
9. 測地線と完備性など

測地線的完備性

M をRiemann多様体とする．M が測地線的完備であるとは，M の任
意の点 pにおいて，exppがすべての v ∈ TpM に対して定義されることあ
る．つまり，γ(0) = pを満たす測地線が，すべての t ∈ Rに対して定義
されることである．
以下，Mは連結なRiemann多様体であるとする．p0 ∈ Mを固定して，
距離関数 f(p) = ρ(p, p0)を考えると，これはM 上の連続関数となる．

定理 次の (a) – (d)は同値である．

(a) M のある点 pについて，exppはすべての v ∈ TpM に対して定義さ
れる．
(b) M の有界閉集合はコンパクトである．
(c) M は距離空間として完備である．
(d) M は測地線的完備である．

定理 (Hopf-Rinow) M が測地的完備であるとすると，M の任意の 2点
p, qについて，これらを結ぶ測地線 γが存在し，その長さは `(γ) = ρ(p, q)

で与えられる．

Cartan-Hadamardの定理

次の定理は Riemann多様体の曲率の Riemann多様体の位相幾何への
応用の典型例である．

定理 (Cartan-Hadamard) Mは完備で単連結なn次元Riemann多様体と
する．M の断面曲率K(Σ)が，つねにK(Σ) ≤ 0をみたすならば

expp : TpM −→ M

は微分同相写像であり，とくに，M はRnと可微分同相である．

証明は Jacobi場の概念を用いて，後に与える．



測地線と変分法

M の区分的C∞級曲線 c : [0, a] −→ M とその端点を結ぶ区分的C∞級
曲線の族

f : (−ε, ε) × [0, a] −→ M

を考える．ここで，f(0, t) = c(t), f(s, 0) = c(0), f(s, a) = c(a)である．
V (t) = ∂f

∂s
(0, t)は曲線 cに沿ったベクトル場を定め，これを変分ベクトル

場とよぶ，上の曲線のエネルギー汎関数を sの関数とみて

E(s) =

∫ a

0

‖∂f

∂t
(s, t)‖2dt

とおく．

補題 γをMの 2点 p, qを結ぶ極小測地線とする．このとき p, qを結ぶ任
意の区分的C∞級曲線 c : [0, a] −→ M のエネルギーE(c)に対して

E(γ) ≤ E(c)

が成立する．等号成立は cが極小測地線のときである．

定理 (第一変分公式)
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ここで，最後の項は tiにおける右微分係数と左微分係数を表す．

命題Mの区分的C∞級曲線 c : [0, a] −→ Mが測地線であることは，端点
を固定するすべての変分についてE ′(0) = 0を満たすこと同値である．

つまり，p, qを結ぶ区分的C∞級曲線全体の空間において測地線はエネ
ルギー汎関数の臨界点である．


