幾何学 I 3. 多様体間の写像とその微分

可微分多様体 M,N の次元をそれぞれ m,n として,M から N への C^∞ 級写像 f を考える.M の点 p について, $f(p)=q\in N$ とおく.点 q の近傍で定義された C^∞ 級関数 h をとる.M の p における接空間 T_pM の要素 θ に対して, $f_*\theta\in T_qN$ を

$$f_*\theta(h) = \theta(h \circ f)$$

で定める.この対応により定まる T_pM から T_qN への線形写像を

$$(df)_p: T_pM \to T_qN$$

で表し,写像fのpにおける微分とよぶ.

M の C^∞ 曲線, $\gamma:(-\epsilon,\epsilon)\to M$ で $\gamma(0)=p$ となるものが与えられたとき,方向微分 X_γ は,接空間 T_pM の要素とみなされる.微分 $(df)_p$ は,方向微分に関して,

$$(df)_p(X_\gamma) = X_{f \circ \gamma}$$

を満たす.

点 p のまわりで , 局所座標系 (x_1,\cdots,x_m) , 点 q のまわりで , 局所座標系 (y_1,\cdots,y_n) をとる . 写像の合成 $y_j\circ f$ を $f_j,$ $1\leq j\leq n$ とおいて , x_1,\cdots,x_m の関数とみなすと , 微分 $(df)_p$ は , 接空間の基底に関して

$$(df)_p \left(\frac{\partial}{\partial x_i}\right)_p = \sum_{j=1}^n \frac{\partial f_j}{\partial x_i}(p) \left(\frac{\partial}{\partial y_j}\right)_q$$

と表すことができる.

線形写像 $(df)_p:T_pM\to T_qN$ のランクを,写像 $f:M\to N$ の点 p におけるランクとよぶ.可微分多様体 M,M',M'' について, C^∞ 級写像 $f:M\to M',\,g:M'\to M''$ が与えられていて, $f(p)=q,\,g(q)=r$ とする.写像の合成の微分について

$$d(g \circ f)_p = (dg)_q \circ (df)_p : T_p M \to T_r M''$$

が成立する.これを用いると, $f:M\to N$ が微分同相のとき, $(df)_p$ は線形同型となり,とくに,次元は m=n を満たすことが分かる.