
12. 部分多様体の曲率

R3内の曲面

p(u1, u2)を曲面 Sのパラメータ表示とする．nを単位法線ベクトルと
して

∂2p

∂ui∂uj
=

∑
k

Γk
ij

∂p

∂uk
+ hijn

とおくと，Γk
ijはRiemann接続を定める．法線方向の成分 hijを第 2基本

形式という．Riemann曲率との関係は

R1212 = −(h11h22 − h2
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で与えられる．Gauss曲率 κの定義は

κ =
h11h22 − h2
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であるから，Gauss曲率はRiemann計量によって完全に決まることが分
かる．

部分多様体の接続

M ⊂ Rn+k を n次元部分多様体とし，接バンドル TM と法バンドル
T⊥M を考える．XをM 上のベクトル場として，これをM からRn+kへ
の写像とみなす．このとき，接バンドルと法バンドルの直和分解にした
がって

dX = DX + AX

と表すと，DはM のRiemann接続を定める．A : TM × TM −→ T⊥M

をA(X,Y ) = AX(Y )で定める．AをM の第 2基本形式という．このと
き，接続Dの曲率と第 2基本形式について次が成立する．

定理 (Gaussの方程式) M 上のベクトル場X,Y, Z,W について

〈R(X,Y )Z,W 〉
=〈A(Z,X), A(W,Y )〉 + 〈A(Z, Y ), A(W,X)〉

が成り立つ．



超曲面の曲率

k = 1の場合，M の局所座標を (x1, · · · , xn), 単位法線ベクトルを nと
して
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とおく．Gaussの方程式よりRiemann曲率との関係は

Rijkl = −(hikhjl − hilhjk)

となる．行列H = (hij)の固有値 κ1, · · · , κnを超曲面Mの主曲率とよぶ．

曲面のガウス写像

R3内に埋め込まれた曲面Mについて，正規直交枠を e1, e2とし，その
双対枠を θ1, θ2とおく．Riemann計量は ds2 = θ2

1 + θ2
2で与えられる．こ

こで，法線ベクトル e3を e3 = e1 × e2で定めて，

dei =
∑

j

ωijej, i, j = 1, 2, 3

構造方程式より

dθ1 = ω12 ∧ θ2

dθ2 = ω21 ∧ θ2, ω12 + ω21 = 0

dω12 = −κ θ1 ∧ θ2 = −κ dv

となる．M の各点 xに対して，xのおける法線ベクトル e3の終点を対応
させて得られる

G : M −→ S2

をGauss写像とよぶ．単位球面 S2の体積要素を dσとすると

G∗dσ = κ θ1 ∧ θ2

が成立する．


