HIGHER HOLONOMY AND ITERATED INTEGRALS

TOSHITAKE KOHNO

Abstract

We develop a method to construct representations of the homotopy n-groupoid of a manifold as an n-category by means of K.-T. Chen's formal homology connections for any positive integer n. We establish a higher holonomy functor from the homotopy n-groupoid to a category obtained from the tensor algebra over the homology of the manifold.

1. Introduction

The purpose of this article is to give a systematic treatment of n-holonomy functors from the homotopy n-groupoid of a manifold by means of K.-T. Chen's formal homology connections for any positive integer n. The n-categories play an important role in higher gauge theory (see Baez and Huerta [2]). In particular, the 2-holonomy maps have been investigated in the framework of 2-connections with values in 2-Lie algebras and their generalization to higher holonomy has been studied by several authors (see [1] and [14]).

On the other hand, the notion of formal homology connections was developed by K.-T. Chen in the theory of iterated integrals of differential forms in order to describe the homology group of the loop space of a manifold M by the chain complex formed by the tensor algebra of the homology group of M (see [3] and [4]). We apply such method to construct n-holonomy functors. The case $n=2$ was described in the author's former works [11] and [12] and an essential idea contained in these articles. In this paper we develop a more general framework for any positive integer n.

We describe some historical background concerning these subjects. The notion of crossed modules which are closely related to 2-groups appeared in the work of J. H. C. Whitehead ([16] and [17]) in the study of homotopy 2-types of spaces. We should mention that there is important progress concerning the notion of ∞ groupoids developed by A. Grothendieck in "Pursuing Stacks" (see [13]).

We mention some motivations and related developments concerning higher holonomy functors. It is an important problem to construct a 2-category version of the Knizhnik-Zamolodchikov (KZ) connections. There is a work by L. S. Cirio and J. F. Martins [6] on the categorification of the KZ connections by means of 2-YangBaxter operators for $s l_{2}(\mathbf{C})$. An approach to such problems using iterated integrals was also developed in [12]. One of our aims is to apply such method to braided surfaces in 4 -space studied by S. Carter, S. Kamada and M. Saito (see [7], [9]). We investigated an application of 2-holonomy functors to a construction of representations of the 2-category of braid cobordisms (see [11]). Related to such problems, we discuss higher holonomy for the complement of a hyperplane arrangement in this paper.

The paper is organized in the following way. In Section 2 we briefly review K.T. Chen's iterated integrals and their basic properties. In particular, we recall
the formula for the composition of plots. In Section 3 we recall the notion of n fold homotopy and a globular category. In Section 4 we describe the notion of formal homology connections. We explain 2-connections and 2-curvatures in this framework. In Section 5 we review path n-groupoids and homotopy n-groupoids. In Section 6 we give a construction of higher holonomy functors based on K.-T. Chen's formal homology connections. Finally, we discuss the case of the complement of hyperplane arrangements in Section 7.

2. Preliminaries on K.-T. Chen's iterated integrals

First, we briefly recall the notion of iterated integrals of differential forms due to K.-T. Chen. We refer the reader to [3] and [4] for details. Let M be a smooth manifold and $\omega_{1}, \cdots, \omega_{k}$ be differential forms on M. We fix two points \mathbf{x}_{0} and \mathbf{x}_{1} in M and consider a smooth path $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=\mathbf{x}_{0}$ and $\gamma(1)=\mathbf{x}_{1}$. We suppose that for a sufficiently small ε such that $0<\varepsilon<1-\varepsilon<1$ we have $\gamma(t)=\mathbf{x}_{0}$ for $0 \leq t \leq \varepsilon$ and $\gamma(t)=\mathbf{x}_{1}$ for $1-\varepsilon \leq t \leq 1$. Namely, we assume that the path γ is constant in a neighborhood of $t=0$ and $t=1$. We denote by $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ the set of the smooth paths satisfying the above properties. The above assumption is needed to define the composition of smooth paths as a smooth path. It is also possible to give a formulation by piecewise smooth paths, but in this paper we adopt this convention.

In particular, in the case $\mathbf{x}_{0}=\mathbf{x}_{1}$ the path space $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is called the based loop space of M and is denoted by $\Omega_{\mathrm{x}_{0}} M$. In the following we suppose that the differential forms $\omega_{1}, \cdots, \omega_{k}$ are of positive degrees. We denote by

$$
p_{j}: \underbrace{M \times \cdots \times M}_{k} \longrightarrow M, 1 \leq j \leq k
$$

the projection to the j-th factor and set

$$
\omega_{1} \times \cdots \times \omega_{k}=p_{1}^{*} \omega_{1} \wedge \cdots \wedge p_{k}^{*} \omega_{k}
$$

We consider the simplex

$$
\Delta_{k}=\left\{\left(t_{1}, \cdots, t_{k}\right) \in \mathbf{R}^{k} ; 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\}
$$

and the evaluation map

$$
\varphi: \Delta_{k} \times \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) \rightarrow \underbrace{M \times \cdots \times M}_{k}
$$

defined by $\varphi\left(t_{1}, \cdots, t_{k} ; \gamma\right)=\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{k}\right)\right)$. The iterated integral of $\omega_{1}, \cdots, \omega_{k}$ is defined as

$$
\int \omega_{1} \cdots \omega_{k}=\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

where the expression

$$
\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

is the integration along the fiber with respect to the projection

$$
p: \Delta_{k} \times \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) .
$$

The above iterated integral is considered as a differential form on the path space $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ with the degree $q_{1}+\cdots+q_{k}-k$, where we set $q_{j}=\operatorname{deg} \omega_{j}$. In order to justify differential forms on the path space $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ we use the notion of
plots. A plot $\alpha: U \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ is a family of smooth paths in the above sense smoothly parametrized by a compact convex set U in a finite dimensional Euclidean space. Given a plot α we denote the corresponding iterated integral

$$
\left(\int \omega_{1} \cdots \omega_{k}\right)_{\alpha}
$$

as a differential form on U obtained by pulling back the iterated integral $\int \omega_{1} \cdots \omega_{k}$ by the plot α. Namely, the above expression stands for

$$
\int_{\Delta_{k}}((\mathrm{id} \times \alpha) \circ \varphi)^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

where we consider the integration along the fiber with respect to the projection $\Delta_{k} \times U \rightarrow U$. We denote by $\Omega^{*}\left(\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)\right)$ the set of such differential forms on the path space $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ obtained as iterated integrals of differential forms of positive degrees on M.

We take an extra point \mathbf{x}_{2} in M and consider the plots

$$
\alpha: U \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right), \quad \beta: U \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{1}, \mathbf{x}_{2}\right) .
$$

The composition of the plots α and β

$$
\alpha \beta: U \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{2}\right)
$$

is defined by

$$
\alpha \beta(x)(t)=\left\{\begin{array}{l}
\alpha(x)(2 t), \quad 0 \leq t \leq \frac{1}{2} \\
\beta(x)(2 t-1), \quad \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

for $x \in U$. As is shown by K.-T. Chen, we have the following rule for the composition of plots.

Proposition 2.1. The relation

$$
\left(\int \omega_{1} \cdots \omega_{k}\right)_{\alpha \beta}=\sum_{0 \leq i \leq k}\left(\int \omega_{1} \cdots \omega_{i}\right)_{\alpha} \wedge\left(\int \omega_{i+1} \cdots \omega_{k}\right)_{\beta}
$$

holds

For a path α we define its inverse path α^{-1} by

$$
\alpha^{-1}(t)=\alpha(1-t)
$$

For the composition $\alpha \alpha^{-1}$ we have

$$
\left(\int \omega_{1} \cdots \omega_{i}\right)_{\alpha \alpha^{-1}}=0
$$

As a differential form on the path space $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ we have the following.

Proposition 2.2. For the iterated integral $\int \omega_{1} \cdots \omega_{k}$ we have

$$
\begin{aligned}
& d \int \omega_{1} \cdots \omega_{k} \\
= & \sum_{j=1}^{k}(-1)^{\nu_{j-1}+1} \int \omega_{1} \cdots \omega_{j-1} d \omega_{j} \omega_{j+1} \cdots \omega_{k} \\
& +\sum_{j=1}^{k-1}(-1)^{\nu_{j}+1} \int \omega_{1} \cdots \omega_{j-1}\left(\omega_{j} \wedge \omega_{j+1}\right) \omega_{j+2} \cdots \omega_{k}
\end{aligned}
$$

where we put $\nu_{j}=\operatorname{deg} \omega_{1}+\cdots+\operatorname{deg} \omega_{j}-j$ for $j \geq 1$ and $\nu_{0}=0$.
Thus we obtain the complex $\Omega^{*}\left(\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)\right)$ with the differential

$$
d: \Omega^{q}\left(\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)\right) \longrightarrow \Omega^{q+1}\left(\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)\right)
$$

explicitly given as in Proposition 2.2.
Let σ be a permutation of $k+\ell$ letters $\{1,2, \cdots, k+\ell\}$. We say that σ is a (k, ℓ)-shuffle if

$$
\begin{aligned}
\sigma^{-1}(1) & <\cdots<\sigma^{-1}(k) \\
\sigma^{-1}(k+1) & <\cdots<\sigma^{-1}(k+\ell)
\end{aligned}
$$

holds. We denote by $S_{k, \ell}$ the set of (k, ℓ)-shuffles. Let $\omega_{1}, \cdots, \omega_{k+\ell}$ be differential forms on M. We put $\operatorname{deg} \omega_{j}=p_{j}, 1 \leq j \leq k+\ell$. For $\sigma \in S_{k, \ell}$ we have

$$
\omega_{\sigma(1)} \wedge \cdots \wedge \omega_{\sigma(k+\ell)}=\epsilon \omega_{1} \wedge \cdots \wedge \omega_{k+\ell}
$$

with $\epsilon= \pm 1$. We denote such ϵ by $\epsilon\left(\sigma ; p_{1}, \cdots, p_{k+\ell}\right)$. With this notation we have the following.

Proposition 2.3. The wedge product

$$
\left(\int \omega_{1} \cdots \omega_{k}\right) \wedge\left(\int \omega_{k+1} \cdots \omega_{k+\ell}\right)
$$

is expressed as

$$
\sum_{\sigma \in S_{k, \ell}} \epsilon\left(\sigma ; p_{1}-1, \cdots, p_{k+\ell}-1\right) \int \omega_{\sigma(1)} \cdots \omega_{\sigma(k+\ell)}
$$

3. Smooth homotopy and n-FOLD Smooth homotopy

Let $\gamma_{0}:[0,1] \rightarrow M$ and $\gamma_{1}:[0,1] \rightarrow M$ be smooth paths with $\gamma_{i}(0)=\mathbf{x}_{0}$ $\gamma_{i}(1)=\mathbf{x}_{1}$ for $i=0,1$ in the sense of the previous section. A smooth homotopy between γ_{0} and γ_{1} is a smooth map

$$
H:[0,1]^{2} \longrightarrow M
$$

such that the conditions

$$
\begin{aligned}
& H(0, s)=\mathbf{x}_{0}, H(1, s)=\mathbf{x}_{1} \\
& H(t, 0)=\gamma_{0}(t), H(t, 1)=\gamma_{1}(t)
\end{aligned}
$$

are satisfied. Here we suppose that $H(t, s)$ is constant in a neighborhood of $t=0$ and $t=1$ and that $H(t, s)$ is independent of s in a neighborhood of $s=0$ and $s=1$.

We denote the unit interval $[0,1]$ by I. Let D^{2} denote the 2-dimensional disc consisting of $\mathbf{x} \in \mathbf{R}^{2}$ with $\|\mathbf{x}\| \leq 1$. By means of the identification

$$
D^{2} \cong I^{2} /(\partial I) \times I
$$

we see that the above homotopy H factors through the quotient map $\pi: I^{2} \longrightarrow D^{2}$.
A smooth homotopy $H: I^{2} \rightarrow M$ is called a thin homotopy if it sweeps out a surface with zero area. More precisely, a thin homotopy is a smooth homotopy H such that the rank of the differential $d H_{p}$ is less than 2 at every point $p \in I^{2}$. If two smooth paths differ by a smooth reparametrization, they are thinly homotopic. For a smooth path γ the composite $\gamma^{-1} \gamma$ is thinly homotopic to the constant path.

We inductively define an n-fold smooth homotopy for $n \geq 2$. A 2-fold smooth homotopy $H: I^{2} \rightarrow M$ is a smooth homotopy between the paths γ_{0} and γ_{1} in the above sense. For $k \geq 2$ suppose that k-fold smooth homotopies $H_{0}, H_{1}: I^{k} \rightarrow M$ are defined. A $(k+1)$-fold smooth homotopy between H_{0} and H_{1} is a smooth map

$$
H: I^{k+1} \longrightarrow M
$$

such that the conditions

$$
H\left(t_{1}, \cdots, t_{k}, 0\right)=H_{0}\left(t_{1}, \cdots, t_{k}\right), H\left(t_{1}, \cdots, t_{k}, 1\right)=H_{1}\left(t_{1}, \cdots, t_{k}\right)
$$

are satisfied. Here we assume that H is constant in a neighborhood of $t_{1}=0$ and $t_{1}=1$ and that H is independent of t_{i} in a neighborhood of $t_{i}=0$ and $t_{i}=1$ for $2 \leq i \leq k+1$. An n-fold smooth homotopy $H: I^{n} \rightarrow M$ is called an n-fold thin homotopy if the rank of the differential $d H_{p}$ is less than n at every point $n \in I^{n}$.

We denote by D^{n} the n-dimensional disc defined by

$$
D^{n}=\left\{\mathbf{x} \in \mathbf{R}^{n} \mid\|\mathbf{x}\| \leq 1\right\}
$$

By means of the identification $D^{n} \cong I^{n} /\left(\partial I^{n-1}\right) \times I$ an n-fold smooth homotopy $H: I^{n} \rightarrow M$ factors through the quotient map $\pi: I^{n} \rightarrow D^{n}$. The map H defines an $(n-1)$-parameter family of smooth paths connecting \mathbf{x}_{0} and \mathbf{x}_{1} by putting

$$
\gamma_{t_{1} \cdots, t_{n-1}}(t)=H\left(t, t_{1}, \cdots, t_{n-1}\right)
$$

This gives a cubical $(n-1)$-chain of the path space $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ by defining

$$
c: I^{n-1} \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

as $c\left(t_{1}, \cdots, t_{n-1}\right)(t)=\gamma_{t_{1} \cdots, t_{n-1}}(t)$.
We define the inclusion maps σ_{i} and τ_{i} from D^{i-1} to D^{i} by

$$
\sigma_{i}(\mathbf{x})=\left(\mathbf{x},-\sqrt{1-\|\mathbf{x}\|^{2}}\right), \quad \tau_{i}(\mathbf{x})=\left(\mathbf{x},-\sqrt{1-\|\mathbf{x}\|^{2}}\right)
$$

for $i>0$. Here we set D^{0} a set consisting of one point p and define $\sigma_{1}(p)=$ $-1, \tau_{1}(p)=1$. The above n-fold smooth homotopy H is interpreted as a homotopy $H: D^{n} \rightarrow M$ between $H_{0}: \sigma_{n}\left(D^{n-1}\right) \rightarrow M$ and $H_{1}: \tau_{n}\left(D^{n-1}\right) \rightarrow M$.

The inclusion maps σ_{i} and $\tau_{i}, i>0$, satisfy the relations:

$$
\sigma_{i+1} \sigma_{i}=\tau_{i+1} \sigma_{i}, \quad \sigma_{i+1} \tau_{i}=\tau_{i+1} \tau_{i}
$$

For $i, j \geq 0$ with $i<j$ we set

$$
\sigma_{i}^{j}=\sigma_{j} \cdots \sigma_{i+2} \sigma_{i+1}, \quad \tau_{i}^{j}=\tau_{j} \cdots \tau_{i+2} \tau_{i+1}
$$

We define the category \mathbf{G} as follows. The set objects of \mathbf{G} consists of

$$
D^{0}, D^{1}, \cdots, D^{i}, \cdots
$$

and the set of morphisms is defined as

$$
\operatorname{Hom}_{\mathbf{G}}\left(D^{i}, D^{j}\right)=\left\{\begin{array}{l}
\left\{\sigma_{i}^{j}, \tau_{i}^{j}\right\} \quad \text { if } i<j, \\
\left\{1_{D_{i}}\right\} \text { if } i=j, \\
\emptyset \quad \text { otherwise }
\end{array}\right.
$$

The category \mathbf{G} is called a globular category.
The above map σ_{n} defined an n-fold smooth homotopy on $S^{n}=\partial D^{n+1}$ in the following way. By composing with the projection map $\pi: I^{n} \rightarrow I^{n} /\left(\partial I^{n-1}\right) \times I \cong$ D^{n}, we put $f_{n}=\pi \circ \sigma_{n}$. In a similar way we obtain an an n-fold smooth homotopy $g_{n}=\pi \circ \tau_{n}$. We observe that f_{n} and g_{n} are not $(n+1)$-fold homotopic. We will discuss this from the point of view of n-holonomy in the next sections.

4. Formal homology connections

Let M be a connected smooth manifold. We denote by $H_{q}(M ; \mathbf{R})$ the q-th homology group of M with coefficients in \mathbf{R}. We put

$$
H_{+}(M)=\bigoplus_{q>0} H_{q}(M ; \mathbf{R})
$$

and consider the tensor algebra

$$
T H_{+}(M)=\bigoplus_{k \geq 0}\left(\bigotimes^{k} H_{+}(M)\right) .
$$

In the following we suppose that $\operatorname{dim} H_{+}(M)$ is finite. We denote by $\Omega^{*}(M)$ the algebra of differential forms on M and consider the tensor product $\Omega^{*}(M) \otimes T H_{+}(M)$. We define $d: \Omega^{q}(M) \otimes T H_{+}(M) \longrightarrow \Omega^{q+1}(M) \otimes T H_{+}(M)$ by

$$
d(\omega \otimes X)=d \omega \otimes X, \omega \in \Omega^{*}(M), X \in T H_{+}(M ; \mathbf{R}) .
$$

When $H_{+}(M)$ has a basis X_{1}, \cdots, X_{m} as a vector space over \mathbf{R}, the algebra $\Omega^{*}(M) \otimes T H_{+}(M)$ is identified with the ring of non-commutative polynomials

$$
\Omega^{*}(M)\left[X_{1}, \cdots, X_{m}\right]
$$

over $\Omega^{*}(M)$. For $X_{i} \in H_{p_{i}}(M)$ we assign the degree of X_{i} as

$$
\operatorname{deg} X_{i}=p_{i}-1
$$

For the product of homogeneous elements we extend the degree of $X_{i_{1}} \cdots X_{i_{k}}$ as

$$
\operatorname{deg} X_{i_{1}} \cdots X_{i_{k}}=\sum_{p=1}^{k} \operatorname{deg} X_{i_{p}} .
$$

In this way we regard $T H_{+}(M)$ as a graded algebra. For homogeneous elements X, Y in $\Omega^{*}(M)\left[X_{1}, \cdots, X_{m}\right]$ we define the graded Lie bracket by

$$
[X, Y]=X Y-(-1)^{p q} Y X
$$

where $\operatorname{deg} X=p$ and $\operatorname{deg} Y=q$.
The augmentation map

$$
\epsilon: \mathbf{R}\left[X_{1}, \cdots, X_{m}\right] \longrightarrow \mathbf{R}
$$

is the homomorphism of algebras defined by $\epsilon\left(X_{k}\right)=0,1 \leq k \leq m$. We denote by J the kernel of the augmentation map ϵ, which is the 2-sided ideal of $T H_{+}(M)$
generated by X_{1}, \cdots, X_{m}. We consider the completion of $T H_{+}(M)$ with respect to the powers of the augmentation ideal as

$$
T \widehat{H_{+}(M)}=\lim _{\leftarrow} T H_{+}(M) / J^{k} .
$$

The tensor product $\Omega^{*}(M) \otimes T \widehat{H_{+}(M)}$ is identified with the ring of non-commutative formal power series

$$
\Omega^{*}(M)\left\langle\left\langle X_{1}, \cdots, X_{m}\right\rangle\right\rangle
$$

over $\Omega^{*}(M)$. We denote by $\left.T \widehat{H_{+}(M)}\right)_{q}$ the degree q part of $T \widehat{H_{+}(M)}$ with respect to the above degrees.

For a differential form ω we define the parity operator ε as $\varepsilon(\omega)=\omega$ when ω is of even degree and $\varepsilon(\omega)=-\omega$ when ω is of odd degree. For $\omega \otimes X \in \Omega^{*}(M) \otimes T \widehat{H_{+}(M)}$ we set $\varepsilon(\omega \otimes X)=\omega \otimes X$ if ω is a differential form of even degree and $\varepsilon(\omega \otimes X)=$ $-\omega \otimes X$ if ω is a differential form of odd degree. Extending the above map linearly we obtain the operator ε on $\Omega^{*}(M) \otimes T \widehat{H_{+}(M)}$.

We extend the wedge product and iterated integrals on $\Omega^{*}(M) \otimes T \widehat{H_{+}(M)}$ as

$$
\begin{aligned}
& (\omega \otimes X) \wedge(\varphi \otimes Y)=(\omega \wedge \varphi) \otimes X Y, \\
& \int\left(\varphi_{1} \otimes Z_{1}\right) \cdots\left(\varphi_{k} \otimes Z_{k}\right)=\left(\int \varphi_{1} \cdots \varphi_{k}\right) \otimes Z_{1} \cdots Z_{k} .
\end{aligned}
$$

We say that a linear map

$$
\delta: T \widehat{H_{+}(M)_{q}} \longrightarrow T \widehat{H_{+}(M)_{q-1}}
$$

is a derivation of degree -1 if it satisfies the Leibniz rule

$$
\delta(u v)=(\delta u) v+(-1)^{\operatorname{deg} u} u(\delta v) .
$$

Following K.-T. Chen [3], we recall the definition of a formal homology connection. A formal homology connection

$$
\omega \in \Omega^{*}(M) \otimes T \widehat{H_{+}(M)}
$$

is by definition an expression written as

$$
\omega=\sum_{i=1}^{m} \omega_{i} X_{i}+\cdots+\sum_{i_{1} \cdots i_{k}} \omega_{i_{1} \cdots i_{k}} X_{i_{1}} \cdots X_{i_{k}}+\cdots
$$

with differential forms of positive degrees $\omega_{i_{1} \cdots i_{k}}$ satisfying the following properties.

- $\left[\omega_{i}\right], 1 \leq i \leq m$, is a dual basis of $X_{i}, 1 \leq i \leq m$.
- $\delta \omega+d \omega-\varepsilon(\omega) \wedge \omega=0$.
- $\operatorname{deg} \omega_{i_{1} \cdots i_{k}}=\operatorname{deg} X_{i_{1}} \cdots X_{i_{k}}+1$
- δ is a derivation of degree -1 .
- $\delta X_{j} \in \widehat{J}^{2}$ where \widehat{J} is the augmentation ideal of $T \widehat{H_{+}(M)}$.

For a formal homology connection ω we define the generalized curvature κ by

$$
\kappa=d \omega-\varepsilon(\omega) \wedge \omega .
$$

From the above conditions it can be shown that $\delta \circ \delta=0$ and $\left(\widehat{H_{+}(M)}, \delta\right)$ forms a complex. The formal homology connection can be written in the sum

$$
\omega=\omega^{(1)}+\omega^{(2)}+\cdots+\omega^{(p)}+\cdots
$$

with the p-form part

$$
\omega^{(p)} \in \Omega^{p}(M) \otimes T \widehat{H_{+}(M)_{p-1}} .
$$

The 2 -form part of κ is written as

$$
\kappa^{(2)}=d \omega^{(1)}+\omega^{(1)} \wedge \omega^{(1)}
$$

which coincides with the usual curvature form for $\omega^{(1)}$. From the equation $\delta \omega+\kappa=0$ we have the equation

$$
\delta \omega^{(2)}+d \omega^{(1)}+\omega^{(1)} \wedge \omega^{(1)}=0 .
$$

Although the formal homology connection is not uniquely determined, we can construct it inductively starting from the initial term $\sum_{i=1}^{m} \omega_{i} X_{i}$. We refer the readers to [4] for details about the construction of a formal homology connections. Here are some examples.
Examples: (1) Let $\mathbf{C} P^{n}$ denote the complex n-dimensional projective space. and τ the Kähler form. For $k=0,1, \cdots, n$ the cohomology group $H_{2 k}\left(\mathbf{C} P^{n} ; \mathbf{R}\right)$ is isomorphic to \mathbf{R} and has a basis $\left[\tau^{k}\right]$. Let X_{k} denote the dual basis of $\left[\tau^{k}\right]$ in the homology group $H_{2 k}\left(\mathbf{C} P^{n} ; \mathbf{R}\right)$. We put

$$
\omega=\tau \otimes X_{1}+\tau^{2} \otimes X_{2}+\cdots+\tau^{n} \otimes X_{n}
$$

Then we have

$$
\kappa=-\omega \wedge \omega=-\sum_{i, j \geq 1} \tau^{i+j} \otimes X_{i} X_{j} .
$$

By defining

$$
\begin{aligned}
& \delta X_{1}=0 \\
& \delta X_{k}=\sum_{1 \leq i \leq k-1} X_{i} X_{k-i}, \quad 2 \leq k \leq n,
\end{aligned}
$$

we get the condition $\delta \omega+\kappa=0$. The above (ω, δ) is a formal homology connection for $\mathbf{C} P^{n}$.
(2) Let G be the unipotent Lie group consisting of the matrices

$$
g=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right), \quad x, y, z \in \mathbf{R}
$$

and $G_{\mathbf{Z}}$ its subgroup consisting of the above matrices with $x, y, z \in \mathbf{Z}$. We denote by M the quotient space of G by the left action of $G_{\mathbf{Z}}$. We see that M has a structure of a compact smooth 3 -dimensional manifold. We put

$$
\omega_{1}=d x, \omega_{2}=d y, \omega_{12}=-x d y+d z .
$$

We observe that $H^{1}(M)$ has a basis represented by ω_{1}, ω_{2} and $H^{2}(M)$ has a basis represented by $\omega_{1} \wedge \omega_{12}, \omega_{2} \wedge \omega_{12}$. These are typical examples of non-trivial Massey product. We denote by $X_{1}, X_{2} \in H_{1}(M)$ the dual basis of [ω_{1}], ω_{2}] and by $Y_{1}, Y_{2} \in$ $H_{2}(M)$ the dual basis of $\left[\omega_{1} \wedge \omega_{12}\right],\left[\omega_{2} \wedge \omega_{12}\right]$. We obtain that the derivation δ is given by

$$
\delta\left(X_{1}\right)=0, \delta\left(X_{2}\right)=0, \delta\left(Y_{1}\right)=\left[\left[X_{1}, X_{2}\right], X_{1}\right], \delta\left(Y_{2}\right)=\left[\left[X_{1}, X_{2}\right], X_{2}\right] .
$$

In the above example (1) the derivations δ are quadratic, which reflects the fact that the corresponding spaces are formal. On the other hand in the example (2) there are non-trivial Massey products and the derivations are not quadratic. We recall
celebrated theorem of Deligne, Griffiths, Morgan and Sullivan [8] that a compact Kähler manifold is formal. Consequently, the derivation for the formal homology connection is quadratic in this case.

For the formal homology connection ω we define its transport by

$$
T=1+\sum_{k=1}^{\infty} \int \underbrace{\omega \cdots \omega}_{k} .
$$

The following proposition plays a key role for the construction of higher holonomy functors.

Proposition 4.1. Given a formal homology connection (ω, δ) for a manifold M the transport T satisfies $d T=\delta T$.

Proof. By Proposition 2.2 we have

$$
\begin{aligned}
d T & =-\int \kappa+\left(-\int \kappa \omega+\int \varepsilon(\omega) \kappa\right)+\cdots \\
& =\sum_{k=0}^{\infty} \sum_{i=0}^{k}(-1)^{i+1} \int \underbrace{\varepsilon(\omega) \cdots \varepsilon(\omega)}_{i} \kappa \underbrace{\omega \cdots \omega}_{k-i-1} .
\end{aligned}
$$

Substituting $\kappa=-\delta \omega$ in the above equation and applying the Leibniz rule for δ, we obtain the equation $d T=\delta T$.

5. Path n-groupoids and homotopy n-Groupoids

First we recall the notion of path groupoids and path 2-groupoids. We refer the reader to [2] for more details including the notion of 2-categories. A groupoid is a category such that all the morphisms are invertible. For a connected smooth manifold M we define the path groupoid $\mathcal{P}_{1}(M)$. We take $\mathbf{x}_{0}, \mathbf{x}_{1} \in M$ and let γ_{0} and γ_{1} be smooth paths $\gamma_{i}:[0,1] \rightarrow M, i=0,1$, such that $\gamma_{i}(0)=\mathbf{x}_{0}$ and $\gamma_{i}(1)=\mathbf{x}_{1}$.

The path groupoid $\mathcal{P}_{1}(M)$ is a category whose objects are points in M and whose morphisms are smooth paths between points up to a thin homotopy in the sense of Section 3. Namely, for $\mathbf{x}_{0}, \mathbf{x}_{1} \in M$ the set of morphisms between them is

$$
\operatorname{Hom}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)=\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) / \sim
$$

where the paths $\gamma_{0}, \gamma_{1} \in \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ satisfy the equivalence relation $\gamma_{0} \sim \gamma_{1}$ if and only if the one is obtained from the other by a thin homotopy. We denote by $1_{\mathbf{x}}$ the thin homotopy class of the constant path at \mathbf{x}. We observe that in $\mathcal{P}_{1}(M)$ the composition of morphisms is associative and there exists an identity morphism $1_{\mathbf{x}}$. Each morphism γ has its inverse γ^{-1}. Therefore $\mathcal{P}_{1}(M)$ has a structure of a groupoid.

The homotopy path groupoid $\Pi_{1}(M)$ is defined as follows. The set objects of $\Pi_{1}(M)$ consists of points in M and the set of morphisms between two points \mathbf{x}_{0} and \mathbf{x}_{1} consists of smooth homotopy classes of smooth paths connecting \mathbf{x}_{0} and \mathbf{x}_{1}. We see that $\Pi_{1}(M)$ has a structure of a groupoid and call it the homotopy path groupoid of M. We also call $\Pi_{1}(M)$ the fundamental groupoid of M.

Now we explain the notion of 2-categories. In general, a 2-category consists of objects, 1-morphisms and 2 -morphisms, which are morphisms between morphisms. There are two kinds of compositions for 2-morphisms, horizontal compositions and vertical compositions and there are several coherency conditions among them.

The path 2-groupoid $\mathcal{P}_{2}(M)$ is a 2-category defined as follows. The objects are points in M and the 1 -morphisms are smooth paths between points up to a thin homotopy. A 2 -morphism between the thin homotopy classes of paths γ_{0} and γ_{1} is a smooth homotopy $H:[0,1]^{2} \rightarrow M$ spanning the paths γ_{0} and γ_{1} considered up to a 3 -fold thin homotopy in the sense of Section 3. Putting $c(s)(t)=H(t, s)$, we obtain a family of paths

$$
c:[0,1] \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) .
$$

We represent a 2-morphism between the paths γ_{0} and γ_{1} as such family of paths.

Figure 1. vertical and horizontal compositions
Let γ_{0}, γ_{1} and γ_{2} be smooth paths connecting \mathbf{x}_{0} and \mathbf{x}_{1}. For a 2 -morphism c_{1} between γ_{0} and γ_{1} and a 2-morphism c_{2} between γ_{1} and γ_{2} we define their vertical composition $c_{2} \cdot c_{1}$ by the family of paths given by

$$
\left(c_{2} \cdot c_{1}\right)(s)(t)=\left\{\begin{array}{l}
c_{1}(2 s)(t), 0 \leq s \leq \frac{1}{2} \\
c_{2}(2 s-1)(t), \frac{1}{2} \leq s \leq 1
\end{array}\right.
$$

as depicted in Figure 1. For the 2-morphisms c_{1} and c_{2} respectively represented by the plots

$$
\alpha_{1}: I \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right), \quad \alpha_{2}: I \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{1}, \mathbf{x}_{2}\right) .
$$

We define their horizontal composition $c_{2} \circ c_{1}$ by the composition of the plots $\alpha_{2} \alpha_{1}$. The vertical and horizontal compositions of 2-morphisms obey the interchange law

$$
\left(c_{2}^{\prime} \cdot c_{2}\right) \circ\left(c_{1}^{\prime} \cdot c_{1}\right)=\left(c_{2}^{\prime} \circ c_{1}^{\prime}\right) \cdot\left(c_{2} \circ c_{1}\right)
$$

We define the homotopy 2 -groupoid $\Pi_{2}(M)$ in the following way. The objects consist of points in M and and the 1-morphisms are smooth paths between points up to a thin homotopy. A 2-morphism between the thin homotopy classes of paths γ_{0} and γ_{1} is a smooth homotopy $H:[0,1]^{2} \rightarrow M$ spanning the paths γ_{0} and γ_{1} considered up to a 3 -fold homotopy in the sense of Section 3. The homotopy 2groupoid $\Pi_{2}(M)$ is also called the fundamental 2-groupoid of M.

We define the path n-groupoid $\mathcal{P}_{n}(M)$ and the homotopy n-groupoid $\Pi_{n}(M)$ for any $n \geq 1$ in the following way. First, we define the path n-groupoid $\mathcal{P}_{n}(M)$. The objects consist of points in M the 1-morphisms are smooth paths between points
up to a thin homotopy. For $2 \leq k \leq n$ the k-morphisms are inductively defined as follows. Given $(k-1)$-morphisms represented by $(k-1)$-fold smooth homotopies $f, g:[0,1]^{k-1} \rightarrow M$ the k-morphisms from f to g are k-fold smooth homotopies $H:[0,1]^{k} \rightarrow M$ connecting f and g up to a $(k+1)$-fold thin homotopy. To define the homotopy n-groupoid $\Pi_{n}(M)$ we only modify the set of n-morphisms. Namely, the objects and k morphisms of $\Pi_{n}(M)$ for $1 \leq k \leq n-1$ are identical to those of $\mathcal{P}_{n}(M)$. Given $(n-1)$-morphisms represented by $(n-1)$-fold smooth homotopies $f, g:[0,1]^{n-1} \rightarrow M$ the n-morphisms from f to g are n-fold smooth homotopies $H:[0,1]^{n} \rightarrow M$ connecting f and g up to an $(n+1)$-fold smooth homotopy.

6. Higher holonomy functors

Now we construct a representation of the path groupoid $\mathcal{P}_{1}(M)$ by means of the iterated integrals of a formal homology connection. Let ω be a formal homology connection for M with the derivation δ. First, we consider the 1 -form part of ω which is denoted by $\omega^{(1)}$. For a smooth path γ in M the holonomy of the connection $\omega^{(1)}$ is given the transport as

$$
\operatorname{Hol}(\gamma)=\langle T, \gamma\rangle=1+\sum_{k=1}^{\infty} \int_{\gamma} \underbrace{\omega^{(1)} \cdots \omega^{(1)}}_{k}
$$

which is an element of $\left.T \widehat{H_{+}(M)}\right)_{0}$. Let us notice that the iterated integrals are independent of a thin homotopy of a path and that the above holonomy is welldefined. For the composition of paths we have

$$
\operatorname{Hol}(\alpha \beta)=\operatorname{Hol}(\alpha) \operatorname{Hol}(\beta)
$$

by Proposition 2.1. Moreover, the relation

$$
\operatorname{Hol}\left(\alpha^{-1}\right)=\operatorname{Hol}(\alpha)^{-1}
$$

holds. Therefore, we obtain a representation of the path groupoid

$$
\text { Hol } \left.: \mathcal{P}_{1}(M) \longrightarrow T \widehat{H_{+}(M)}\right)_{0} .
$$

We denote by $T \widehat{H_{+}(M)_{0}^{\times}}$the group of invertible elements in $T \widehat{H_{+}(M)_{0}}$. The above $H o l$ is considered to be a functor from the path groupoid $\mathcal{P}_{1}(M)$ to the group $T \widehat{H_{+}(M)_{0}^{\times}}$. Let us construct a representation of the homotopy path groupoid $\Pi_{1}(M)$. We consider $T \widehat{H_{+}(M)_{1}}$ as a 2 -sided module over $\left.T \widehat{H_{+}(M}\right)_{0}$. Let \mathcal{I}_{0} denote the 2 -sided ideal of $T \widehat{H_{+}(M)_{1}}$ generated by the image of the derivation

$$
\left.\left.\delta: T \widehat{H_{+}(M)}\right)_{1} \longrightarrow T \widehat{H_{+}(M)}\right)_{0} .
$$

Proposition 6.1. The above holonomy map induces a well-defined functor.

$$
\mathrm{Hol}: \Pi_{1}(M) \longrightarrow T \widehat{H_{+}(M)_{0}^{\times}}
$$

Proof. We consider $H o l$ as a function in $\gamma \in \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$. Then we have

$$
d \operatorname{Hol}(\gamma)=\langle d T, \gamma\rangle=\langle\delta T, \gamma\rangle
$$

by Proposition 4.1. Hence we have $d \operatorname{Hol}(\gamma)=0$ in $\left.T \widehat{H_{+}(M}\right)_{0} / \mathcal{I}_{0}$. This shows that if $\gamma_{0}, \gamma_{1} \in \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ are connected by a homotopy fixing the endpoints $\mathbf{x}_{0}, \mathbf{x}_{1}$, then we have $\operatorname{Hol}\left(\gamma_{0}\right)=\operatorname{Hol}\left(\gamma_{1}\right)$ in $\left.T \widehat{H_{+}(M}\right)_{0} / \mathcal{I}_{0}$. This completes the proof.

Let $\gamma_{0}:[0,1] \rightarrow M$ and $\gamma_{1}:[0,1] \rightarrow M$ be smooth paths with $\gamma_{i}(0)=\mathbf{x}_{0}$ $\gamma_{i}(1)=\mathbf{x}_{1}$ for $i=0,1$. For a smooth homotopy between γ_{0} and γ_{1} denoted by

$$
H:[0,1]^{2} \longrightarrow M
$$

we consider the associated 1-chain

$$
c:[0,1] \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) .
$$

For the formal homology connection we consider the transport

$$
T=1+\sum_{k=1}^{\infty} \int \underbrace{\omega \cdots \omega}_{k} .
$$

We regard its pullback $c^{*} T=T_{c}$ an element of $\Omega^{*}(I) \otimes T \widehat{H_{+}(M)}$. We denote by $\langle T, c\rangle$ the integration of the 1 -form part of $c^{*} T$ over the unit interval I. We define the 2-holonomy

$$
\mathrm{Hol}: \mathcal{P}_{2}(M) \longrightarrow T \widehat{H_{+}(M)_{1}}
$$

by $\operatorname{Hol}(c)=\langle T, c\rangle$. The symbol $\langle T, c\rangle$ stands for the integration of the 1 -form part of T on the 1-chain c.

For the vertical composition of the 1-morphisms

$$
\alpha: I \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right), \quad \beta: I \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

we have

$$
\operatorname{Hol}(\alpha \cdot \beta)=\operatorname{Hol}(\alpha)+\operatorname{Hol}(\beta)
$$

since the left hand side is considered to be the integration of over the some of the 1 -chains represented by α and β. The horizontal composition of the 1 -morphisms

$$
c_{1}: I \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right), \quad c_{2}: I \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

the 2-holonomy is expressed as

$$
\operatorname{Hol}\left(c_{2} \circ c_{1}\right)=\int T_{c_{2}} \wedge T_{c_{1}}
$$

by means of Proposition 2.1.
For $n \geq 2$ we set

$$
\left.T \widehat{H_{+}(M)}\right)_{\leq n-1}=\bigoplus_{0 \leq k \leq n-1} T \widehat{H_{+}(M)_{k}}
$$

and introduce an n-category as follows. The set of objects consists of one point. The 1-morphisms are elements of $T \widehat{H_{+}(M)} \times$. For $g_{1}, g_{2} \in T \widehat{H_{+}(M)}{ }_{0}^{\times}$the set of 2-morphisms from g_{1} to g_{2} is defined as

$$
\operatorname{Hom}\left(g_{1}, g_{2}\right)=\left\{v \in T \widehat{H_{+}(M)_{1}} \mid \delta(v)=g_{2}-g_{1}\right\} .
$$

We define the set of k-morphisms for $2 \leq k \leq n$ inductively as follows. For $(k-1)$ morphisms $\left.f_{1}, f_{2} \in T \widehat{H_{+}(M)}\right)_{k-2}$ we define the set of k-morphisms from f_{1} to f_{2} as

$$
\operatorname{Hom}\left(f_{1}, f_{2}\right)=\left\{v \in T \widehat{H_{+}(M)_{k-1}} \mid \delta(v)=f_{2}-f_{1}\right\} .
$$

We regard $T \widehat{H_{+}(M)_{k}}$ as a 2 -sided module over $\left.T \widehat{H_{+}(M)}\right)_{0}$.
Now we construct a higher holonomy functor from the path n-groupoid $\mathcal{P}_{n}(M)$ to $T \widehat{H_{+}(M)}{ }_{\leq n-1}$ as follows. For k such that $2 \leq k \leq n$ let f be a k-morphism
in $\mathcal{P}_{n}(M)$ represented by a k-fold homotopy $H: I^{k} \longrightarrow M$ and we consider the associated $(k-1)$ chain

$$
c_{f}: I^{k-1} \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

For the transport T we consider its pullback $c_{f}^{*} T$ as an element of $\Omega^{*}\left(I^{k-1}\right) \otimes$ $T \widehat{H_{+}(M)}$. We denote by $\left\langle T, c_{f}\right\rangle$ the integration of the $(k-1)$-form part of $c_{f}^{*} T$ over I^{k-1}. For the above k-morphism f we define its k-holonomy by $\operatorname{Hol}(f)=\left\langle T, c_{f}\right\rangle$.

To define the n-holonomy functor for the homotopy n-groupoid $\Pi_{n}(M)$ we modify the target of the n-holonomy functor as follows. Using the derivation

$$
\left.\delta_{n}: T \widehat{H_{+}(M)_{n}} \longrightarrow T \widehat{H_{+}(M}\right)_{n-1}
$$

we consider the two sided ideal in $\left.T \widehat{H_{+}(M}\right)_{n-1}$ generated by the image of δ_{n} as a module over $\left.T \widehat{H_{+}(M}\right)_{0}$ and denote it by \mathcal{I}_{n-1}. The holonomy functor is defined as

$$
\text { Hol } \left.: \Pi_{n}(M) \longrightarrow T \widehat{H_{+}(M}\right)_{\leq n-1} / \mathcal{I}_{n-1}
$$

by means of the integration of the transport over the associated chain of $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ as in the case of $\mathcal{P}_{n}(M)$.

Theorem 6.1. The above construction gives a well-defined functor

$$
\mathrm{Hol}: \Pi_{n}(M) \longrightarrow T \widehat{H_{+}(M)_{\leq n-1}} \mathcal{I}_{n-1}
$$

For a k-morphism f between $(k-1)$-morphisms between g_{0} and g_{1} we have

$$
\delta H o l(f)=\operatorname{Hol}\left(g_{1}\right)-\operatorname{Hol}\left(g_{0}\right)
$$

Proof. For a be a k-morphism f in $\mathcal{P}_{n}(M)$ represented by a k-fold homotopy H : $I^{k} \rightarrow M, \operatorname{Hol}(f)$ is defined as $\left\langle T, c_{f}\right\rangle$ where c_{f} is the $(k-1)$-chain

$$
c_{f}: I^{k-1} \longrightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

associated with f and T is the transport of the formal homology connection. Since the iterated integrals are invariant under smooth thin homotopy $\operatorname{Hol}(f)$ is welldefined for f in $\mathcal{P}_{n}(M)$. Let us consider the case of $\Pi_{n}(M)$. We suppose that there is an ($n+1$)-fold smooth homotopy $H: I^{n+1} \rightarrow M$ between n-fold smooth homotopies f_{0} and f_{1}. Let c_{0} and c_{1} denote the associated $(n-1)$-chains of $\mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$. We notice that these $(n-1)$-chains factor through $D^{n-1} \cong I^{n-1} /\left(\partial I^{n-2}\right) \times I$. The $(n+1)$-fold smooth homotopy H gives an n-chain $y: I^{n} \rightarrow \mathcal{P}\left(M ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ such that $c_{1}-c_{0}=\partial y$. We have

$$
H o l\left(c_{1}\right)-H o l\left(c_{0}\right)=\operatorname{Hol}(\partial y)
$$

which is by definition $\langle T, \partial y\rangle$. By the Stokes theorem we have

$$
\langle T, \partial y\rangle=\langle d T, y\rangle
$$

On the other hand we have $d T=\delta T$ by Proposition 4.1. This shows that $\operatorname{Hol}\left(c_{0}\right)=$ $\operatorname{Hol}\left(c_{1}\right)$ in $T \widehat{H_{+}(M)_{n-1}} / \mathcal{I}_{n-1}$ and the n-holonomy functor from the homotopy n groupoid $\Pi_{n}(M)$ is well-defined. We have

$$
\delta H o l(c)=\langle\delta T, c\rangle .
$$

By using the equality $d T=\delta T$ and the Stokes theorem we obtain that

$$
\delta H o l(c)=\operatorname{Hol}\left(g_{1}\right)-\operatorname{Hol}\left(g_{0}\right)
$$

holds. This shows that for an n-morpshism c in $\Pi_{n}(M), \operatorname{Hol}(c)$ is an n-morphism as well. This completes the proof.

Example : Let us consider the case $M=S^{n}$ with $n \geq 2$. As we observed at the end of Section 3 there are n-fold smooth homotopies f_{n} and g_{n} on S^{n}. The formal homology connection is given by $\omega=\nu \otimes X$ where ν is the standard volume form of S^{n} and X is the fundamental homology class in $H_{n}\left(S^{n} ; \mathbf{R}\right)$. We denote by c_{1} and c_{2} the ($n-1$)-chains in $\mathcal{P}\left(S^{n} ; \mathbf{x}_{0}, \mathbf{x}_{1}\right)$ corresponding to f_{n} and g_{n} respectively. We see that $z=c_{1}-c_{2}$ is a $(n-1)$-cycle representing a basis of $H_{n-1}\left(\mathcal{P}\left(S^{n} ; \mathbf{x}_{0}, \mathbf{x}_{1}\right) ; \mathbf{R}\right) \cong \mathbf{R}$. Applying the n-holonomy functor, we have

$$
\operatorname{Hol}\left(f_{n}\right)-\operatorname{Hol}\left(g_{n}\right)=\left\langle T, c_{1}\right\rangle-\left\langle T, c_{2}\right\rangle=\langle T, z\rangle,
$$

which is equal to the volume of S^{n}. This confirms that $\operatorname{Hol}\left(f_{n}\right) \neq \operatorname{Hol}\left(g_{n}\right)$ and that $\operatorname{Hol}\left(f_{n}\right)$ and $\operatorname{Hol}\left(g_{n}\right)$ are not $(n+1)$-fold homotopic.

7. Higher holonomy for hyperplane arrangements

We start by recalling basic facts on hyperplane arrangements. Let

$$
\mathcal{A}=\left\{H_{1}, \cdots, H_{\ell}\right\}
$$

be a collection of finite number of complex hyperplanes in \mathbf{C}^{n}. We call \mathcal{A} a hyperplane arrangement. Let $f_{j}, 1 \leq j \leq \ell$, be linear forms defining the hyperplanes H_{j}. We consider the complement

$$
M(\mathcal{A})=\mathbf{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H
$$

and denote by $\Omega^{*}(M(\mathcal{A}))$ the algebra of differential forms on $M(\mathcal{A})$ with values in C. The Orlik-Solomon algebra $O S(\mathcal{A})$ is the subalgebra of $\Omega^{*}(M(\mathcal{A}))$ generated by the logarithmic forms $\omega_{j}=d \log f_{j}, 1 \leq j \leq \ell$. We refer the reader to [15] for basic properties of the Orlik-Solomon algebra. It is known that there is an isomorphism of algebras

$$
O S(\mathcal{A}) \cong H^{*}(M(\mathcal{A}) ; \mathbf{C})
$$

Let $\left\{Z_{j}\right\}$ be a basis of $H_{+}(M(\mathcal{A}) ; \mathbf{C})$ and $\left\{\varphi_{j}\right\}$ be its basis in the Orlik-Solomon algebra $O S(\mathcal{A})$. A formal homology connection for $M(\mathcal{A})$ is given by

$$
\omega=\sum_{j=1}^{m} \varphi_{j} \otimes Z_{j}
$$

with the derivation described as follows. We define

$$
\delta: T \widehat{H_{+}(M(\mathcal{A}))_{p}} \longrightarrow T \widehat{H_{+}(M(\mathcal{A}))_{p-1}}
$$

as the dual of the wedge product. More explicitly, when the wedge product is given by

$$
\varepsilon\left(\varphi_{i}\right) \wedge \varphi_{j}=\sum_{k} c_{i j}^{k} \varphi_{k}
$$

the derivation δ is defined as

$$
\delta Z_{k}=\sum_{i, j} c_{i j}^{k} Z_{i} Z_{j} .
$$

We obtain the condition

$$
\varepsilon(\omega) \wedge \omega=\delta(\omega)
$$

by defining the derivation δ in the above way (see [10] and [12]).
In the following we consider a typical example where we have non-trivial higher holonomies. Let $L_{j}, 1 \leq j \leq 3$, be complex lines in general position in \mathbf{C}^{2} and consider the complement $M=\mathbf{C}^{2} \backslash\left(L_{1} \cup L_{2} \cup L_{3}\right)$. Let ω_{j} be the logarithmic form associated with $L_{j}, 1 \leq j \leq 3$. The formal homology connection is of the form

$$
\omega=\omega_{1} \otimes X_{1}+\omega_{2} \otimes X_{2}+\omega_{3} \otimes X_{3}+\sum_{1 \leq i<j \leq 3}\left(\omega_{i} \wedge \omega_{j}\right) \otimes X_{i j}
$$

with the derivation defined by

$$
\delta\left(X_{j}\right)=0,1 \leq j \leq 3, \quad \delta\left(X_{i j}\right)=-\left[X_{i}, X_{j}\right], 1 \leq i<j \leq 3
$$

It can be shown that M has a homotopy type of the 2 -skeleton of the 3 -torus T^{3}. The fundamental group $\pi_{1}(M, *)$ is isomorphic to the rank 3 free abelian group $\mathbf{Z}^{\oplus 3}$. We observe the cell decomposition: 0 -cell e^{0}, 1 -cells $e_{j}^{1}, 1 \leq j \leq 3,2$-cells $e_{i j}^{2}$, $1 \leq i<j \leq 3$. The boundary of the 2 -cells is described as

$$
\partial e_{i j}^{2}=\left[e_{i}^{1}, e_{j}^{1}\right], 1 \leq i<j \leq 3
$$

where $[g, h]$ denotes the path $g h g^{-1} h^{-1}$. The universal covering of M has a homotopy type of the union of the planes in \mathbf{R}^{3} given by $x=\ell y=m, z=n$ where ℓ, m and n are arbitrary integers. We observe that the second homotopy group $\pi_{2}(M)$ is isomorphic to the group ring $\mathbf{Z}\left[\mathbf{Z}^{\oplus 3}\right]$. There is a smooth homotopy f between the paths $e_{1}^{1} e_{2}^{1}$ and $e_{2}^{1} e_{1}^{1}$. In a similar way, we have a smooth homotopy between the paths $e_{1}^{1} e_{2}^{1} e_{3}^{1}$ and $e_{2}^{1} e_{1}^{1} e_{3}^{1}$. We see that f and g are not 3 -fold homotopy equivalent. This can be confirmed by comparing the terms containing X_{12} of the 2-holonomies $\operatorname{Hol}(f)$ and $\operatorname{Hol}(g)$.

Acknowledgment : The author is partially supported by Grant-in-Aid for Scientific Research, KAKENHI 16H03931, Japan Society of Promotion of Science and by World Premier Research Center Initiative, MEXT, Japan.

References

[1] C. Arias Abad, F. Schätz, Higher holonomies: comparing two constructions, arXiv:1404.0729.
[2] J. C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Relativity Gravitation 43 (2011), 2335-2392.
[3] K. -T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973), 217-246.
[4] K. -T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879.
[5] L. S. Cirio and J. F. Martins, Categorifying the Knizhnik-Zamolodchikov connection, Differential Geom. Appl. 30 (2012), 238-261.
[6] L. S. Cirio and J. F. Martins, Categorifying the $\mathfrak{s l}(2 ; \mathbb{C})$ Knizhnik-Zamolodchikov connection via an infinitesimal 2-Yang-Baxter operator in the string Lie-2-Algebra, Adv. Theor. Math. Phys. 21 (2017), 147-229.
[7] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, AMS, 1998.
[8] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.
[9] S. Kamada, Braid and knot theory in dimension 4, Math. Surv. and Mon. 95, AMS 2002.
[10] T. Kohno, Bar Complex of the Orlik-Solomon algebra, Topology Appl. 118 (2002), 147-157.
[11] T. Kohno, Higher holonomy maps of formal homology connections and braid cobordisms, J. Knot Theory Ramifications 26 (2016), 1642007-1-14.
[12] T. Kohno, Higher holonomy maps for hyperplane arrangements, Eur J. of Math. DOI 10.1007/s40879-019-00382-z
[13] G. Maltsiniotis, La théorie de l'homotopie de Grothendieck, Astérisque, 301, Soc. Math. France, 2005.
[14] J. F. Martins and R. Picken, Surface holonomy for non-abelian 2-bundles via double groupoids, Adv. in Math, 226 (2011), 3309 - 3366.
[15] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer Verlag, 1992.
[16] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213-245.
[17] J. H. C. Whitehead, Combinatorial homotopy. II, Bull. Amer. Math. Soc. 55 (1949), 453-496.
Kavli IPMU, Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 Japan

Email address: kohno@ms.u-tokyo.ac.jp

