
11. 構造方程式とGauss-Bonnetの定理

構造方程式

M を可微分多様体として，D : Γ(TM) −→ Γ(T ∗M ⊗ TM)をアフィン
接続とする．e1, · · · , enを TM の局所的な枠，θ1, · · · , θnを T ∗M の双対
枠とする．捩じれテンソル

T (X,Y ) = 5XY −5Y X − [X,Y ], X, Y ∈ Γ(TM)

を TM に値をもつ 2次微分形式とみなして

T =
∑

i

Θiei

と表す．接続形式 ωi
j を Dei =

∑
j ωi

jej で定めると，次の関係式が成立
する．

Θi = dθi +
∑

j

ωi
j ∧ θj (1)

Ωi
j = dωi

j +
∑

k

ωi
k ∧ ωk

j (2)

ここで，Ωi
jは曲率形式である．上の (1), (2)は，それぞれ，第 1構造方程

式，第 2構造方程式とよばれる．
M をRiemann多様体とする．gij = 〈ei, ej〉とおくと，Riemann計量は

ds2 =
∑
i,j

gijθ
i ⊗ θj

で表される．このときRiemann接続の接続形式は

dθi +
∑

j

ωi
j ∧ θj = 0 (3)

dgij =
∑

k

(ωk
i gkj + ωk

j gik) (4)

を満たす．上の (3)は接続の対称性に，(4)は接続とRiemann計量の両立
性に，それぞれ対応する．とくに，e1, · · · , enを正規直交枠とすると，接
続行列 ω = (ωi

j)は交代行列である．



体積要素

M を向きの付いた n次元Riemann多様体とする．e1, · · · , enを向きを
与える局所正規直交枠とする．このとき，M 上の n次微分形式 dvで

dv(e1, · · · , en) = 1

を満たすものが一意的に存在する．dvをMの体積要素とよぶ．g = det(gij)

とおくと，局所的には

dv =
√

g dx1 ∧ · · · ∧ dxn

と表示される．

Gauss-Bonnetの定理

定理 (Gauss-Bonnet) M をコンパクトで向き付けられた 2次元Riemann

多様体とすると
1

2π

∫
M

κ dv = χ(M)

が成立する．ここで，χ(M)はM の Euler数である．

Ωij =
∑

k Ωk
i gkjとおく．曲率形式とGauss曲率，Riemannの曲率テン

ソルの関係は
Ω12√

g
=

R1212

g
dv = −κ dv

である．M上のなめらかな曲線 γに沿った単位速度ベクトル場を a1とし，
a1, a2をM の向きに適合する正規直交枠とする．kg = 〈Da1

dt
, a2〉 を γの測

地的曲率とよぶ．∆ ⊂ M をなめらかな曲線で囲まれた領域とすると，∫
∆

κ dv = 2π −
∫

∂∆

kg ds

が成立する．また，∆を内角がα1, · · · , αn, 辺がΓ1, · · · , Γnの多角形とす
ると， ∫

∆

κ dv = 2π −
∑

i

(π − αi) +
∑

i

∫
Γi

kg ds

となる．


