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Abstract. We develop a method to construct representations of the homotopy 2-
groupoid of a manifold as a 2-category by means of K.-T. Chen’s formal homology
connections. As an application we describe 2-holonomy maps for hyperplane
arrangements and discuss representations of the category of braid cobordisms.

1. Introduction

The purpose of this article is to give a systematic treatment of representations of
the homotopy 2-groupoid of a manifold as a 2-category by means of K.-T. Chen’s
formal homology connections. The 2-categories play an important role in higher
gauge theory (see Baez and Huerta [1]). In particular, the 2-holonomy maps have
been investigated in the framework of 2-connections. The notion of formal homology
connections was developed by K.-T. Chen in the theory of iterated integrals of
differential forms in order to describe the homology group of the loop space of a
manifold M by the chain complex formed by the tensor algebra of the homology
group of M (see [3], [4] and [5]).

We apply such method to the complement of complex hyperplane arrangements.
In this case because of the formality of the space the formal homology connection
can be described by quadratic derivations. In particular, we discuss in details the 2-
flatness condition in the case of the configuration space of ordered distinct points in
the complex plane. We describe categorified infinitesimal pure braid relations in this
setting. It is an important problem to construct a categorification of the Knizhnik-
Zamolodchikov (KZ) connections. There is a work by Cirio and Martins [8] on
the categorification of the KZ connections by means of 2-Yang-Baxter operators for
sl2(C). In this paper we give a universal expression of 2-holonomy maps based on
the formal homology connections. One of our motivations is to apply such methods
to braided surfaces in 4-space studied by Carter, Kamada and Saito (see [2], [10]).
We discuss an application of 2-holonomy maps to a construction of representations
of the 2-category of braid cobordisms.

The paper is organized in the following way. In Section 2 we briefly review K.-
T. Chen’s iterated integrals and their basic properties. In particular, we recall
the formula for the composition of plots. In Section 3 we describe the notion of
formal homology connections. In particular, we explain the notion of 2-connections
and 2-curvatures in this framework. In Section 4 we give a general method to
construct representations of homotopy 2-groupoids by means of the formal homology
connection. We also describe the notion of crossed modules in this setting. In
Section 5 we apply the above method to the complement of complex hyperplane
arrangement. In particular, we describe 2-flatness condition for braid arrangements.
We discuss an application to a representation of the category of braid cobordisms.
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2. Preliminaries on K.-T. Chen’s iterated integrals

First, we briefly recall the notion of iterated integrals of differential forms due to
K.-T. Chen. We refer the reader to [3], [4] and [5] for details. Let M be a smooth
manifold and ω1, · · · , ωk be differential forms on M . We fix two points x0 and x1 in
M and consider the space of piecewise smooth paths γ : [0, 1] → M with γ(0) = x0

and γ(1) = x1. We denote by P(M ;x0,x1) the above space of paths. In particular,
in the case x0 = x1 the path space P(M ;x0,x1) is called the based loop space of
M and is denoted by Ωx0M . In the following we suppose that the differential forms
ω1, · · · , ωk are of positive degrees. We denote by

pj : M × · · · × M︸ ︷︷ ︸
k

−→ M, 1 ≤ j ≤ k

the projection to the j-th factor and set

ω1 × · · · × ωk = p∗1ω1 ∧ · · · ∧ p∗kωk.

We consider the simplex

∆k = {(t1, · · · , tk) ∈ Rk ; 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}
and the evaluation map

ϕ : ∆k ×P(M ;x0,x1) → M × · · · × M︸ ︷︷ ︸
k

defined by ϕ(t1, · · · , tk; γ) = (γ(t1), · · · , γ(tk)). The iterated integral of ω1, · · · , ωk

is defined as ∫
ω1 · · ·ωk =

∫
∆k

ϕ∗(ω1 × · · · × ωk)

where the expression ∫
∆k

ϕ∗(ω1 × · · · × ωk)

is the integration along the fiber with respect to the projection

p : ∆k × P(M ;x0,x1) −→ P(M ;x0,x1).

The above iterated integral is considered as a differential form on the path space
P(M ;x0,x1) with degree q1 + · · · + qk − k, where we set qj = deg ωj . To justify
differential forms on the path space P(M ;x0,x1) we use the notion of plots. A plot
α : U −→ P(M ;x0,x1) is a family of piecewise linear paths smoothly parametrized
by a compact convex set U in a finite dimensional Euclidean space. Given a plot α
we denote the corresponding iterated integral(∫

ω1 · · ·ωk

)
α

as a differential form on U obtained by pulling back the iterated integral
∫

ω1 · · ·ωk

by the plot α. Namely, the above expression stands for∫
∆k

((id × α) ◦ ϕ)∗(ω1 × · · · × ωk)

where we consider the integration along the fiber with respect to the projection
∆k × U → U .

We denote by Ω∗(P(M ;x0,x1)) the set of such differential forms on the path
space P(M ;x0,x1) obtained as iterated integrals of differential forms of positive
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degrees on M . In particular, in the case ω1, · · · , ωk are 1-forms, the iterated integral∫
ω1 · · ·ωk is a function on the path space and its value on a path γ : [0, 1] → M is

the iterated line integral∫
γ
ω1 · · ·ωk =

∫
∆k

f1(t1) · · · fk(tk) dt1 · · · dtk

where γ∗ωj = fj(t) dt, 1 ≤ j ≤ k.
We take an extra point x2 in M and consider the plots

α : U −→ P(M ;x0,x1), β : U −→ P(M ;x1,x2).

The composition of the plots α and β

αβ : U −→ P(M ;x0,x2)

is defined by

αβ(x)(t) =

{
α(x)(2t), 0 ≤ t ≤ 1

2

β(x)(2t − 1), 1
2 ≤ t ≤ 1

for x ∈ U . As is shown by K.-T. Chen, we have the following rule for the composition
of plots.

Proposition 2.1. The relation(∫
ω1 · · ·ωk

)
αβ

=
∑

0≤i≤k

(∫
ω1 · · ·ωi

)
α

∧
(∫

ωi+1 · · ·ωk

)
β

holds

For a path α we define its inverse path α−1 by

α−1(t) = α(1 − t).

For the composition αα−1 we have(∫
ω1 · · ·ωi

)
αα−1

= 0.

As a differential form on the path space P(M ;x0,x1) we have the following.

Proposition 2.2. For the iterated integral
∫

ω1 · · ·ωk we have

d

∫
ω1 · · ·ωk

=
k∑

j=1

(−1)νj−1+1

∫
ω1 · · ·ωj−1dωj ωj+1 · · ·ωk

+
k−1∑
j=1

(−1)νj+1

∫
ω1 · · ·ωj−1(ωj ∧ ωj+1)ωj+2 · · ·ωk

where we put νj = deg ω1 + · · · + deg ωj − j for j ≥ 1 and ν0 = 0.

Thus we obtain the complex Ω∗(P(M ;x0,x1)) with the differential

d : Ωq(P(M ;x0,x1)) −→ Ωq+1(P(M ;x0,x1))

explicitly geven as in Proposition 2.2.
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3. Formal homology connections

Let M be a smooth manifold. We put

H+(M) =
⊕
q>0

Hq(M ;R)

and consider the tensor algebra

TH+(M) =
⊕
k≥0

(
k⊗

H+(M)

)
.

In the following we suppose that dim H+(M) is finite. We denote by Ω∗(M) the al-
gebra of differential forms on M and consider the tensor product Ω∗(M)⊗TH+(M).
We suppose that the differential d acts trivially on TH+(M ;R). Namely, we set

d(ω ⊗ X) = dω ⊗ X, ω ∈ Ω∗(M), X ∈ TH+(M ;R).

When H+(M) has a basis X1, · · · , Xm, Ω∗(M) ⊗ TH+(M) is identified with the
ring of non-commutative polynomials

Ω∗(M)[X1, · · · , Xm]

over Ω∗(M). We assign the degree of Xi ∈ Hpi(M) as

deg Xi = pi − 1

by shifting the degree by 1. For the product of homogeneous elements we define the
degree of Xi1 · · ·Xik as

deg Xi1 · · ·Xik =
k∑

p=1

deg Xip .

In this way we regard TH+(M) as a graded algebra. For homogeneous elements
X,Y in Ω∗(M)[X1, · · · , Xm] we define the graded Lie bracket by

[X,Y ] = XY − (−1)pqY X

where deg X = p and deg Y = q.
We consider the augmentation map

ε : R[X1, · · · , Xm] −→ R

defined by ε(Xk) = 0, 1 ≤ k ≤ m. We denote by J the kernel of the augmentation
map ε, which is the 2-sided ideal of TH+(M) generated by X1, · · · , Xm. We consider
the completion of TH+(M) with respect to the powers of the augmentation ideal,
which is denoted by ̂TH+(M). The tensor product Ω∗(M) ⊗ ̂TH+(M) is identified
with the ring of non-commutative formal power series

Ω∗(M)〈〈X1, · · · , Xm〉〉

over Ω∗(M). We denote by ̂TH+(M)q the degree q part of ̂TH+(M) with respect
to the above degrees.

For a differential form ω we define the parity operator ε as ε(ω) = ω when ω is of
even degree and ε(ω) = −ω when ω is of odd degree. For ω⊗X ∈ Ω∗(M)⊗ ̂TH+(M)
we set ε(ω ⊗ X) = ω ⊗ X if ω is a differential form of even degree and ε(ω ⊗ X) =
−ω ⊗ X if ω is a differential form of odd degree. Extending the above map linearly
we obtain the operator ε on Ω∗(M) ⊗ ̂TH+(M).
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We extend naturally the wedge product and iterated integrals on Ω∗(M)⊗ ̂TH+(M).
This means that we define as

(ω ⊗ X) ∧ (ϕ ⊗ Y ) = (ω ∧ ϕ) ⊗ XY,∫
(ϕ1 ⊗ Z1) · · · (ϕk ⊗ Zk) =

(∫
ϕ1 · · ·ϕk

)
⊗ Z1 · · ·Zk.

Here the right hand side of the second equation is considered as an element of

Ω∗(P(M ;x0,x1)) ⊗ ̂TH+(M).

We say that a linear map

δ : ̂TH+(M)q −→ ̂TH+(M)q−1

is a derivation of degree −1 if it satisfies the Leibniz rule

δ(uv) = (δu)v + (−1)deg uu(δv).

According to K.-T. Chen a formal homology connection

ω ∈ Ω∗(M) ⊗ ̂TH+(M)

is by definition an expression written as

ω =
m∑

i=1

ωiXi + · · · +
∑

i1···ik

ωi1···ikXi1 · · ·Xik + · · ·

with differential forms of positive degrees ωi1···ik satisfying the following properties.
• [ωi], 1 ≤ i ≤ m, is a dual basis of Xi, 1 ≤ i ≤ m.
• δω + dω − ε(ω) ∧ ω = 0.
• deg ωi1···ik = deg Xi1 · · ·Xik + 1
• δ is a derivation of degree −1.
• δXj ∈ Ĵ2 where Ĵ is the augmentation ideal of ̂TH+(M).

For a formal homology connection ω we define the generalized curvature κ by

κ = dω − ε(ω) ∧ ω.

From the above conditions it can be shown that δ ◦ δ = 0 and ( ̂TH+(M), δ) forms
a complex. The formal homology connection can be written in the sum

ω = ω(1) + ω(2) + · · · + ω(p) + · · ·

with the p-form part

ω(p) ∈ Ωp(M) ⊗ ̂TH+(M)p−1.

The 2-form part of κ is written as

κ(2) = dω(1) + ω(1) ∧ ω(1)

which coincides with the usual curvature form for ω(1). From the equation δω+κ = 0
we have the equation

δω(2) + dω(1) + ω(1) ∧ ω(1) = 0.

Let us consider the 3-form part of κ given by

κ(3) = dω(2) − ω(1) ∧ ω(2) + ω(2) ∧ ω(1).
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We call κ(3) the 2-curvature of the pair ω(1) and ω(2). We have the equation

δω(3) + dω(2) − ω(1) ∧ ω(2) + ω(2) ∧ ω(1) = 0.

Although the formal homology connection is not uniquely determined, we can
construct it inductively starting from the initial term

∑m
i=1 ωiXi . Here are some

examples. For details about the examples (1) and (3) we refer the reader to [15].

Examples : (1) Let T = S1 × S1 be the 2-dimensional torus. The de Rham
cohomology H∗(T ) has a basis represented by ω1, ω2, ω1 ∧ ω2 and we put X1, X2, Y
its dual basis of the homology. The formal homology connection is given as

ω = ω1 ⊗ X1 + ω2 ⊗ X2 + (ω1 ∧ ω2) ⊗ Y

with the derivation defined by

δ(X1) = 0, δ(X2) = 0, δ(Y ) = −[X1, X2].

(2) Let CPn denote the complex n-dimensional projective space. and τ the Kähler
form. For k = 0, 1, · · · , n the cohomology group H2k(CPn;R) is isomorphic to R
and has a basis [τk]. Let Xk denote the dual basis of [τk] in the homology group
H2k(CPn;R). We put

ω = τ ⊗ X1 + τ2 ⊗ X2 + · · · + τn ⊗ Xn

Then we have
κ = −ω ∧ ω = −

∑
i,j≥1

τ i+j ⊗ XiXj .

By defining

δX1 = 0

δXk =
∑

1≤i≤k−1

XiXk−i, 2 ≤ k ≤ n,

we get the condition δω + κ = 0. The above (ω, δ) is a formal homology connection
for CPn.
(3) Let G be the unipotent Lie group consisting of the matrices

g =

1 x z
0 1 y
0 0 1

 , x, y, z ∈ R

and GZ its subgroup consisting of the above matrices with x, y, z ∈ Z. We denote by
M the quotient space of G by the left action of GZ. We see that M has a structure
of a compact smooth 3-dimensional manifold. We put

ω1 = dx, ω2 = dy, ω12 = −xdy + dz.

We observe that H1(M) has a basis represented by ω1, ω2 and H2(M) has a basis
represented by ω1 ∧ ω12, ω2 ∧ ω12. These are typical examples of non-trivial Massey
product. We denote by X1, X2 ∈ H1(M) the dual basis of [ω1], [ω2] and by Y1, Y2 ∈
H2(M) the dual basis of [ω1 ∧ ω12], [ω2 ∧ ω12]. We obtain that the derivation δ is
given by

δ(X1) = 0, δ(X2) = 0, δ(Y1) = [[X1, X2], X1], δ(Y2) = [[X1, X2], X2].

In the above examples (1) and (2) the derivations δ are quadratic, which reflects
the fact that the corresponding spaces are formal. On the other hand in the example
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(3) there are non-trivial Massey products and the derivations are not quadratic.
We recall celebrated theorem of Deligne, Griffiths, Morgan and Sullivan [9] that a
compact Kähler manifold is formal. Consequently the derivation, for the formal
homology connection is quadratic in this case.

For the formal homology connection ω we define its transport by

T = 1 +
∞∑

k=1

∫
ω · · ·ω︸ ︷︷ ︸

k

which is considered to be an element of

Ω∗(P(M ;x0,x1)) ⊗ ̂TH+(M).

The following proposition plays a key role for the construction of higher holonomy
maps. For the proof we refer the reader to [15].

Proposition 3.1. Given a formal homology connection (ω, δ) for a manifold M the
transport T satisfies dT = δT.

4. Path groupoids, 2-path groupoids and their representations

In this section we recall the notion of path groupoids and 2-path groupoids. We
refer the reader to [1] for more details including the notion of 2-categories. Let us
recall that a groupoid is a category such that all the morphisms are invertible. In
particular, a groupoid with one object is nothing but a group. For a smooth manifold
M we define the path groupoid P1(M). For this purpose we introduce the notion
of a thin homotopy. We take x0,x1 ∈ M and let γ0 and γ1 be piecewise smooth
paths γi : [0, 1] → M , i = 0, 1, such that γi(0) = x0 and γi(1) = x1. We shall say
that the paths γ0 and γ1 are thin homotopic if there exists a piecewise smooth map
H : [0, 1]2 → M with

H(t, 0) = γ0(t), H(t, 1) = γ1(t), 0 ≤ t ≤ 1

H(0, s) = x0, H(1, s) = x1, 0 ≤ s ≤ 1.

satisfying rank dHp ≤ 1 for any p ∈ [0, 1]2 such that dHp is defined.
The path groupoid P1(M) is a category whose objects are points in M and

whose morphisms are piecewise smooth paths between points up to a thin homotopy.
Namely, for x0,x1 ∈ M the set of morphisms between them is

Hom(x0,x1) = P(M ;x0,x1)/ ∼
where the paths γ0, γ1 ∈ P(M ;x0,x1) satisfy the equivalence relation γ0 ∼ γ1 if and
only if the one is obtained from the other by a thin homotopy. We see that P1(M)
has a structure of a groupoid since there is an associativity and each morphism has
its inverse.

Now we explain the notion of 2-categories. In general, a 2-category consists of
objects, 1-morphisms and 2-morphisms, which are morphisms between morphisms.
There are two kinds of compositions for 2-morphisms, horizontal compositions and
vertical compositions and there are several coherency conditions among them. We
do not give here a full definition of a 2-category.

The path 2-groupoid P2(M) is a 2-category defined as follows. The objects are
points in M and the 1-morphisms are piecewise smooth paths between points up to
a thin homotopy. To define the 2-morphisms we consider a disc given by a piecewise
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smooth function F : [0, 1]2 → M spanning 2 paths γ0 and γ1 connecting x0 and x1.
Namely, we consider a piecewise smooth function F : [0, 1]2 → M with

F (t, 0) = γ0(t), F (t, 1) = γ1(t), 0 ≤ t ≤ 1,

F (0, s) = x0, F (1, s) = x1, 0 ≤ s ≤ 1.

Let F0 and F1 be piecewise smooth discs Fi : [0, 1]2 → M , i = 0, 1, spanning the
paths γ0 and γ1. We shall say that F0 and F1 are thin homotopic if there exists a
family of discs Fr : [0, 1]2 → M , 0 ≤ r ≤ 1, spanning the 2 paths γ0 and γ1 such
that the following conditions (1) and (2) are satisfied. We put G(t, s, r) = Fr(t, s).

(1) The function G(t, s, r) is piecewise smooth.
(2) rank dGp ≤ 2 for any p ∈ [0, 1]3 such that dGp is defined.

A 2-morphism between the paths γ0 and γ1 is a piecewise smooth disc F : [0, 1]2 → M
spanning the paths γ0 and γ1 considered up to thin homotopy. Putting c(s)(t) =
F (t, s), we obtain a family of paths

c : [0, 1] −→ P(M ;x0,x1).

We represent a 2-morphism beween the paths γ0 and γ1 as such family of paths.
Let γ0, γ1 and γ2 be piecewise smooth paths connecting x0 and x1. For a 2-

morphism c1 between γ0 and γ1 and a 2-morphism c2 between γ1 and γ2 we define
their vertical composition c2 · c1 by the family of paths given by

(c2 · c1)(s)(t) =

{
c1(2s)(t), 0 ≤ s ≤ 1

2

c2(2s − 1)(t), 1
2 ≤ s ≤ 1

as depicted in Figure 1.
For the 2-morphisms c1 and c2 respectively represented by the plots

α1 : I −→ P(M ;x0,x1), α2 : I −→ P(M ;x1,x2).

We define their horizontal composition c2 ◦ c1 by the composition of the plots α2α1.

c

c




c


c

.

f g f.g

c


c


c


c


Figure 1. vertical and horizontal compositions

We consider the homotopy equivalence classes of paths in the groupoid P1(M)
fixing the endpoints. We denote the set of such equivalence classes by Π1(M). We
see that Π1(M) has a structure of a groupoid and call it the homotopy path groupoid
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of M . In a similar way, we define the homotopy 2-groupoid Π2(M) by taking the
homotopy equivalence classes of discs fixing the boundary in the path 2-groupoid
P2(M).

Now we construct a representation of the path groupoid P1(M) by means of the
iterated integrals of a formal homology connection. Let ω be a formal homology
connection for M with the derivation δ. First, we consider the 1-form part of ω
which is denoted by ω(1). For a piecewise smooth path γ in M the holonomy of the
connection ω(1) is given the transport as

Hol(γ) = 〈T, γ〉 = 1 +
∞∑

k=1

∫
γ
ω(1) · · ·ω(1)︸ ︷︷ ︸

k

which is an element of ̂TH+(M)0. Let us notice that the iterated integrals are
independent of a thin homotopy of a path and that the above holonomy is well-
defined. For the composition of paths we have

Hol(αβ) = Hol(α)Hol(β)

by Proposition 2.1. Moreover, the relation

Hol(α−1) = Hol(α)−1

holds. Therefore, we obtain a representation of the path groupoid

Hol : P1(M) −→ ̂TH+(M)0.

We denote by ̂TH+(M)×0 the group of invertible elements in ̂TH+(M)0. The above
Hol is considered to be a functor from the path groupoid P1(M) to the group

̂TH+(M)×0 . Let us construct a representation of the homotopy path groupoid
Π1(M). We consider ̂TH+(M)1 as a 2-sided module over ̂TH+(M)0. Let I0 de-
note the 2-sided ideal of ̂TH+(M)1 generated by the image of the derivation

δ : ̂TH+(M)1 −→ ̂TH+(M)0.

We define the category HM (1) as follows. The set of objects of HM (1) consists of
one point and the set of morphisms consists of invertible elements in ̂TH+(M)0/I0.

Proposition 4.1. The above holonomy map induces a well-defined functor.

Hol : Π1(M) −→ HM (1)

Proof. We consider Hol as a function in γ ∈ P(M ;x0,x1). Then we have

dHol(γ) = 〈dT, γ〉 = 〈δT, γ〉

by Proposition 3.1. Hence we have dHol(γ) = 0 in ̂TH+(M)0/I0. This shows that
if γ0, γ1 ∈ P(M ;x0,x1) are connected by a homotopy fixing the endpoints x0,x1,
then we have Hol(γ0) = Hol(γ1) in ̂TH+(M)0/I0. This completes the proof. �

By fixing a base point x0 ∈ M we have the holonomy map

Hol : π1(M,x0) −→ ̂TH+(M)0/I0.

One of the main results due to K.-T. Chen is that the holonomy map induces an
isomorphism

̂Rπ1(M,x0) ∼= ̂TH+(M)0/I0
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where ̂Rπ1(M,x0) is the completion of the group ring Rπ1(M,x0) with respect to
the powers of the augmentation ideal. The algebra ̂Rπ1(M,x0) is called the Malcev
completion of the fundamental group π1(M,x0).

We consider a piecewise smooth 1-parameter family of paths

c : [0, 1] −→ P(M ;x0,x1),

as in the definition of the path 2-groupoid P2(M). We regard c as a 1-chain of
P(M ;x0,x1). For the formal homology connection we consider the transport

T = 1 +
∞∑

k=1

∫
ω · · ·ω︸ ︷︷ ︸

k

.

We regard its pullback c∗T = Tc an element of Ω∗(I) ⊗ ̂TH+(M). We denote by
〈T, c〉 the integration of the 1-form part of c∗T over the unit interval I. We define
the 2-holonomy

Hol2 : P2(M) −→ ̂TH+(M)1
by Hol2(c) = 〈T, c〉. The symbol 〈T, c〉 stands for the integration of the 1-form part
of T on the 1-chain c.

For the vertical composition of the 1-morphisms

α : I −→ P(M ;x0,x1), β : I −→ P(M ;x0,x1)

we have
Hol2(α · β) = Hol2(α) + Hol2(β)

since the left hand side is considered to be the integration of over the some of the
1-chains represented by α and β. The horizontal composition of the 1-morphisms

c1 : I −→ P(M ;x0,x1), c2 : I −→ P(M ;x1,x2)

the 2-holonomy is expressed as

Hol2(c2 ◦ c1) =
∫

Tc2 ∧ Tc1

by means of Proposition 2.1. We obtain that the 2-holonomy map Hol2 gives a
representation of the path 2-groupoid P2(M).

Theorem 4.1. The above 2-holonomy map gives a representation of the homotopy
2-groupoid

Hol2 : Π2(M) −→ ̂TH+(M)1/I1

where I1 is the ideal generated by the image of the derivation

δ : ̂TH+(M)2 −→ ̂TH+(M)1

Moreover, The 2-holonomy map satisfies

δHol2(c) = Hol(γ1) − Hol(γ0)

where c is a 2-morphism between γ0 and γ1.
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Proof. As is shown in the above argument we have a representation of the path
2-groupoid given by

Hol2 : P2(M) −→ ̂TH+(M)1.
Suppose that for paths γ0 and γ1 in P(M ;x0,x1) piecewise smooth discs Fj :
[0, 1]2 → M , j = 1, 2 with

Fj(t, 0) = γ0(t), Fj(t, 1) = γ1(t)

Fj(0, s) = x0, Fj(1, s) = x1,

are connected by a piecewise smooth homotopy preserving the above boundary con-
ditions. This gives homologous 1-chains c1 and c2 in P(M ;x0,x1) and there is a
2-chain y such that c1 − c2 = ∂y. We have

Hol2(c1) − Hol2(c2) = Hol2(∂y)

which is by definition 〈T, ∂y〉. By the Stokes theorem we have

〈T, ∂y〉 = 〈dT, y〉.
On the other hand we have dT = δT by Proposition 3.1. This shows that Hol2(c1) =
Hol2(c2) in ̂TH+(M)1/I1 and the 2-holonomy map from the homotopy 2-groupoid
Π2(M) is well-defined. The equality δHol2(c) = Hol(γ1) − Hol(γ0) follows from
Proposition 3.1 and the Stokes theorem. We refer the reader to [15] for details of
this part. �

We define the category HM (2) as follows. The objects of HM (2) consist of invert-
ible elements in ̂TH+(M)0. For invertible elements g1 and g2 in ̂TH+(M)0 the set
of morphisms from g1 to g2 is defined by

Hom(g1, g2) = {v ∈ ̂TH+(M)1/I1 | δ(v) = g2 − g1}.
The above theorem shows that Hol2 can be considered to be a functor sending a 2-
morpshim in the homotopy 2-groupoid Π2(M) to a morphism in the category HM (2).
We regard ̂TH+(M)1/I1 as a 2-sided module over ̂TH+(M)0. The derivation δ has
the compatibility

δ(X · v) = X · δ(v), δ(v · X) = δ(v) · X

for X ∈ ̂TH+(M)0 and v ∈ ̂TH+(M)1/I1. In this sense the pair ̂TH+(M)1/I1 and
̂TH+(M)0 together with the derivation

δ : ̂TH+(M)1/I1 −→ ̂TH+(M)0
has a structure of a crossed module.

5. 2-holonomy for the complement of hyperplane arrangements

We start by recalling basic facts on hyperplane arrangements. Let

A = {H1, · · · , H`}
be a collection of finite number of complex hyperplanes in Cn. We call A a hyper-
plane arrangement. Let fj , 1 ≤ j ≤ `, be linear forms dining the hyperplanes Hj .
We consider the complement

M(A) = Cn \
∪

H∈A
H

11



and denote by Ω∗(M(A)) the algebra of differential forms on M(A) with values in
C. The Orlik-Solomon algebra OS(A) is the subalgebra of Ω∗(M(A)) generated by
the logarithmic forms ωj = d log fj , 1 ≤ j ≤ `. We refer the reader to [18] for basic
properties of the Orlik-Solomon algebra. The fundamental fact is that the inclusion
map

i : OS(A) −→ Ω∗(M(A))
induces an isomorpshim of cohomology, where the differential on OS(A) is trivial.
In particular, we have an isomorpshims of algebras

OS(A) ∼= H∗(M(A);C).

A formal homology connection for M(A) is described as follows. Let {Zj} be a
basis of H+(M(A);C) and {ϕj} be its basis in the Orlik-Solomon algebra OS(A).
We define the derivation δ : ̂TH+(M(A))p −→ ̂TH+(M(A))p−1 as the dual of the
wedge product. More explicitly, when the wedge product is given by

ε(ϕi) ∧ ϕj =
∑

k

ck
ijϕk

the derivation δ is defined as

δZk =
∑
i,j

ck
ijZiZj .

We obtain the condition
ε(ω) ∧ ω = δ(ω)

by defining the derivation δ in the above way. Therefore, we have the following
theorem, which reflects the formality of M(A) (see [14] for details).

Theorem 5.1. For a complex hyperplane arrangement A a formal homology con-
nection for its complement M(A) is given by

ω =
m∑

j=1

ϕj ⊗ Zj

with the derivation δ : ̂TH+(M(A))p −→ ̂TH+(M(A))p−1 defined as the dual of the
wedge product.

Let us consider the derivation

δ : ̂TH+(M(A))1 −→ ̂TH+(M(A))0
and the ideal I0 generated by the image of δ. The ideal I0 has generators

[Xjp , Xj1 + · · · + Xjk
], 1 ≤ p < k,

for the maximal family of hyperplanes {Hj1 , · · · ,Hjk
} such that

codimC(Hj1 ∩ · · · ∩ Hjk
) = 2.

The primitive part of ̂TH+(M(A)) is call the holonomy Lie algebra for the arrange-
ment A. As is shown in [11] the holonomy Lie algebra is isomorphic to the nilpotent
completion of the fundamental group π1(M(A)) over C.

We consider the configuration space of ordered distinct n points in the complex
plane C given as

Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj if i 6= j}.

12



The configuration space Xn is the complement of the union of big diagonal hyper-
planes Hij defined by zi = zj in Cn for 1 ≤ i < j ≤ n. By considering the action of
the symmetric group Sn by the permutation of coordinates, we consider the quotient
space

Yn = Xn/Sn.

There is a covering map
π : Xn −→ Yn.

The fundamental group π1(Yn) is the braid group of n strings denoted by Bn and
π1(Xn) is the pure braid group of n strings denoted by Pn.

We set
ωij = d log(zi − zj), 1 ≤ i < j ≤ n.

Then the Orlik-Solomon algebra OS(Xn) is generated by ωij , 1 ≤ i < j ≤ n, with
the Arnold relations

(5.1) ωij ∧ ωjk + ωjk ∧ ωik + ωik ∧ ωij = 0, 1 ≤ i < j < k ≤ n.

It is known that the degree q part of OS(Xn) has a basis represented by

ωi1j1 ∧ · · · ∧ ωiqjq , j1 < · · · < jq.

This is called the normal form of a basis of OS(Xn). We denote by Xi1j1,··· ,iqjq its
dual basis of the homology Hq(Xn). The formal homology connection is given by

(5.2) ω =
∑

j1<···<jq ,1≤q≤n

(ωi1j1 ∧ · · · ∧ ωiqjq) ⊗ Xi1j1,··· ,iqjq .

Example: Let us describe the case n = 4, which will play an important role in the
following computation. In this case we have

dim H1(X4) = 6, dim H2(X4) = 11, dim H3(X4) = 6.

Let us denote by Aq the degree q part of the Orlik-Solomon algebra OS(X4). Then
A1 has a basis ωij , 1 ≤ i < j ≤ 4, and A2 has a basis ωij ∧ ωk`, i < j, k < `, j < `.
A basis of A3 is given by

ω12 ∧ ωi3 ∧ ωj4, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3

To describe the derivation

δ : ̂TH+(X4)2 −→ ̂TH+(X4)1
we need to determine the product structure ∧ : A1 × A2 −→ A3. In order to write
down this product in terms of the above basis we use the Arnold relation (5.1) in
the form

ωik ∧ ωjk = ωij ∧ ωjk − ωij ∧ ωik, i < j < k

successively. For example, we have

ω14 ∧ (ω23 ∧ ω34) =ω13 ∧ ω23 ∧ ω34 − ω13 ∧ ω23 ∧ ω14

= ω12 ∧ ω23 ∧ ω34 − ω12 ∧ ω13 ∧ ω34 − ω12 ∧ ω23 ∧ ω14 + ω12 ∧ ω13 ∧ ω14.

The 1-form part of the formal homology connection is

ω(1) =
∑
i<j

ωij ⊗ Xij

13



where Xij , 1 ≤ i < j ≤ n, is a basis of H1(Xn;C) corresponding to the hyperplanes
Hij . The representation of the path groupoid described in the previous section is
give as

Hol : P1(Xn) −→ C〈〈Xij〉〉
where C〈〈Xij〉〉 is the ring of non-cummutative formal power series with indetermi-
nates Xij , 1 ≤ i < j ≤ n. Let us describe the derivation

δ : ̂TH+(Xn)1 −→ ̂TH+(Xn)0.

For i, j, k such that 1 ≤ i < j < k ≤ n we have

δXij,ik = [Xik, Xij + Xjk], δXij,jk = [Xjk, Xij + Xik]

and for distinct i, j, k, ` we have

δXij,k` = −[Xij , Xk`].

Hence the ideal I0 is generated by the infinitesimal pure braid relations:

[Xik, Xij + Xjk], [Xij + Xik, Xjk] (i < j < k),

[Xij , Xk`], (i, j, k, ` distinct).

We obtain the representation of the homotopy path groupoid

Hol : Π1(Xn) −→ C〈〈Xij〉〉/I0.

In particular, we obtain the holonomy map

Hol : Pn −→ C〈〈Xij〉〉/I0

which is a prototype of the Kontsevich integral [16] for knots and gives a universal
finite type invariants for pure braids (see [12], [13] and [6]).

Here we explain a relation to the Knizhnik-Zamolodchikov (KZ) connection. Let
g be a complex semi-simple Lie algebra and {Iµ} an orthonormal basis of g with
respect to the Cartan-Killing form. We set Ω =

∑
µ Iµ ⊗ Iµ. Let ri : g → End(Vi),

1 ≤ i ≤ n, be representations of the Lie algebra g. We define Ωij to be the action of
Ω on the i-th and j-th components of the tensor product V1 ⊗ · · · ⊗ Vn by means of
the above representations ri, 1 ≤ i ≤ n. We put

ω =
1
κ

∑
i<j

Ωijd log(zi − zj),

where κ is a non-zero complex parameter. Then we have a representation of the
algebra

ρ : C〈〈Xij〉〉/I0 −→ End(V1 ⊗ · · · ⊗ Vn)
by defining ρ(Xij) = 1

κΩij . The above 1-form ω defines a flat connection for a trivial
vector bundle over the configuration space Xn with fiber V1 ⊗ · · · ⊗ Vn. This is
called the KZ connection. The holonomy map of the KZ connection gives linear
representation of the pure braid group Pn, wich was studied in [12].

We deal with the 1-form part and the 2-form part

ω(1) =
∑
i<j

ωij ⊗ Xij , ω(2) =
∑

j1<j2

(ωi1j1 ∧ ωi2j2) ⊗ Xi1j1,i2j2 .

From the condition δω + κ = 0 for the formal homology connection we obtain the
equation

δω(2) + ω(1) ∧ ω(1) = 0.
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Let us consider the derivation

δ : ̂TH+(Xn)2 −→ ̂TH+(Xn)1.

We express the 3-form part of the generalized curvature κ by the normal form of
a basis of OS(Xn) as

ω(1) ∧ ω(2) − ω(2) ∧ ω(1) =
∑

j1<j2<j3

(ωi1j1 ∧ ωi2j2 ∧ ωi3j3) ⊗ Zi1j1,i2j2,i3j3

Then we have
δ(Xi1j1,i2j2,i3j3) = −Zi1j1,i2j2,i3j3

and the ideal I1 is generated by Zi1j1,i2j2,i3j3 , which are expressed by Lie brackets
of Xij and Xi1j1,i2j2 . Let us describe explicitly these generators. First, we have

(5.3) [Xk`, Xi1j1,i2j2 ] for {k, `} ∩ {i1, j1, i2, j2} = ∅, k < `, i1 < j1, i2 < j2, j1 < j2

For i, j, k, ` such that 1 ≤ i < j < k < ` ≤ n we have the following generators.

[Xi`, Xij,ik + Xjk,k`] + [Xij + Xjk + Xj`, Xik,i`] − [Xik + Xk`, Xij,i`](5.4)

− [Xik + Xk`, Xjk,i`] + [Xik, Xij,k` − Xik,j`]

[Xj`, Xij,jk + Xik,k`] + [Xij + Xik + Xi`, Xjk,k`] − [Xjk + Xk`, Xij,j`](5.5)

+ [Xjk + Xj` + Xk`, Xik,j`] + [Xj`, Xij,k` − Xjk,i`]

− [Xjk, Xij,i` + Xik,i`] + [Xi`, Xjk,j` + Xjk,k` − Xij,jk](5.6)

+ [Xij + Xik + Xj` + Xk`, Xjk,i`]

− [Xik, Xij,i` + Xjk,j`] + [Xj`, Xik,i` + Xik,k` − Xij,ik](5.7)

+ [Xij + Xi` + Xjk + Xk`, Xik,j`]

[Xk`, Xij,ik + Xij,i`] + [Xij + Xjk + Xj`, Xik,k`] − [Xik + Xi`, Xjk,k`](5.8)

− [Xi`, Xij,k`] + [Xk`,−Xik,j` + Xjk,i`]

[Xk`, Xij,jk + Xij,j`] + [Xij + Xik + Xi`, Xjk,k`] − [Xjk + Xj`, Xik,k`](5.9)

− [Xjk + Xj`, Xij,k`] + [Xk`, Xik,j` − Xjk,i`]

Let us take a representation of the pair ̂TH+(Xn)1/I1 and ̂TH+(Xn)0 together
with the derivation

δ : ̂TH+(M)1/I1 −→ ̂TH+(M)0
as a crossed module. Namely, we consider the following. There is a representation

ρ : ̂TH+(Xn)0 −→ End(V )

as a complete algebra with some vector space V and a representation

ρ′ : ̂TH+(Xn)1/I1 −→ End(W )

as 2-sided modules, which means that there are right and left action of End(V ) on
End(W ) compatible with ρ and ρ′. We also assume that there is a linear map

τ : End(W ) −→ End(V )
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such that the condition ρ◦δ = τ ◦ρ′ holds. For X ∈ ̂TH+(Xn)0 and Y ∈ ̂TH+(Xn)1
we have

ρ′([X,Y ]) = ρ(X) · ρ′(Y ) − ρ′(Y ) · ρ(X)

which is denoted by [ρ(X), ρ′(Y )].
We set ρ(Xij) = Tij and ρ′(Xi1j1,i2j2) = Wi1j1,i2j2 . Let us consider the 1-form

part and the 2-form part

ω(1) =
∑
i<j

ωij ⊗ Xij , ω(2) =
∑

j1<j2

(ωi1j1 ∧ ωi2j2) ⊗ Xi1j1,i2j2 .

of the formal homology connection. Then the 1-form

A =
∑
i<j

ωijTij

with values in End(V ) and the 2-form

B =
∑

j1<j2

ωi1j1 ∧ ωi2j2 Wi1j1,i2j2

with values in End(W ) define a so-called 2-connection. They satisfy the the equation

τ(A) + B ∧ B = 0.

The pair A and B satisfy the 2-flatness condition in the sense that the 2-curvature
vanishes. Namely, we have

A ∧ B − B ∧ A = 0

where we use the right and left actions of End(V ) on End(W ) in the above equation.
This 2-flatness condition holds since we consider the representation ρ′ modulo the
ideal I1. This corresponds to the Lie bracket relations between Tij and Wi1j1,i2j2

derived from the equations (5.4)–(5.9).
Let us consider a representation ρ′ satisfying

ρ′(Xi1j1,i2j2) = 0

if {i1, j1} ∩ {i2, j2} = ∅. In this case the 2-form B is written as

B =
∑

i<j<k

(ωij ∧ ωik Wij,ik + ωij ∧ ωjk Wij,jk)

and the 2-flatness condition can be reduced to the following equations.

[Ti`, Wij,ik + Wjk,k`] + [Tij + Tjk + Tj`,Wik,i`] − [Tik + Tk`,Wij,i`] = 0

[Tj`,Wij,jk + Wik,k`] + [Tij + Tik + Ti`,Wjk,k`] − [Tjk + Tk`, Wij,j`] = 0

[Tjk,Wij,i` + Wik,i`] − [Ti`,Wjk,j` + Wjk,k` − Wij,jk] = 0

[Tik,Wij,i` + Wjk,j`] − [Tj`, Wik,i` + Wik,k` − Wij,ik] = 0

[Tk`,Wij,ik + Wij,i`] + [Tij + Tjk + Tj`,Wik,k`] − [Tik + Ti`,Wjk,k`] = 0

[Tk`,Wij,jk + Wij,j`] + [Tij + Tik + Ti`,Wjk,k`] − [Tjk + Tj`,Wik,k`] = 0

This recovers the 2-flatness condition described by Cirio and Martins in [7]. In [8]
they investigated the categorification of the KZ connection by means of 2-Yang-
Baxter operator for sl2(C) with Sn symmetry.
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It is shown in [14] that the complex ( ̂TH+(Xn)∗, δ) is acyclic. This means that
the homology group Hq( ̂TH+(Xn)∗) = 0 if q 6= 0. We have

H0( ̂TH+(Xn)∗) ∼= ̂TH+(Xn)0/I0.

It is well-known that the configuration space Xn is a K(π, 1) space and, in particular,
we have π2(Xn) = 0. Although, it is worthwhile to study the 2-holonomy map for
a representation of the category of braid cobordisms. First, we describe the notion
of the category of braid cobordisms. Let us recall that a braid is an embedding of
a 1-manifold which is a disjoint union of closed intervals into C × [0, 1] so that the
projection onto [0, 1] has no critical points, and the boundary of the 1-manifold is
mapped to 2n points

(1, 0), (2, 0), · · · , (n, 0), (1, 1), (2, 1), · · · , (n, 1) ∈ C × [0, 1].

The isotopy classes of braids fixing the boundary form the braid group Bn. A braid
cobordism between braids g and h is a compact surface S with boundary and corners,
smoothly and properly embedded in C × [0, 1]2, such that the following conditions
are satisfied.

(1) The boundary of S is the union of 1-manifolds

S ∩ (C × [0, 1] × {0}) = g,

S ∩ (C × [0, 1] × {1}) = h,

S ∩ (C × {0} × [0, 1]) = {1, 2, · · · , n} × {0} × [0, 1],

S ∩ (C × {1} × [0, 1]) = {1, 2, · · · , n} × {1} × [0, 1].

(2) The projection of S onto [0, 1]2 is a branched covering with simple branch points
only.

g

h

Figure 2. braid cobordism

An example of a braid cobordism is depicted in Figure 2. We shall say that two
braid cobordisms S and S′ between the braids g and h are equivalent if there is an
isotopy through braid cobordism between S and S′ relative to the boundary. Let
BCn be the category whose objects are braids with n-strands and whose morphisms
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are the equivalence classes of braid cobordisms. We define the composition of mor-
phisms in the following way. Let S1 be a braid cobordism between g and h and S2

be a braid cobordism between h and k. We define the composition S2S1 as the braid
cobordism given by the concatination of S1 and S2 along their common boundary
h. Let us notice that in BCn two isotopic braids are isomorphic, but not equal.
We equip BCn with a monoidal structure in the following way. Let S1 be a braid
cobordism from g1 to h1 and S2 be a braid cobordism from g2 to h2. We define a
braid cobordism S2 ◦S1 from g1g2 to h1h2 by identifying the top portion of ∂S1 and
the bottom portion of ∂S2. This monoidal structure is not strictly associative since
the braids g3(g2g1) and (g3g2)g1 are isotopic but not equal. A braid cobordism is
also called a braided surface (see [2] and [10]).

A braid cobordism can be described diagramatically by Carter and Saito’s braid
movie which is a one-parameter deformation family of singular braids with double
points (see [2]). To construct a representation of BCn based on the 2-holonomy
map for the configuration space Xn we consider the integration of the transport T
along the braid movie associated with a braid cobordism as shown in Figure 2. A
divergence for a braid with double points for such iterated integrals can be described
by a method similar to the one used by Le and Murakami [17]. Let us start with
a simple case. For a small positive number ε we consider the path γ given as the
segment connecting from 1 to ε on the real line. We consider the 1-form ω = dt

t . For
a parameter λ we consider the transport

T = 1 + λ

∫
γ
ω + · · · + λk

∫
γ
ω · · ·ω︸ ︷︷ ︸

k

+ · · ·

We have T = ελ = eλ log ε. This shows the asymptotic behavior of the above trans-
port when ε tends to 0. In particular, we have

(5.10)
∫

γ
ω · · ·ω︸ ︷︷ ︸

k

=
1
k!

(log ε)k.

We take n distinct points p1, · · · , pn with coordinate functions z1, · · · , zn. We con-
sider the open set U in Xn defined by |z1| < 1, |z2| < 1 and |zj | > 1 for j ≥ 3. We
put |z1 − z2| = ε and consider the situation when ε is sufficiently small. In this case
the equation (5.10) can be applied to estimate the asymptotics of the 2-holonomy
map when ε tends to 0 and we can regularize the 2-holonomy maps along braid
movies.
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