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Abstract. We show that the bar complex of the configuration space of ordered
distinct points in the complex plane is acyclic. The 0-dimensional cohomology of
this bar complex is identified with the space of finite type invariants for braids.
We construct a universal holonomy homomorpshim from the braid group to the
space of horizontal chord diagrams over Q, which provides finite type invariants
for braids with values in Q.

1. Introduction

The purpose of this paper is to present some refinements of the author’s work on
configuration spaces and finite type invariants for braid groups developed in [9] and
[10].

Let Mn be the configuration space of ordered distinct n points in the complex
plane C and A be the Orlik-Solomon algebra, which is the subalgebra of the algebra
of differential forms on Mn generated by the logarithmic forms

ωij =
1

2π
√
−1

d log(zi − zj), 1 ≤ i < j ≤ n.

Let B∗(A) be the bar complex of the Orlik-Solomon algebra. There is an acyclicity
of the bar complex B∗(A). Namely, the vanishing of the cohomology Hj(B∗(A)) = 0
holds for j 6= 0. The 0-dimensional cohomology H0(B∗(A)) is identified with the
space of finite type invariants for the pure braid group. It turns out that this space
is isomorphic to the dual of the space of horizontal chord diagrams with n vertical
strands. This isomorphism is derived from a universal holonomy map defined by
Chen’s iterated integrals from the braid group to the completion of the space of
horizontal chord diagrams. This is a prototype of the Kontsevich integral for knots
appearing in [12]. In the preceding articles [9], [10], we described this holonomy map
over C since it is defined by the iterated integral of the above logarithmic forms. In
this article we focus on invariants derived from a universal holonomy homomorphism
of braid groups defined by means of a rational Drinfel’d associator and we shall show
the above isomorphisms over Q.

The paper is organized in the following way. In Section 2 we recall basic facts
about the bar complex of the Orlik-Solomon algebra for a hyperplane arrangement
based on [11]. In Section 3 we show the acyclicity of the bar complex for the
configuration space Mn. Section 4 is devoted to a relation between the 0-dimensional
cohomology of the above bar complex and the space of finite type invariants for
braids. In Section 5 we construct a universal holonomy map over Q by means of
a rational Drinfel’d associator. In Section 6 we describe some consequence of the
Cohen-Gitler theorem on the structure of the loop space of the configutation space
of points in Rm, m ≥ 3, in relation with the above results for finite type invariants.
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2. Bar complex of the Orlik-Solomon algebra

This section is devoted to preliminaries on hyperplane arrangements and some
properties of the bar complex of the Orlik-Solomon algebra. We refer the reader to
[11] for a more detailed description.

Let {Hj}, 1 ≤ j ≤ r, be a family of complex hyperplanes in Cm and fj be a linear
form defining the hyperplane Hj . We consider the logarithmic differential forms

ωj =
1

2π
√
−1

dfj

fj
, 1 ≤ j ≤ r.

Let M be the complement of the hyperplanes

M = Cm \
∪

1≤j≤r

Hj

and we denote by E∗(M) the de Rham complex of differential forms with values in
C. The Orlik-Solomon algebra A is the Z subalgebra of E∗(M) generated by the
logarithmic forms ωj , 1 ≤ j ≤ r. The algebra A is isomorphic to the cohomology
ring H∗(M ;Z). We shall say that a subset {Hi1 , · · ·Hip} of the set of hyperplanes
{H1, · · ·Hr} is dependent if the condition

codimC[Hi1 ∩ · · · ∩ Hip ] < p

is satisfied. It is shown by Orlik-Solomon [14] that the algebra A is isomorphic to
the exterior algebra generated by ej , 1 ≤ j ≤ r, with relations

p∑
s=1

(−1)s−1ei1 ∧ · · · ∧ êis ∧ · · · ∧ eip = 0

for any dependent family {Hi1 , · · ·Hip}.
Following Chen [3] we briefly recall the definition of the bar complex of the de

Rham complex E∗(M). We denote by E∗−1(M) the differential graded algebra whose
degree j part is given by Ej+1(M) if j > 0 and by E1(M)/dE0(M) if j = 0. The
tensor algebra TE∗−1(M) is equipped with the structure of a graded algebra. We
set

B−k,p(M) =

[
k⊗

E∗−1(M)

]p−k

where the right hand side stands for the degree p − k part.
For a differential q form ϕ we set Jϕ = (−1)qϕ. The differential d′ : B−k,p(M) −→

B−k,p+1(M) is defined by

d′(ϕ1 ⊗ · · · ⊗ ϕk) =
k∑

i=1

(−1)i Jϕ1 ⊗ · · · ⊗ Jϕi−1 ⊗ dϕi ⊗ ϕi+1 ⊗ · · · ⊗ ϕk

and the differential d′′ : B−k,p(M) −→ B−k+1,p(M) is defined by

d′′(ϕ1 ⊗ · · · ⊗ ϕk)

=
k∑

i=1

(−1)i−1 Jϕ1 ⊗ · · · ⊗ Jϕi−1 ⊗ [(Jϕi) ∧ ϕi+1] ⊗ ϕi+2 ⊗ · · · ⊗ ϕk.

With the above differentials d′ and d′′ the direct sum ⊕k,pB
−k,p(M) has a structure

of a double complex. The associated total complex is denoted by B∗(M) and is called
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the bar complex of the de Rham complex of M . Restricting the above construction
to the Orlik-Solomon algebra A, we obtain the double complex ⊕k,pB

−k,p(A) whose
associated total complex B∗(A) is called the bar complex of the Orlik-Solomon
algebra. Let us notice that d′ = 0 on B∗(A). There is an isomorphism of algebras

H∗(B∗(A)) ⊗ C ∼= H∗(B∗(M)).

We denote by H∗−1(M ;Z) the graded module whose degree j part is Hj+1(M ;Z)
if j ≥ 0 and is defined to be 0 if j < 0. Let us consider the tensor algebra
TH∗−1(M ;Z) with the structure of the graded algebra. Let 1 and ω1, · · · , ωm be
a basis of the Orlik-Solomon algebra A as a Z module and X1, · · · , Xm be its dual
basis of H∗−1(M ;Z).

A derivation δ on TH∗−1(M ;Z) is a Z linear endomorphism of degree −1 with
δ ◦ δ = 0 such that

δ(uv) = (δu)v + (−1)deg uu(δv)

for any homogeneous elements u, v ∈ TH∗−1(M ;Z). We define a derivation δ on
TH∗−1(M ;Z) in the following way. When the wedge product on the Orlik-Solomon
algebra is written as ωi ∧ ωj =

∑
k ck

ijωk, c
k
ij ∈ Z, 1 ≤ i < j ≤ m, we define δ by

δXk = −
∑

k

(−1)pick
ij [Xi, Xj ]

if deg Xk > 0 and by δXk = 0 if deg Xk = 0. Here the Lie bracket is taken in a
graded sense and deg Xi = pi − 1. It can be shown that the bar complex B∗(A) and
the complex TH∗−1(M ;Z) with the derivation δ are dual to each other.

3. Acyclicity of the bar complex

For a space X we denote by Confn(X) the configuration space of ordered distinct
n points in X defined by

Confn(X) = {(x1, · · ·xn) ∈ Xn ; xi 6= xj if i 6= j}.

In this section we deal with the configuration space Confn(C), which is also denoted
by Mn.

The following vanishing holds for the cohomology of the bar complex of the Orlik-
Solomon algebra for the configuration space Mn.

Theorem 3.1. Let A be the Orlik-Solomon algebra for Mn. Then, we have

Hj(B∗(A)) ∼= 0, j 6= 0.

Proof. Let p : Mn+1 −→ Mn be the projection map on the last n coordinates and F
be its fiber. It has a structure of a fiber bundle and the fundamental group of the
base space acts trivially on the homology of a fiber. The only non-trivial differential
in the Serre spectral sequence is

d2 : E2
p+1,0 −→ E2

p−1,1.

There is a long exact sequence

−→ Hp+1(Mn+1) −→ Hp+1(Mn) ∼= E2
p+1,0 −→ E2

p−1,1

−→ Hp(Mn+1) −→ · · ·
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Since the fibration p : Mn+1 −→ Mn admits a section σ : Mn −→ Mn+1 such that
p ◦ σ = id we obtain an exact sequence

0 −→ Hp−1(Mn) ⊗ H1(F ) −→ Hp(Mn+1) −→ Hp(Mn) −→ 0.

It follows that there is an isomorphism

H∗(Mn+1) ∼= H∗(Mn) ⊗ H∗(F ).

Since H∗−1(F ) has only degree 0 elements we have Hj(TH∗−1(F )) = 0 for j 6= 0.
Now by an inductive argument it can be shown that Hj(TH∗−1(Mn+1)) = 0 for
j 6= 0. Hence by duality we have Hj(B∗(A)) ∼= 0, j 6= 0. This completes the
proof. ¤

The above vanishing theorem can be generalized in a similar way to fiber-type
arrangements in the sense of Falk and Randell [8]. This type of acyclicity of the bar
complex was first noticed by Aomoto [1] in the case of an example of a fiber-type
arrangement.

4. Finite type invariants

Let K be a field. We recall the notion of finite type invariants for braids. First,
let us consider the diagram of a singular braid with finitely many transverse double
points as shown in Figure 1. We replace the double points p1, · · · , pk by positive
or negative crossings according as εj = ±1 and we denote by βε1···εk

the obtained
braid. For a function v : Bn −→ K we define its extension on singular braids with
transverse double points by

(4.1) ṽ(β) =
∑

εj=±1,1≤j≤k

ε1 · · · εk v(βε1···εk
).

There is an increasing sequence of singular braids

Bn ⊂ S1(Bn) ⊂ · · · ⊂ Sk(Bn) ⊂ · · ·

where Sk(Bn) is the set of singular n-braids with at most k transverse double points.
We shall say that v is of finite type of order k if and only if its extension ṽ vanishes
on Sm(Bn) for m > k. We denote by Vk(Bn)K the space of order k invariants for
Bn with values in K. There is an increasing sequence of vector spaces.

V0(Bn)K ⊂ V1(Bn)K ⊂ · · · ⊂ Vk(Bn)K ⊂ · · ·

We set V (Bn)K =
∪

k≥0 Vk(Bn)K and call it the space of finite type invariants for
Bn with values in K. In a similar way we define V (Pn)K, the space of finite type
invariants for the pure braid group Pn with values in K.

For the bar complex there is a filtration defined by

F−kB∗(A) =
⊕
q≤k

B−q,p(A), k = 0, 1, 2, · · ·

This induces a filtration F−kH0(B∗(A)), k ≥ 0, on the cohomology of the bar
complex.

For 1-forms ϕ1, · · ·ϕk and a loop γ in Mn we define the iterated integral by∫
γ
ϕ1 · · ·ϕk =

∫
0≤t1≤···≤tk≤1

f1(t1) · · · fk(tk) dt1 · · · dtk
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Figure 1. A singluar braid with double points

where fj(t)dt is the pull back γ∗ϕk. The above iterated integral defines a map

ι : H0(B∗(A)) −→ Hom(ZPn,K).

Theorem 4.1. Let A be the Orlik-Solomon algebra for the configuration space Mn =
Confn(C). The iterated integral map ι gives the isomopshisms

F−kH0(B∗(A)) ⊗ K ∼= Vk(Pn)K,

H0(B∗(A)) ⊗ K ∼= V (Pn)K.

Proof. The iterated integral map induces

ι : F−kH0(B∗(A)) −→ Hom(ZPn/Jk+1,K)

where J is the augumentation ideal of the group ring ZPn. By a theorem of Chen [3]
for fundamental groups we see that the above map ι is an isomorphism. It follows
from the definition of order k invariants that there is an isomorphim

Hom(ZPn/Jk+1,K) ∼= Vk(Pn)K.

This completes the proof. ¤

5. Drinfel’d associator and holonomy of braid groups

We denote by An the algebra over Z generated by Xij , 1 ≤ i 6= j ≤ n, with the
relations :

Xij = Xji(5.1)

[Xik, Xij + Xjk] = 0 i, j, k distinct,(5.2)

[Xij , Xk`] = 0 i, j, k, ` distinct.(5.3)

We assign to each Xij degree 1 and put the structure of a graded algebra on An. We
denote by An,k the degree k part of An. A basis of An,k is represented by a chord
diagram with n vertical strands and k horizontal chords. The relation (5.2) is shown
graphically as in Figure 2. There is a direct sum decomposition An = ⊕k≥0An,k.
The algebra Ân is defined to be the direct product

Ân =
∏
k≥0

An,k.

The algebra An has a natural structure of a graded Hopf algebra and is called the
algebra of horizontal chord diagrams on n vertical strands.

Let ZSn denote the group algebra of the symmetric group Sn over Z. We define
the semi-direct product An o ZSn by the relation

Xij · σ = σ · Xσ(i)σ(j)
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X X X X
ikik jkjk

Figure 2. 4 term relation

for σ ∈ Sn. We equip AnoZSn the structure of a graded algebra so that deg Xij = 1
and deg x = 0 for x ∈ ZSn

We define the operation of doubling the i-th vertical strand

∆i : An −→ An+1

by the correspondence

Xi,j 7→ Xi,j+1 + Xi+1,j+1, i < j

Xk,i 7→ Xk,i + Xk,i+1, k < i

Xp,q 7→ Xp,q, p < q < i

Xp,q 7→ Xp+1,q+1, i < p < q.

This map is extended in a natural way to

∆i : An o ZSn −→ An+1 o ZSn.

The map εi : An −→ An−1, 1 ≤ i ≤ n, is defined by setting εi(X) to be repre-
sented by the chord diagram obtained by deleting the i-th vertical strand if there is
no horizontal chord on the i-th vertical strand in X ∈ An and to be 0 otherwise.

The symbol tij ∈ Sn stands for the permutation of i-th and j-th letters. The
element R ∈ (Â2 ⊗ Q) o ZS2 is defined by

R = t12 exp
(

1
2
X12

)
.

A Drinfel’d associator Φ is an element of Â3⊗C satisfying the following properties.
• (strong invertibility)

ε1(Φ) = ε2(Φ) = ε3(Φ) = 1

• (skew symmetry)
Φ−1 = t13 · Φ · t13

• (pentagon relation)

(Φ ⊗ id) · (∆2Φ) · (id ⊗ Φ) = (∆1Φ) · (∆3Φ) in Â4 ⊗ C.

• (hexagon relation)

Φ · (∆2R) · Φ = (R ⊗ id) · Φ · (id ⊗ R)

The original Drinfel’d associator was introduced in [6] for the purpose of describing
the monodromy representation of the KZ equation. It is an element in the ring of
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non-commutative formal power series C[[X,Y ]] describing a relation of the solutions
G0(z) and G1(z) of the differential equation

(5.4) G′(z) =
(

X

z
+

Y

z − 1

)
G(z)

with the asymptotic behavior

G0(z) ∼ zX , z −→ 0

G1(z) ∼ (1 − z)Y , z −→ 1.

We set
G0(z) = G1(z)ΦKZ(X,Y )

and it can be shown that ΦKZ(X12, X23) satisfies the above properties for an asso-
ciator.

In [7] Drinfel’d shows that there exists an associator with coefficients in Q. Bar-
Natan [2] gave an algorithm to construct such rational Drinfel’d associator. An
explicit rational associator up to degree 4 terms is of the form

Φ(X,Y ) = 1 − ζ(2)
(2πi)2

[X,Y ]

− ζ(4)
(2πi)4

[X, [X, [X,Y ]]] − ζ(4)
(2πi)4

[Y, [Y, [X,Y ]]]

− ζ(3, 1)
(2πi)4

[X, [Y, [X,Y ]]] +
1
2

ζ(2)2

(2πi)4
[X,Y ]2 + · · ·

with X = X12, Y = X23, where ζ(2) = π2/6, ζ(4) = π4/90 and ζ(3, 1) = π4/360.
We set

Rj,j+1 = tj,j+1 exp
(

1
2
Xj,j+1

)
.

We adapt a construction of the universal Vassiliev-Kontsevich invariant for tangles
due to Le and Murakami [13] to the case of braids and obtain the following theorem.

Theorem 5.1. For the generators σj, 1 ≤ j ≤ n − 1, of the braid group Bn we put

Θ(σj) = Φj · Rj,j+1 · Φ−1
j , 1 ≤ j ≤ n − 1.

Here Φj is defined by means of a rational Drinfel’d associator by the formulae

Φj = Φ

(
j−1∑
i=1

Xij , Xj,j+1

)
, j > 1

and Φ1 = 1. Then, Θ defines an injective homomorphism

Θ : Bn −→ (Ân ⊗ Q) o ZSn.

Proof. The fact that Θ is a homomorphism is directly derived by computation based
on pentagon and hexagon relations in the definition of a Drinfel’d associator. Now
the kernel of

Θk : ZPn −→
⊕
`≤k

An,` ⊗ Q
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is equal to Jk+1, where J is the augmentation ideal ZPn. It is known that the pure
braid group Pn is residually torsion free nilpotent. Namely, we have∩

k≥0

Jk+1 = {0}.

We refer the reader to [8] and [9] for this fact. The injectivity of Θ follows immedi-
ately. This completes the proof. ¤

The map Θ is called a universal holonomy homomorphism of the braid group
over Q. The expressions of Θ and Φj in the above theorem come from partial
compactifications of the configuration space Mn with normal crossing divisors.

Theorem 5.2. We have the following isomorpshisms for finite type invariants over
the field of rational numbers.

Vk(Pn)Q/Vk−1(Pn)Q ∼= Hom(An,k,Q),

Vk(Bn)Q/Vk−1(Bn)Q ∼= Hom(An,k o ZSn,Q).

Proof. For an element X in An,k we contract its horizontal chords to obtain a dia-
gram β for a singular pure braid with transverse double points. Given v ∈ Vk(Pn)Q
we define w(v)(β) by

w(v)(β) =
∑

εj=±1,1≤j≤k

ε1 · · · εk v(βε1···εk
)

as in the formula (4.1). This defines a homomorphism w : Vk(Pn)Q −→ Hom(An,k,Q).
It follows from the definition of order k invriants that Kerw = Vk−1(Pn)Q. The ho-
momorphsim w induces a map

ŵ : V (Pn)Q −→ Hom(Ân,Q).

An element in Hom(Ân,Q) is called a weight system for a horizontal chord diagram.
Given such weight system α and γ ∈ Pn we define v(γ) to be the rational number
obtained by applying α to Θ(γ) in the previous theorem. This construction gives
an inverse of the map ŵ and it follows that there is an isomorphism V (Pn)Q ∼=
Hom(Ân,Q), which induces the isomorphism Vk(Pn)Q/Vk−1(Pn)Q ∼= Hom(An,k,Q).
This isomorpshim is extended to Vk(Bn)Q/Vk−1(Bn)Q ∼= Hom(An,k o ZSn,Q). ¤

6. Configuration spaces and the rescaling isomorphism

We recall the following theorem due to Cohen and Gitler [4] describing the struc-
ture of the homology of the based loop space of the configuration space ΩConfn(Rm)
as an algebra.

Theorem 6.1 (Cohen-Gitler [4]). The homology H∗(ΩConfn(Rm)), m ≥ 3, is
isomorphic to the algebra generated by degree m − 2 elements Xij, 1 ≤ i 6= j ≤ n,
with Xij = (−1)m−2Xji and the relations (5.2) and (5.3), where the Lie bracket is
taken in a graded sense.

We describe some consequence of the above theorem and a relation to finite type
invariants for the braid group. Let T̂H∗−1(M ;R) be the completed tensor algebra of
H∗−1(M ;R). Chen’s formal connection ω is by definition an element ω ∈ E∗(M) ⊗
T̂H∗−1(M ;R) and a derivation ∂ on T̂H∗−1(M ;R) such that

∂ω + dω − Jω ∧ ω = 0.
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We shall say that the formal connection is quadratic if the derivation ∂ is written
in the form

∂Xk =
∑
i,j

ck
ijXiXj

with the structure constants ck
ij of the cohomology ring H∗(M ;R).

Theorem 6.2. The configuration space Confn(Rm), m ≥ 2, has a quadratic formal
connection in the sense of Chen, and is therefore formal.

Proof. In the case m = 2 we may take

ω =
∑

1≤i<j≤n

ωij ⊗ Xij

and ∂ = δ where Xij is considered to be an elements of H1(Mn;R) dual to ωij and
δ is the derivation introduced in Section 2. This shows that the formal connection
is quadratic in this case.

In the case m ≥ 3 the configuration space Confn(Rm) is simply connected and by
a theorem of Chen [3] the homology of the loop space ΩConfn(Rm) is isomorphic to
the homology of the complex (TH∗−1(M ;R), ∂). Then by the Cohen-Gitler theorem
we can conclude that the formal homology connection is quadratic. It is known that
the formality in the sense of Sullivan is equivalent to the fact that Chen’s formal
connection is quadratic. Thus we obtain the statement of the theorem. ¤

We denote by An[`] the graded algebra whose degree p part is given by

An[`]p =

{
An,k, p = 2`k

0, otherwise

and call it the ` rescaling of the algebra of horizontal chord diagrams An. The
relation between the homology of the loop space of the configuration space and the
algebra of chord diagram can be formulated in the following way.

Theorem 6.3. There is a rescaling isomorphism of Hopf algebras

H∗(ΩConfn(C`+1);Z) ∼= An[`].

This type of rescaling theorem was discussed systematically in [15] in relation
with the rescaling in the level of cohomology rings. A similar rescaling isomorphism
for the orbit configuration space for the action on the upper half plane of a discrete
subgroup of PSL(2,R) in [5].
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