

so that ξω1
r is a cocycle belonging to I(N∗). Therefore ξω1

r = dωr+1

for some ωr+1 ∈ I(N∗) and we obtain an (r + 1)-chain starting from
a, so that a ∈MZ(r+1).

A similar argument shows that MB(2) = MB(r) for every r > 2.
Therefore the spectral sequence degenerates at its second term. �

The next proposition gives a sufficient condition for the degeneracy
of the spectral sequence associated with a differential graded module
over a DG-algebra A∗. It will be used in Section 6 while studying the
case of Kähler manifolds.

Definition 3.15. A DG-module N ∗ over a DG algebra A∗ will be
called formal if it is a direct summand of a formal DGA B∗ over A∗,
that is,

(6) B∗ = N ∗ ⊕K∗,

where both N ∗ and K∗ are differential graded A∗-submodules of B∗.

Proposition 3.16. Let N∗ be a formal DG-module over A∗, and α ∈
H1(A∗). Then the spectral sequence E ∗r (N ∗, α) degenerates at its
second term.

Proof. The direct sum decomposition (6) implies that

E ∗r (B∗, α) = E ∗r (N ∗, α)⊕ E ∗r (K∗, α);

the spectral sequence E ∗r (B∗, α) degenerates by the previous propo-
sition and the result follows. �

4. A SPECTRAL SEQUENCE CONVERGING TO THE TWISTED
COHOMOLOGY

Let X be a finite CW-complex, put G = π1(X). We endow the
universal covering X̃ with the natural left action of G, so that the
cellular chain complex of X̃ is a free finitely generated chain complex
over ZG. Let B be an integral domain and ρ be a left action of G on
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the free B-module Bl (or, equivalently, a representation ρ : G →
GL(l, B)). The cohomology of the cochain complex

C∗(X, ρ) = HomG

(
C∗(X̃), Bl

)
is a B-module called the twisted cohomology of X with respect to ρ
and denoted by H∗(X, ρ). Denote by {B} the fraction field of B.
The dimension over {B} of the localization Hk(X, ρ) ⊗ {B} will be
called the k-th cohomological Betti number of X with respect to ρ and
denoted by βk(X, ρ).

Let us start with a given representation ρ : G → GL(l,C). Pick a
cohomology class α ∈ H1(X,C) and consider the exponential defor-
mation of ρ:

(7) γt : G→ GL(l,C), γt(g) = ρ(g)et〈α,g〉 (t ∈ C).

Denote byH the ring of all entire holomorphic functions on C and let
Λ = C[[t]]; we have a natural inclusion i : H � � // Λ. The formula
(7) defines a family of representations of G:

1) For a fixed t ∈ C a representation γt : G→ GL(l,C).

2) a representation γ̄ : G→ GL(l,H) (the holomorphic exponen-
tial deformation of ρ).

3) a representation γ̂ = i ◦ γ̄ : G → GL(l,Λ) (the formal expo-
nential deformation of ρ).

The inclusion i extends to the inclusion of the fields of fractions
{H} � � // {Λ}, therefore

βk(X, γ̄) = βk(X, γ̂)

for every k.

Lemma 4.1. For every k and t we have βk(X, γt) > βk(X, γ̄). There
is a subset S ⊂ C consisting of isolated points, such that

(8) βk(X, γt) = βk(X, γ̄)

for every k and every t ∈ C \ S.

Proof. Let nk be the number of k-cells in X. The boundary op-
erator ∂k in C∗(X̃) is represented by an (nk−1 × nk)-matrix with
coefficients in ZG. The chain complex

C∗(X, γ̄) = HomG

(
C∗(X̃), Hl

)
computing the cohomology of X with coefficients in the local system
defined by γ̄, has l · nk free generators in degree k; its boundary



12 TOSHITAKE KOHNO AND ANDREI PAJITNOV

operator δk+1 : Ck → Ck+1 is given by the formula

δk = γ̄(∂T
k+1),

(we denote by MT is the transpose of M ). Denote by ρk+1 the
maximal rank of non-zero minors of this matrix. For t ∈ C de-
note by ρk+1(t) the maximal rank of non-zero minors of the matrix
γ̄
(
∂T
k+1(t)

)
. Then

βk(X, γ̄) = l · nk − ρk − ρk+1,

βk(X, γt) = l · nk − ρk(t)− ρk+1(t).

Observe that ρk(t) 6 ρk for every t, and the set of t ∈ C where these
inequalities are strict, consists of isolated points (since the minors of
γ̄(∂k) are holomorphic functions of the variable t ∈ C). The lemma
follows. �

Thus

βk(X, γ̂) = βk(X, γ̄) = βk(X, γt) for t /∈ S.
The exact sequence

0 // Λ
t // Λ // C // 0

gives rise to a short exact sequence of complexes

0 // C∗(X, γ̂)
t // C∗(X, γ̂) // C∗(X, ρ) // 0

inducing a long exact sequence in cohomology, which can be inter-
preted as an exact couple

(9) H∗
(
X, γ̂

) t // H∗
(
X, γ̂

)
wwppppppppppp

H∗(X, ρ)

ggNNNNNNNNNNN

Denote by W ∗r (X, ρ, α) = (U∗r ,W
∗
r ) the induced spectral sequence.

Proposition 4.2. Let X be a finite connected CW-complex. Then

dimCW
k
∞ = βk(X, γ̂) = βk(X, γt) for generic t.

Proof. The ring Λ is principal, and the Λ-module H∗
(
X, γ̂

)
is a

finite direct sum of cyclic modules. Only the free summands sur-
vive to E∞ and the contribution of each such summand to dimCW

k
∞

equals 1. �
The cohomology with local coefficients arises naturally in the de

Rham theory. Later on we shall work also with the homology with
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local coefficients, which appears in the Morse-Novikov theory. We
will now explain the relation between the two constructions.

An antihomomorphism θ : G→ GL(l, B) will be also called a right
representation; it induces a structure of a right ZG-module on Bl.
The homology of the chain complex

C∗(X, θ) = Bl ⊗
θ
C∗(X̃)

is a B-module called the twisted homology of X with respect to θ and
denoted by H∗(X, θ). The dimension over {B} of the localization
Hk(X, θ)⊗{B} will be called the k-th homological Betti number of X
with respect to θ and denoted by βk(X, θ).

To each representation ρ : G → GL(l, B) we associate the right
representation ρ∗ : G → GL(l, B), where the matrix ρ∗(g) is the
transpose of ρ(g). The representation ρ∗ will be called conjugate to
ρ. Let E be the free finitely generated B-module endowed with the
structure of a left ZG-module via ρ, then the right representation ρ∗

corresponds to the right ZG-module HomB(E,B), which is denoted
by E∗. Observe that (ρ∗)∗ = ρ and (E∗)∗ ≈ E.

Lemma 4.3. Let ρ : G→ GL(l, B) be a representation. Then there is
a natural isomorphism

(10) HomB

(
C∗(X, ρ

∗), B
)
≈ C∗(X, ρ).

Proof. Put R = ZG. For any R-module B there is a canonical
isomorphism

HomB

(
M ⊗

R
Bl, B

)
≈ HomR

(
M,HomB(Bl, B)

)
.

The lemma follows. �
The following Corollary is immediate.

Corollary 4.4.

(11) βk(X, ρ) = βk(X, ρ
∗).

Remark 4.5. Observe that for l = 1 every representation ρ is equal
to its conjugate and therefore βk(X, ρ) = βk(X, ρ) for 1-dimensional
local systems.

5. COMPARING THE TWO SPECTRAL SEQUENCES

We are interested in the formal deformations of differential alge-
bras related to topological spaces, mainly manifolds. LetM be a con-
nected C∞ manifold, denote π1(M) by G, and let ρ : G → GL(l,C)
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be a representation. Let M̃ be the universal covering of M and de-
fine a flat bundle E on M as follows:

E = (M × Cl)
/
∼ where (gm, ξ) ∼ (m, g−1ξ) for g ∈ G.

The module N ∗ = A∗(M,E) of E-valued C∞ differential forms on
M is a DGM over the algebra A∗(M) of C-valued C∞ differential
forms onM . The elements ofN ∗ can be considered asG-equivariant
differential forms on M̃ with values in Cl. Let α ∈ H1(M,C). The
corresponding exact couple

(12) H∗
(
N ∗[[t]]

)
t // H∗

(
N ∗[[t]]

)
π∗

xxppppppppppp

H∗(N ∗)

ggNNNNNNNNNNN

gives rise to the deformation spectral sequence E ∗r (N ∗, α) (see §3).
Let γ̂ be the formal exponential deformation of ρ corresponding to
the class α:

γ̂(g) = ρ(g)et〈α,g〉 ∈ GL(l,Λ), Λ = C[[t]].

We associate to this deformation the spectral sequence W ∗(M,ρ, α)
(see §4).

Theorem 5.1. The spectral sequences E ∗r (N ∗, α) and W ∗r (M,ρ, α)
are isomorphic.

Proof. The A∗(M)-module A∗(M,E)[[t]] can be considered as the
vector space of exterior differential forms on M with values in E[[t]].
Denote by T ∗(M) the A∗(M)-submodule of A∗(M̃,Cl[[t]]), consist-
ing of differential forms on M̃ which are equivariant with respect to
the representation γ̂. Choose a closed 1-form ξ within the cohomol-
ogy class α. Let F : M̃ → C be a C∞ function such that π∗ξ = dF .
The next lemma is obvious.

Lemma 5.2. The homomorphism

Φ : A∗(M,E)[[t]] // T ∗(M)

defined by Φ(ω) = etFπ∗(ω) is an isomorphism of DG-modules over
A∗(M). �
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For a manifoldN we denote by S∗(N) the graded group of singular
C∞-chains onN . The integration map determines a homomorphism

I : T ∗(M) // HomG

(
S∗(M̃),Cl[[t]]

)
.

Here Cl[[t]] is endowed with the structure of a G-module via the
representation γ̂ : G→ GL(l,Λ).

Proposition 5.3. The induced map in the cohomology groups

I∗ : H∗
(
T ∗(M)

)
// H∗(M, γ̂)

is an isomorphism.

Proof. The argument follows the usual sheaf-theoretic proof of the
de Rham theorem. Consider the sheaf T k on M whose sections over
an open subset U ⊂ M are γ̂-equivariant k-forms on π−1(U) with
values in Cl[[t]]. Denote by A the sheaf on M , whose sections over
U are γ̂-equivariant locally constant functions π−1(U)→ Cl[[t]]. We
have an exact sequence of sheaves

(13) R1 = {0 // A // T 0 d // T 1 // . . .}.

Consider the sheaf Z∗ of γ̂-equivariant singular cochains:

Z∗(U) = HomG

(
S∗(π−1(U)),Cl[[t]]

)
.

The sequence of sheaves

(14) R2 = {0 // A // Z0 δ // Z1 δ // . . .}

(where δ is the coboundary operator on singular cochains) is also
exact, and we have two soft acyclic resolutions of the sheaf A. The
integration map I induces a homomorphismR1 →R2 which equals
identity on A. The standard sheaf-theoretic result implies that the
induced homomorphism in the cohomology groups of the complexes
of global sections is an isomorphism (see for example [25], Corollary
3.14). �

The isomorphism

I∗ ◦ Φ∗ : H∗
(
A∗(M,E)[[t]]

)
→ H∗(M, γ̂)

induces an isomorphism of the exact couple
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(15) H∗
(
A∗(M,E)[[t]]

)
t // H∗

(
A∗(M,E)[[t]]

)
π∗

vvlllllllllllll

H∗(M,E)

hhRRRRRRRRRRRRR

to the exact couple

(16) H∗
(
M, γ̂

) t // H∗
(
M, γ̂

)
π∗wwooooooooooo

H∗(M,E)

ggOOOOOOOOOOO

and therefore the isomorphism of the spectral sequences

E ∗r (N ∗, α) ≈ W ∗r (M,ρ, α).

The proof of Theorem 5.1 is complete. �
Now let us proceed to general topological spaces. The rational

homotopy theory of D. Sullivan (see [24], [4], [3]) associates to a
connected topological space X a minimal algebra M∗(X) over C,
well defined up to isomorphism.

Let α ∈ H1(X,C); we obtain a spectral sequence E ∗r (M∗(X), α).
It is not difficult to see that for the case when X is a C∞ man-
ifold, this spectral sequence is isomorphic to the one considered
in the previous section. Indeed, we have a homotopy equivalence
φ : M∗(X) // A∗(X); the induced homomorphism of the spec-
tral sequences

E ∗r (M∗(X), α)→ E ∗r (A∗(X), φ∗(α))

is an isomorphism in the second term E2. Thus the two spectral
sequences are isomorphic.

Theorem 5.4. Let X be a finite CW complex. Then

E ∗r (M∗(X), α) ≈ W ∗r (X,α).

Proof. Let f : X → M be a homotopy equivalence of X to a C∞

manifold M (possibly non-compact). Denote by α′ the (f−1)∗-image
of α. The map f induces a homotopy equivalence F : M∗(X) →
A∗(M) of DGAs. We obtain isomorphisms of the spectral sequences:

E ∗r (M∗(X), α) ≈ E ∗r

(
A∗(M), (f−1)∗(α)

)
W ∗r (X,α) ≈ W ∗r (M), α).

Now apply Theorem 5.1 and the result follows. �
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Remark 5.5. Theorem 5.4 can be generalized to the case of local
coefficients so as to obtain a result similar to Theorem 5.1 in the
setting of general topological spaces.

6. STRONGLY FORMAL MANIFOLDS

The next theorem follows immediately from Theorems 5.4 and
3.14.

Theorem 6.1. Let X be a finite connected CW-complex. Assume that
X is formal. Then the spectral sequences

E ∗r (M∗(X), α) ≈ W ∗(X,α)

degenerate at their second term.

Thus the dimension of the homology of X with coefficients in a
generic point of the exponential deformation of the trivial represen-
tation can be computed from the multiplicative structure of the or-
dinary homology. Namely, let α ∈ H1(X,C) and let γt be the expo-
nential deformation of the trivial representation:

γt(g) = et〈α,g〉.

Denote by βk(X, γgen) the Betti number of X with coefficients in a
generic point of the curve γt, and let Lα be the operation of multipli-
cation by α in Hk(X,C). The theorem above implies that

βk(X, γgen) = dimCHk(H∗(X,C), α).

The case of the spectral sequence W ∗(X, ρ, α) where ρ : π1(X) →
GL(l,C) is a non-trivial representation, is more complicated and to
guarantee the degeneracy of the spectral sequence a stronger con-
dition is necessary. Let us first consider the case of 1-dimensional
representations ρ. Let M be a connected C∞ manifold. Denote by G
the fundamental group of M , let Ch(G) be the group of homomor-
phisms G → C∗ = GL(1,C). For a character ρ ∈ Ch(G) denote by
Eρ the corresponding flat vector bundle over M . Put

Ā∗(M) =
⊕

ρ∈Ch(G)

A∗(M,Eρ).

The pairing Eρ ⊗ Eη ≈ Eρη induces a natural structure of a differ-
ential graded algebra on the vector space Ā∗(M).

Definition 6.2. A C∞ manifold M is strongly formal if the algebra
Ā∗(M) is formal.
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Theorem 6.3. Let M be a strongly formal manifold, ρ ∈ Ch(G) and
α ∈ H1(M,C). Then the spectral sequences

E ∗r (M∗(M), ρ, α) ≈ W ∗r (M,ρ, α)

degenerate in their second term.

Proof. The DG-module A∗(M,Eρ) is formal; apply Proposition
3.16 and the proof is over. �

Denote by bk(M,ρ, γgen) the k-th Betti number of M with coeffi-
cients in a generic point of the curve

γt(g) = ρ(g)et〈α,g〉.

Corollary 6.4. Let M be a strongly formal manifold, ρ ∈ Ch(G), and
α ∈ H1(M,C). Then

bk(M,ρ, γgen) = Bk(H∗(M,ρ), α).

An big class of examples of strongly formal spaces is formed by
Kähler manifolds, as it follows from C. Simpson theory of Higgs bun-
dles [23].

Theorem 6.5. Any compact Kähler manifold is strongly formal.

Proof. Let ρ ∈ Ch(π1(M)). The flat bundle Eρ has a unique
structure of a harmonic Higgs bundle (see [1], [23]); the exterior dif-
ferential Dρ in the DG-module A∗(M,Eρ) writes therefore as Dρ =
D′ρ +D′′ρ , and the natural homomorphisms of DG-modules

(
Ker (D′ρ), D

′′
ρ

)
vvlllllllllllll

))SSSSSSSSSSSSSS

(
A∗(M,Eρ), Dρ

) (
H∗DeRham(M,Eρ), 0

)
induce isomorphisms in cohomology (see [23], Lemma 2.2 (Formal-
ity)). Denote the DG-module (Ker (D′ρ), D

′′
ρ) by Kρ(M), and put

K∗(M) =
⊕

ρ∈Ch(G)

Kρ(M).
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The multiplicativity properties of Higgs bundles imply that K∗ is a
DG-algebra and we have the maps of DGAs:

K∗(M)

zzttttttttttt

((PPPPPPPPPPPP

Ā∗(M)

⊕
ρ∈Ch(G)

H∗(M,Eρ)

both inducing isomorphisms in cohomology. The theorem follows. �

Remark 6.6. There are manifolds which are formal but not strongly
formal. The example described below was indicated to the authors
by H. Kasuya.

H. Sawai [22] constructed an 8-dimensional solvmanifold, having
several remarkable properties. H. Sawai’s construction starts with a
7-dimensional solvable Lie algebra g generated by
A,X1, X2, X3, Z1, Z2, Z3, with

[X1, X2] = Z3, [X2, X3] = Z1, [X3, X1] = Z2,

[A,X1] = −a1X1, [A,X2] = −a2X2, [A,X3] = −a3X3,

[A,Z1] = a1Z1, [A,Z2] = a2Z2, [A,Z3] = a3Z3,

where a1, a2, a3 are distinct real numbers. (This is a generalization
of the Lie algebra constructed by Benson and Gordon in [2].) De-
note by G the corresponding simply connected Lie group. H. Sawai
proves that for some choice of a1, a2, a3 there is a lattice Γ in G×R,
and the quotient is a formal space, which has a symplectic struc-
ture and satisfies the hard Lefschetz property, but admits no Kähler
structure.

The cohomology of (G/Γ)×S1 with local coefficients in one-dimensional
local systems was studied by H. Kasuya in [11]. By the Mostow the-
orem [13] the computations can be carried out in the cohomology of
the Lie algebra Γ×R with coefficients in 1-dimensional modules. H.
Kasuya gives an example of non-vanishing triple Massey product in
the homology of Γ×R with twisted coefficients. Thus M is a formal
but not a strongly formal space.

H. Kasuya informed the authors that he has constructed a 4-
dimensional solvmanifold which is formal but not strongly formal.

Conjecture 6.7. For every n > 2 there exists a solvmanifold M , a
character ρ : π1(M) → C∗ and a cohomology class α ∈ H1(M,R)
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such that M is formal, but the differential dn in the spectral sequence
W ∗r (M,ρ, α) is non-zero.

Consider now the case of representations of higher rank.

Proposition 6.8. LetM be a compact Kähler manifold and ρ : π1(M)→
GL(l,C) be a semi-simple representation. Then the differential graded
A∗(M)-module A∗(M,Eρ) is formal.

Proof. By [23], Theorem 1 there is a harmonic metric on the bun-
dle Eρ. The tensor powers of this metric provide harmonic metrics
on the bundles E⊗nρ for any n > 1. Put

L∗ρ(M) =
∞⊕
n=0

A∗(M,E⊗nρ )

(where A∗(M,E⊗0
ρ ) = A∗(M) by convention). Then L∗ρ(M) is a DG-

algebra. The same argument as in the proof of Theorem 6.5 implies
that this algebra is formal, and it remains to observe that A∗(M,Eρ)
is a direct summand of L∗ρ(M). �

7. CHAIN COMPLEXES OVER LAURENT POLYNOMIAL RINGS AND THEIR
LOCALIZATIONS

In this section we discuss the Betti numbers of complexes over
Laurent polynomial rings in view of further applications to the Novikov
Betti numbers and the homology with local coefficients.

Let T be an integral domain and {T} be its fraction field. Let C∗
be a finite free chain complex over T :

C∗ = {0 oo C0
oo . . .

∂koo Ck
∂k+1oo Ck+1

oo . . .}
The tensor product of this chain complex with {T} will be denoted
by C∗ and the boundary operator in C∗ will be denoted by ∂∗. The
Betti number bk(C∗) is equal to

dim{T}Ck − rk∂k − rk∂k+1 = rkCk − rk∂k − rk∂k+1

(where rk∂k stands for the maximal rank of a non-zero minor of the
matrix of ∂k).

Let φ : T → U be a homomorphism to another integral domain.
Denote by bk(C∗, φ) the k-th Betti number of the tensor product
C∗ ⊗φ {U}. Then bk(C∗, φ) > bk(C∗). The inequality is strict if the
φ-images of all the rk∂k-minors of ∂k vanish, or if the φ-images of all
the rk∂k+1-minors of ∂k+1 vanish. In general, for q > 0 the condition
bk(C∗, φ) > bk(C∗) + q is equivalent to the existence of a number i,
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with 0 6 i 6 q such that all the (rk∂k − i)-minors of φ(∂k) vanish
and all the (rk∂k+1 − (q − i))-minors of φ(∂k+1) vanish.

We are interested in the case of Laurent polynomial rings. Let R
be an integral domain and C∗ be a finite free chain complex over
Ln = R[t±1 , . . . , t

±
n ] = R[Zn]. Let p : Zn → Zm be a group homo-

morphism. Extend it to a ring homomorphism Ln → Lm which will
be denoted by the same letter p. Denote by Qm is the field of frac-
tions of Lm, that is, the field of the rational functions in m variables
with coefficients in the fraction field of R. Form the chain com-
plex C∗ ⊗p Qm, and denote by bk(C∗, p) the dimension of the vector
space Hk(C∗ ⊗p Qm) over Qm. Observe that if p is injective, then
bk(C∗) = bk(C∗, p). We will now study the dependance of bk(C∗, p)
on p.

Definition 7.1. A subgroup G ⊂ Zn is called full if it is a direct
summand of Zn. We say that a homomorphism p : Zn → Zm is
subordinate to a full subgroup G ⊂ Hom(Zn,Z) and we write p @ G,
if all the coordinates of p are in G.

Remark 7.2. Let G be a full subgroup of Hom(Zn,Z). Denote by K
the subgroup of Zn dual to G. Then p @ G if and only if p | K = 0.

Theorem 7.3. Let C∗ be a finite free complex over Ln. Let k >
0, q > 0. Then there is a finite family of proper full subgroups Gi ⊂
Hom(Zn,Z) such that for p ∈ Hom(Zn,Zm) the condition

bk(C∗, p) > bk(C∗) + q

is equivalent to the following condition: p @ Gi for some i.

Proof. Let us do the case q = 1, the general case is similar. Let E
denote the set of all the (rk∂k)-minors of the matrix ∂k : Ck → Ck−1,
and all the (rk∂k+1)-minors of the matrix ∂k+1 : Ck+1k → Ck. Let
∆ ∈ E , write ∆ =

∑
g∈Zn rg · g (where rg ∈ R).

According to our previous observation it suffices to study the set
Σ of all homomorphisms p : Zn → Zm such that p(∆) = 0. Let
Γ = supp ∆, which is a finite subset of Zn. Any homomorphism p :
Zn → Zm with p(∆) = 0 must be non-injective on Γ. To describe the
set of all such homomorphisms let us say that a subdivision

Γ = Γ1 t . . . t ΓN

is ∆-fitted, if for any j we have∑
gk∈Γj

rg = 0.
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For any ∆-fitted subdivision S consider the subgroup L(S) ⊂ Hom(Zn,Z)
consisting of all homomorphisms h : Zn → Z such that h | Γi is
constant for every i. Then L(S) is a full subgroup of Hom(Zn,Z).
Observe that L(S) is a proper subgroup since every Γi contains at
least two elements. It is clear that a homomorphism p : Zn → Zm
belongs to Σ if and only if p is constant on each component Γi of a
∆-fitted subdivision of ∆, that is, p @ L(S). �

8. THE TWISTED NOVIKOV BETTI NUMBERS

Let X be a finite connected CW complex, put G = π1(X). Let R
be an integral domain, and η : π1(X) → GL(l, R) be a right repre-
sentation (that is, η is an antihomomorphism of groups). Recall the
definition of the twisted homological Betti numbers with coefficients
in η:

βk(X, η) = dim{R}Hk

(
{R}l ⊗

η
C∗(X̃)

)
.

Starting with η we can construct several other representations of G.
Let n = rkH1(X,Z) and denote by π the projectionG→ H1(G)/Tors ≈
Zn. Let Ln = R[Zn] denote the ring of Laurent polynomials in n vari-
ables, then the group Zn can be identified with the group of units
L×n ⊂ GL(1, Ln), and the homomorphism π can be condsidered as a
representation G → GL(1, Ln). Denote by 〈η〉 the tensor product of
π and η, that is,

〈η〉(g) = π(g) · η(g) ∈ GL(l, Ln).

Let p : Zn → Zm be a homomorphism. Similarly to the above we
can consider the tensor product of representations η and p ◦ π :
G → GL(1, Lm). This right representation will be denoted by 〈η〉p.
Observe that 〈η〉0 = η, 〈η〉Id = 〈η〉. It is not difficult to see that for
every p : Zn → Zm we have

(17) βk(X, η) > βk(X, 〈η〉p) > βk(X, 〈η〉).
Theorem 7.3 of the previous section implies the following.

Proposition 8.1. Let k > 0, q > 0. Then there is a finite family of
proper full subgroupsGi ⊂ Hom(Zn,Z) such that for p ∈ Hom(Zn,Zm)
the condition

βk(X, 〈η〉p) > βk(X, 〈η〉) + q

is equivalent to the following condition: p @ Gi for some i.

Proceeding to the Novikov homology, let us first recall the defini-
tion of the Novikov ring. Let H be a free abelian group; denote ZH
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by L. Let µ : H → R be a group homomorphism. The Novikov com-
pletion L̂µ of the ring L with respect to µ is defined as the set of all
series of the form λ =

∑
g ngg (where g ∈ H and ng ∈ R) satisfying

the following finiteness condition:

L̂µ =
{
λ
∣∣∣ ∀ C ∈ R, the set supp λ ∩ µ−1

(
[C,∞[

)
is finite

}
.

In general the ring L̂µ is rather complicated, however if R = Z and
µ is a monomorphism, this ring is Euclidean by a theorem of J.-Cl.
Sikorav (see [18], Th. 1.4). If R is a field and µ is a monomorphism,
this ring is a field.

Let α : G→ R be a homomorphism. We can factor it as follows:

(18) G // H1(X,Z)/Tors
≈ // Zn //

p
!!CCCCCCCC R

Zm
α̃

>>}}}}}}}}

where p is an epimorphism and α̃ is a monomorphism. We will
denote the Novikov completion of the ring R[Zm] with respect to α̃
by L̂m,α. Denote by 〈〈η〉〉 the composition

G
ηp // GL(l, Lm) � � // GL(l, L̂m,α);

it is a right representation of G.

Definition 8.2. ([9], [19]) The twisted homology of X with respect to
the representation 〈〈η〉〉 is called the η-twisted Novikov homology of
X with respect to α. The k-th homological Betti number of X with
respect to 〈〈η〉〉 will be denoted by b̂ηk(X,α) and called the twisted
Novikov Betti number of X with respect to η. Thus we have

b̂ηk(X,α) = dim{L̂m,α}Hk

(
{L̂m,α}l ⊗

〈〈η〉〉
C∗(X̃)

)
.

If R = Z so that L̂m,α is a principal ideal domain, we denote by
q̂ηk(X,α) the torsion number of the module Hk

(
L̂lm,α ⊗ C∗(X̃)

)
.

The geometric reasons to consider these completions of the module
C∗(X̃) are as follows. If X is a compact manifold, and ω is a closed
1-form on M with non-degenerate zeroes, denote by α the period
homomorphism [ω] = α : H1(M,Z)→ R. The Morse-Novikov theory
implies the following lower bounds on the number of zeroes of ω:

mk(ω) >
1

l

(
b̂ηk(X,α) + q̂ηk(X,α) + q̂ηk−1(X,α)

)
.
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(Here the base ring R equals Z.) Compared to the other versions of
the Novikov homology, the twisted Novikov homology has the advan-
tage of being computable, and at the same time to keep the infor-
mation about the non-abelian structure of G and related invariants.
In a recent work [8] S. Friedl and S. Vidussi proved that the twisted
Novikov homology detects fibredness of knots in S3. At present we
will need only the simplest part of these invariants, namely, the
twisted Novikov Betti numbers.

Proposition 8.3. Let α : G → R be a homomorphism and η : G →
GL(l, R) a right representation. Then for every k we have

βk(X, 〈η〉p) = b̂ηk(X,α)

(where p is obtained from the diagram (18)).

Proof. The twisted Betti Novikov number in question equals the
dimension of the module

Hk

(
Llm ⊗

〈η〉p
C∗(X̃)

)
⊗ {L̂m,α}

over the field of fractions {L̂m,α} of the Novikov ring.
The Betti number bk(X, η; p) is the dimension of the vector space

Hk

(
Llm ⊗

〈η〉p
C∗(X̃)

)
⊗ {Lm}

over the field of fractions {Lm}. The inclusion Lm ⊂ L̂m,α extends
to an inclusion of fields {Lm} ⊂ {L̂m,α} and the result follows. �

Definition 8.4. For a homomorphism α : G → R the subgroup
α(G) is a free finitely generated abelian group; its rank is called
irrationality degree of α and denoted Irrα. In particular Irrα = 1 if
and only if α is a multiple of a homomorphism G → Z. We say that
α is maximally irrational if Irrα = rkH1(G).

Observe that the irrationality degree of α equals the number m
from the diagram (18). If α is maximally irrational, then the homo-
morphism p in this diagram is an isomorphism. In this case the
twisted Betti numbers b̂ηk(X,α) do not depend on α.

Definition 8.5. The number b̂ηk(X,α) where α is maximally irra-
tional, will be denoted by b̂ηk(X).

The inequalities (17) together with the proposition 8.3 imply that

b̂ηk(X,α) > b̂ηk(X).

Theorem 7.3 of the previous section implies the following.
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Proposition 8.6. Let k > 0, q > 0. Then there is a finite family of
proper full subgroups Gi ⊂ Hom(Zn,Z) such that the condition

b̂ηk(X,α) > b̂ηk(X) + q

is equivalent to the following condition: α ∈
⋃
iGi ⊗ R. �

Remark 8.7. The results of this section have natural cohomology
analogs. Namely, given a representation ρ : G → GL(l, R) one
defines the representations 〈ρ〉, 〈ρ〉p, and the corresponding coho-
mological Betti numbers βk(X, 〈ρ〉) and βk(X, 〈ρ〉p). One can de-
fine also the cohomological twisted Novikov numbers b̂kρ(X,α) and

b̂kρ(X). The following lemma follows from Lemma 4.3.

Lemma 8.8. Let ρ : G → GL(l, R) be a representation; put η = ρ∗.
We have

βk
(
X, 〈ρ〉

)
= βk

(
X, 〈η〉

)
, βk

(
X, 〈ρ〉p

)
= βk

(
X, 〈η〉p

)
,

b̂ηk
(
X,α

)
= b̂kρ

(
X,α

)
, b̂ηk(X) = b̂kρ(X). �

9. HOMOLOGY WITH LOCAL COEFFICIENTS

Let us proceed now to the homology with local coefficients. Let
η : G → GL(l,C) be a right representation of G and α ∈ H1(X,C).
The cohomology class α can be considered as a homomorphism α :
G→ C, which factors as follows

(19) G // H1(X,Z)/Tors
≈ // Zn //

p !!CCCCCCCC R

Zm,
α̃

>>||||||||

where p is an epimorphism and α̃ a monomorphism. Here m = Irrα;
denote the coordinates of p by pi : Zm → Z, 1 6 i 6 m. We have
α =

∑m
i=1 αipi, and the numbers αi ∈ C are linearly independent

over Q. Recall the exponential and formal exponential deformations
of η:

γt : G→ GL(l,C), γt(g) = η(g)et〈α,g〉 ∈ C (where t ∈ C);

γ̂(g) = η(g)et〈α,g〉 ∈ GL(l,C[[t]]).

and the corresponding Betti numbers βk(X, γt), βk(X, γ̂). We will
need a simple lemma.

Lemma 9.1. Let α1, . . . , αm be complex numbers, linearly indepen-
dent over Q. Then the power series eα1t, . . . , eαmt ∈ C[[t]] are alge-
braically independent.
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Proof. If P ∈ C[z1, . . . , zm] is a polynomial such that P (eα1t, . . . , eαmt) =
0, write P =

∑
aIt

I where the sum ranges over multiindices I =
(k1, . . . , km) ∈ Nm. Denote the string (α1, . . . , αm) by α. The series
ζ = P (eα1t, . . . , eαmt) is then a finite sum of exponential functions
of the form aIe

t〈I,α〉. Observe that 〈I, α〉 6= 〈J, α〉 if I 6= J , since αi
are linearly independent over Q. Therefore ζ is a finite linear combi-
nation of exponential functions etβI with pairwise different βI. Thus
ζ = 0 implies aI = 0 for all I. �

Proposition 9.2. There is a subset S ⊂ C consisiting of isolated
points, such that for every t ∈ C \ S and every k we have

1) βk(X, γt) = βk(X, γ̂) = βk(X, 〈η〉p)
2) If α ∈ H1(X,R) then βk(X, γt) = βk(X, γ̂) = b̂ηk(X,α).

Proof. The right representation γ̂ factors through Zm as follows

G
p◦π // Zm Γ //

(
C[[t]]

)∗
Let (e1, . . . , em) denote the canonical basis in Zm; then we have
Γ(ei) = etαi. The extension of Γ to a ring homomorphism Z[Zm] →
C[[t]] is injective by the previous lemma, and therefore can be further
extended to a homomorphism

Γ : {Lm} → C((t))

of the fraction fields. Therefore

dim{Lm}Hk

(
{Lm}l ⊗

〈η〉p
C∗(X̃)

)
= dimC((t))Hk

(
C((t))l ⊗

Γ◦η◦π
C∗(X̃)

)
and the point 1) is proved. The point 2) follows from 1) and Proposi-
tion 8.3. �

Remark 9.3. A particular case of this proposition corresponding to
the vanishing Novikov Betti numbers was proved by S. Papadima
and A. Suciu in [20].

The next proposition follows immediately.

Proposition 9.4. Let k > 0, q > 0. Then there is a finite family of
proper full subgroups Gi ⊂ Hom(Zn,Z) such that the condition

βk(X, γ̂) > βk(X, 〈η〉) + q

is equivalent to the following condition: α ∈
⋃
iGi ⊗ C.
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10. STRONGLY FORMAL SPACES II : THE JUMP LOCI

Let X be a manifold, ρ : π1(X) → GL(n,C) a representation,
and α ∈ H1(X,C). In this section we assume that the spectral
sequences E ∗r and W ∗r associated to the triple (X, ρ, α) degenerate at
their second term, so that

E∗r(X, ρ, α) ≈W ∗
r (X, ρ, α) ≈ H∗

(
H∗(X, ρ), α

)
.

According to Section 6 this holds, in particular, when X is a Kähler
manifold and ρ a semi-simple representation. Recall from Section 4
the exponential deformation γt and the formal exponential deforma-
tion γ̂ of the representation ρ.

Theorem 10.1. 1) βk(X, γ̂) = βk(X, γgen) = Bk(H∗(X, ρ), α).
2) If α ∈ H1(X,R) then

b̂kρ(X,α) = βk(X, γ̂) = Bk(H∗(X, ρ), α).

Proof. The first point is a consequence of the degeneracy of the
two spectral sequences above. To prove the second point, consider
the right representation η = ρ∗, and the corresponding formal ex-
ponential deformation γ̂∗ of η. We have b̂kρ(X,α) = b̂ηk(X,α) by

Lemma 8.8. Further, b̂ηk(X,α) = βk(X, γ̂
∗) by Proposition 9.2. Fi-

nally βk(X, γ̂∗) = βk(X, γ̂) by Corollary 4.4. The proof of the theo-
rem is over. �

The proof of the following proposition, concerning the jump loci of
the Betti numbers, is done on similar lines, using Proposition 9.4
and Proposition 8.1.

Proposition 10.2. Let k > 0, q > 0. Then there is a finite family of
proper full subgroupsGi ⊂ Hom(Zn,Z) such that each of the following
conditions (20), (21)

(20) βk(X, γ̂) > βk(X, 〈ρ〉) + q

(21) Bk(H∗(X, ρ), α) > βk(X, 〈ρ〉) + q

is equivalent to the condition α ∈
⋃
iGi ⊗ C.

For α ∈ H1(X,R) each of the following conditions (22), (23)

(22) b̂kρ(X,α) > βk(X, 〈ρ〉) + q;

(23) Bk(H∗(X, ρ), α) > βk(X, 〈ρ〉) + q

is equivalent to the condition α ∈
⋃
iGi ⊗ R. �
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