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Introduction

A constructible function φ on a real analytic or complex manifold X is a
Z-valued function which is constant along a stratification. We can choose a
stratification according to the situation, so we work with subanalytic strati-
fications here.

In [14], P.Schapira defined Radon transforms of constructible functions.
It is a kind of integral transformations. We consider the following diagram;

S

=��f ZZ
g

~
X Y.

Here X and Y are real analytic or complex manifolds, S is a locally closed
subanalytic subset of X × Y , and f and g are real or complex analytic
maps, respectively. Then we can define the Radon transform RS(φ) of a
constructible function φ on X by

RS(φ) =

∫

g

f ∗φ.

In [14], P.Schapira obtained a formula for RS in the general situation.
This formula gives an inversion formula for the Radon transform of con-
structible functions from a real projective space to its dual in the case when
the whole dimension is odd. We can, that is, reconstruct a constructible
function φ on the projective space from its Radon transform RS(φ). This
topological meaning is that we can reconstruct the original subanalytic set
from the knowledge of the Euler-Poincaré indices of all its affine slices.
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In this paper, we study Radon transforms of constructible functions from
X = Fn+1(p) to Y = Fn+1(q). Here Fn+1(p) is the Grassmann manifold, that
is, the set of all the p dimensional subspaces in an n+ 1 dimensional vector
space. First we construct inversion formulas for Radon transforms. When p
is not equal to 1, the hypotheses of Schapira’s formula are not satisfied. So
the situation that we consider is more complicated in these cases. Second we
study the images of Radon transforms of characteristic functions of Schubert
cells.

We first review basic properties of Grassmann manifolds, constructible
functions and Schapira’s formula in the general case.

In Section 2.1, we modify Schapira’s formula in the general case under
the same hypotheses as Schapira. This gives an inversion formula for the
Radon transform RS . We can apply this formula to the Radon transform
R(n+1;1,q) from Fn+1(1) to Fn+1(q). Moreover, in Section 2.2 we consider the
Radon transform R(n+1;p,q) from Fn+1(p) to Fn+1(q) for p 6= 1. We obtain an
inversion formula for this by modifying the kernel function of this inversion
transform under suitable conditions of p and q.

In Section 3, we show that the Radon transform R(n+1;p,n+1−p) is the non-
trivial isomorphism between CF (Fn+1(p)) and its dual CF (Fn+1(n+1−p)).

In Section 4, we apply our results to the calculation of indices of D-
modules.

In Section 5, we calculate the images of Radon transforms of characteristic
functions of Schubert cells. We characterize these images by Young diagrams.

In [7], recently, T.Kakehi constructed an inversion formula for Radon
transforms of C∞-functions on Fn+1(p). On the other hand, our definition
of Radon transforms is different from them. The meaning of our integration
is not usual one but topological one based on the Euler-Poincaré indices of
slices. It would be interesting that the condition under which we obtain
an inversion formula in both cases coincide with each other in spite of the
difference of the meaning of integrals; namely in the real Grassmann case
only when q − p is even, we obtain both inversion formulas.

Finally, the author would like to thank Prof. Kiyoomi Kataoka in Uni-
versity of Tokyo and Prof. Kiyoshi Takeuchi in University of Tsukuba for
several useful discussions and advice.
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1 Preliminaries

1.1 A cell decomposition of Grassmann manifolds

We review the notation and well-known results on a cell decomposition of
the Grassmann manifold, which is called Schubert decomposition. For more
details, we refer to [11, 5].

Definition 1.1. Let E be an n−dimensional vector space over k = R or C,
and p and q be integers satisfying 1 5 p 5 q 5 n.

(i) Fn(p) = {x | x is a linear subspace of E, whose dimension is p.},

(ii) Fn(p, q) = {(x, y) ∈ Fn(p) × Fn(q) | x ⊂ y },

(iii) Fn(q, p) = {(y, x) ∈ Fn(q) × Fn(p) | y ⊃ x },

(iv) µn(p) = χ(Fn(p)) : the topological Euler-Poincaré index of Fn(p).

We fix a basis e1, e2, · · · , en of E. We set Vi = span[e1, e2, · · · , ei] for
i = 1, 2, · · · , n. Then we have a complete flag of vector spaces;

V1 ⊂ V2 ⊂ · · · ⊂ Vn, dimVi = i.

We review a cell decomposition of Fn(p), which is called Schubert decom-
position.

First we review Young diagrams.

Definition 1.2.

(i) Let λ = (a1, a2, · · · , ap) be a sequence of integers such that

n− p ≥ a1 ≥ a2 ≥ · · · ≥ ap ≥ 0.

This sequence corresponds to what is called a Young diagram with at
most p rows and n−p columns. We call this sequence a Young diagram,
too.

(ii) For a Young diagram λ = (a1, a2, · · · , ap), we define its complement
λc = (b1, b2, · · · , bp) such that

bj = n− p− aj for j = 1, 2, · · · , p.

This λc = (b1, b2, · · · , bp) satisfies

0 ≤ b1 ≤ b2 ≤ · · · ≤ bp ≤ n− p.
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(iii) For a sequence λ = (a1, a2, · · · , ap), we define

|λ| =

p
∑

k=1

ak.

Let λc = (b1, b2, · · · bp) be the above sequence. Then we have

Vb1+1 ⊂ Vb2+2 ⊂ · · · ⊂ Vbp+p ⊂ E.

Definition 1.3. Let λ be a Young diagram, and λc = (b1, b2, · · · , bp) be its
complement. Then we define the Schubert cell corresponding to λ;

Ω◦
λ =

{

x ∈ Fn(p)

∣

∣

∣

∣

dim(x ∩ Vbi+i) = i,
dim(x ∩ Vbi+i−1) = i− 1

(1 ≤ i ≤ p)

}

.

These Schubert cells {Ω◦
λ} give a cell decomposition of the Grassmann

manifold Fn(p).

Proposition 1.4. Let λ be a Young diagram with p rows and n−p columns.
Then we have

(i) Ω◦
λ ' k|λ

c| = kp(n−p)−|λ|,

(ii) Fn(p) =
∐

λ

Ω◦
λ (disjoint union).

Definition 1.5. We define the Schubert variety for a Young diagram λ which
is the analytic submanifold of Fn(p) by

Ωλ = {x ∈ Fn(p) | dim(x ∩ Vbi+i) ≥ i, (1 ≤ i ≤ p)} ,

where λc = (b1, b2, · · · , bp).

Remark 1.6. We remark that Ωλ is the whole Grassmann manifold when
λ = (0, 0, · · · , 0).

Proposition 1.7. Let λ be a Young diagram λ. Then we have

Ωλ =
∐

λ⊂µ

Ω◦
µ,

where µ ranges through Young diagrams containing λ as a subset.
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1.2 The calculation of Euler-Poincaré indices of Schu-

bert varieties

We calculate the Euler-Poincaré indices with compact supports of Schubert
varieties. In the later section, we apply these results obtained in this section.

First, we extend the definition of

(

n

p

)

by

(

n

p

)

=







(

n

p

)

(n ≥ p ≥ 0),

0 (otherwise).

Let x be an m-dimensional subspace of E. We calculate the Euler-
Poincaré index with compact supports of the following Schubert variety;

Ωm,k := {y ∈ Fn(p) | dim(x ∩ y) ≥ k} ,

which corresponds to the Young diagram λ = (a1, a2, · · · , ap) with

aj =

{

n− p−m+ k (1 ≤ j ≤ k),
0 (k + 1 ≤ j ≤ p).

We denote the Euler-Poincaré index by χ, and the Euler-Poincaré index
with compact supports by χc.

First we consider complex Grassmann manifolds i.e. E = Cn+1.

Proposition 1.8. We have

χc

(

Ωm,k
)

=

m−k
∑

l=0

(

n−m

p− k − l

)(

m

k + l

)

.

Proof. First, we calculate the Euler-Poincaré index with compact supports
of a Schubert cell. Since C is a real 2-dimensional vector space, we have

χc(Ω
◦
µ) = χc(C

p(n−p)−|µ|)

= χ(Cp(n−p)−|µ|)

= 1.
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By the additivity of χc, we have for a Schubert variety

χc(Ω
m,k) = χc

(

∐

λ⊂µ

Ω◦
µ

)

=
∑

λ⊂µ

χc(Ω
◦
µ)

=
∑

λ⊂µ

1

= ]{µ | λ ⊂ µ}.

We should count the number of the ways which it goes from A to B
through each point on the L (see figure 1).

@
@

@
@

n − p − m + k m − k

p − k

k

q

q

q

q

q

q

q

q

q

q

q

q

qA

B

L

λ

(figure 1)

Next, we consider real Grassmann manifolds i.e. E = Rn+1.
First, we calculate the Euler-Poincaré index with compact supports of a

Schubert cell. By the Poincaré duality we have

χc(Ω
◦
µ) = χc(R

p(n−p)−|µ|)

= (−1)p(n−p)−|µ|.

By the additivity of χc, we have for a Schubert variety

χc(Ωλ) = χc

(

∐

λ⊂µ

Ω◦
µ

)

=
∑

λ⊂µ

χc(Ω
◦
µ)

=
∑

λ⊂µ

(−1)p(n−p)−|µ|

= (−1)p(n−p)
∑

λ⊂µ

(−1)|µ|.
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So we should count the numbers of Young diagrams; the number of Young
diagrams containing λ with at most p rows n− p columns whose number of
boxes is even, and the number of ones whose number of boxes is odd.

Definition 1.9.

(i) en(p) = ]

{

µ

∣

∣

∣

∣

µ is a Young diagram with at most p rows
and n− p columns. |µ| is even.

}

,

(ii) on(p) = ]

{

µ

∣

∣

∣

∣

µ is a Young diagram with at most p rows
and n− p columns. |µ| is odd.

}

.

Proposition 1.10. We have

(i) en(p) =
1

2

{(

n

p

)

+ µn(p)

}

,

(ii) on(p) =
1

2

{(

n

p

)

− µn(p)

}

.

Proof. By the definition above, we have

en(p) − on(p) = µn(p),

en(p) + on(p) =

(

n

p

)

.

Here µn(p) is the Euler-Poincaré index of Fn(p).

Under the preparation above, we calculate χc(Ω
m,k).

Proposition 1.11. We have

χc

(

Ωm,k
)

=











(−1)p(n−p)

∣

∣

∣

∣

∣

m−k
∑

l=0

(−1)lµl+k−1(l)µn−k−l(p− k)

∣

∣

∣

∣

∣

(k ≥ 1),

(−1)p(n−p)µn(p) (k = 0).

Proof. We denote eoj
n(p) =

1

2

{(

n

p

)

+ (−1)jµn(p)

}

.
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Then we have

(−1)p(n−p) · χc

(

Ωm,k
)

=































∣

∣

∣

∣

∣

m−k
∑

l=0

eol−1
l+k−1(l)on−k−l(p− k) + eol

l+k−1(l)en−k−l(p− k)

−eol
l+k−1(l)on−k−l(p− k) − eol−1

l+k−1(l)en−k−l(p− k)

∣

∣

∣

∣

∣

(k ≥ 1),

µn(p) (k = 0)

=











∣

∣

∣

∣

∣

m−k
∑

l=0

(−1)lµl+k−1(l)µn−k−l(p− k)

∣

∣

∣

∣

∣

(k ≥ 1),

µn(p) (k = 0) .

n − p − m + k m − k

p − k

k − 1

1

q

q

A

B

M

λ λ1

λ2

(figure 2)

Here, λ1 is the Young diagram with k rows and m− k columns. Further
λ2 is the Young diagram with p− k rows and n− p columns.

For example, we consider the case when k(m− k) is even. We count the
number of Young diagrams which have even boxes in λ1 and odd boxes in
λ2. We divide into the cases when diagrams have m−k− j boxes at M from
the left (0 ≤ j ≤ m − k). If j is even, the number of Young diagrams that
we should count is ek−1+j(k − 1) × on−k−j(p− k). If j is odd, the number of
Young diagrams that we should count is ok−1+j(k − 1) × on−k−j(p− k) (see
figure 2).

At the end of this section, we calculate χc(Ω
m,0) − χc(Ω

m,1) in another
way, which has an important meaning in the later section.

Proposition 1.12. We have

χc(Ω
m,0) − χc(Ω

m,1) = (−1)p(n−p)µn−m(p).
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Proof. We denote by eλ
p(n) (resp. oλ

p(n)) the number of Young diagrams
containing λ with p rows and n− p columns whose number of boxes is even
(resp. odd).

Then for the Young diagram λ = (n− p−m + 1, 0, · · · , 0), we have

(−1)p(n−p){χc(Ω
m,0) − χc(Ω

m,1)} = µn(p) − (eλ
p(n) − oλ

p(n))

= (ep(n) − eλ
p(n)) − (op(n) − oλ

p(n))

= eλ′

p (n) − oλ′

p (n)

= µn−m(p),

where λ′ = (n− p−m, 0, · · · , 0) (see figure 3).

n − p − m + 1 m − 1

p − 1

1 λ

(figure 3)

1.3 Constructible functions

We review the notation and results on constructible functions without proofs.
For more details, we refer to [10].

Let X be a real analytic manifold.

Definition 1.13. A function φ : X → Z is constructible if:

(i) For all m ∈ Z, φ−1(m) is subanalytic,

(ii) the family {φ−1(m)}m∈Z is locally finite in X.

We denote by CF (X) the abelian group of all the constructible functions
on X, and by C FX the sheaf U 7→ CF (U) on X.

It follows from the Hardt triangulation theorem that φ is constructible
if and only if there exists a locally finite family of compact subanalytic con-
tractible subsets {Ki}i of X such that

φ =
∑

i

ci1Ki
.
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Here ci ∈ Z and 1A is the characteristic function of the subset A.

Let F ∈ Ob(Db
R−c(X)) (the base ring is a field k with characteristic zero).

Then its local Euler-Poincaré index

χ(F )(x) =
∑

j

(−1)jdimHj(F )x

is clearly a constructible function. Moreover :

Proposition 1.14.

(i) Let F , G ∈ Ob(Db
R−c(X)). Then we have

(a) χ(F ⊕G) = χ(F ) + χ(G),

(b) χ(F ⊗G) = χ(F ) · χ(G).

(ii) Let F ′ → F → F ′′ +1
→ be a distinguished triangle. Then we have

χ(F ) = χ(F ′) + χ(F ′′).

We shall denote by KR−c(X) the Grothendieck group of Db
R−c(X). This

group is obtained as the quotient group of the free abelian group generated
by Ob(Db

R−c(X)) under the equivalence relations; F = F ′ +F ′′ if there exists

a distinguished triangle F ′ → F → F ′′ +1
→. By the proposition above, we

have a group homomorphism induced by the local Euler-Poincaré index χ:

χ : KR−c(X) → CF (X).

We shall denote by LX the sheaf on T ∗X of Lagrangian cycles over the
ring Z. Then the characteristic cycle CC defines the following homomor-
phism:

CC : KR−c(X) → H0(T ∗X; LX).

Theorem 1.15. ([10, Theorem 9.7.11]) The diagram:

KR−c(X)

	�
�

�
�

�
CC

@
@

@
@

@

χ

R

H0(T ∗X; LX)
Eu

- H0(X; CFX)

is commutative, and the arrows are isomorphisms.
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We remark that a representative element of the inverse image of a con-

structible function φ =
∑

α∈A

mα1Xα
by χ is

⊕

α∈A′

k
|mα|
Xα

[

1 − sgn(mα)

2

]

,

where {Xα} is a subanalytic stratification of X and A′ = {α ∈ A|mα 6= 0}.

Next, we review operations on constructible functions [10]. These op-
erations are induced by operations of KR−c(X) through the Euler-Poincaré
index χ.

Definition 1.16. Let X and Y be two real analytic manifolds, and f : Y →
X be a real analytic map.

(i) The inverse image : Let φ ∈ CF (X). We set

f ∗φ(y) = φ(f(y)).

If φ = χ(F ), then clearly f ∗φ = χ(f−1F ).

(ii) The integral : Let φ ∈ CF (X) be represented by φ = χ(F ) =
∑

i

ci1Ki

for a F ∈ Ob(Db
R−c(X)), and {Ki} is a locally finite family of compact

subanalytic contractible subsets. Assume that φ has compact support.
Then we define

∫

X

φ =
∑

i

ci = χ(RΓ(X;F )).

(iii) The direct image : Let ψ ∈ CF (Y ) whose support is proper over X.
We define

(
∫

f

ψ

)

(x) =

∫

Y

(ψ · 1f−1(x)).

If ψ = χ(G) such that f is proper on supp(G), then

∫

f

ψ = χ(Rf!G).

Remark 1.17. We remark about the integral of the characteristic function
of a locally closed subset A of a manifold X. It is not the usual integral, but
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a kind of topological integrals. By Theorem 1.15 and the definition, we must
calculate the following object

∫

X

1A = χ(RΓ(X; kA)) = χ(RΓ(X; i!i
−1kX)) = χ(RΓc(A; kA)) = χc(A).

Here k is R or C, i : A → X is an inclusion morphism and χc is the
topological Euler-Poincaré index with compact supports.

Let A1, A2 be two locally closed subsets of a manifold X. Then we have
distinguished triangles

CA1\A2
→ CA1

→ CA2

+1
→,

RΓc(X; CA1\A2
) → RΓc(X; CA1

) → RΓc(X; CA2
)

+1
→ .

Therefore we have the additivity of the Euler-Poincaré index with com-
pact supports;

χc(A1) = χc(A1 \ A2) + χc(A2).

For example, we have

∫

R

1[0,1] = 1,

∫

R

1[0,1) = 0,

∫

R

1(0,1) = −1.

Proposition 1.18.

(i) The following operations are well-defined morphisms of sheaves;

(a) f ∗ : f−1C FX → C FY ,

(b)

∫

f

: f!C FY → C FX .

(ii) Inverse and direct images have functorial properties. That is, if f :
Y → X and g : Z → Y are real analytic maps, then we have;

(a) g∗ ◦ f ∗ = (f ◦ g)∗,

(b)

∫

f◦g

=

∫

f

◦

∫

g

.
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(iii) Consider a Cartesian diagram of morphisms of real analytic manifolds:

Y ′ f ′

- X ′

2

Y

h

?
f- X.

g

?

Then, if ψ ∈ CF (Y ) such that f is proper on suppψ, we have

g∗
∫

f

ψ =

∫

f ′

(h∗ψ).

1.4 Radon transforms of constructible functions and

Schapira’s formula

We review the definition of Radon transforms of constructible functions and
Schapira’s formula [14].

Let X and Y be two real analytic manifolds and let S ⊂ X × Y be a
locally closed subanalytic subset of X×Y . Denote by p1 and p2 the first and
second projection defined on X ×Y and by f and g the restriction of p1 and
p2 to S respectively:

X × Y

�












p1

∪ J
J
J
J
J
J

p2

^

S

=���f ZZZ
g
~

X Y.

We assume;

p2 is proper on S̄, the closure of S in X × Y . (1.4.1)

Definition 1.19. For a φ ∈ CF (X), we define

RS(φ) =

∫

g

f ∗φ

=

∫

p2

1S(p∗1φ).

We call RS(φ) the Radon transform of φ.
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Let S ′ ⊂ Y ×X be another locally closed subanalytic subset. We denote
again by p2 and p1 the first and second projection defined on Y ×X, by f ′ and
g′ the restriction of p1 and p2 to S ′, and by r the projection S×

Y
S ′ → X×X.

Then Schapira posed the hypotheses:

p1 is proper on S̄ ′, the closure of S ′ in Y ×X, (1.4.2)

∃λ 6= µ ∈ Z s.t. χ(r−1(x, x′)) =

{

λ (x 6= x′),
µ (x = x′),

(1.4.3)

where χ is the topological Euler-Poincaré index.

Under these three hypotheses, we have Schapira’s formula.

Theorem 1.20. ([14, Theorem 3.1]) For any φ ∈ CF (X), we have

RS′ ◦ RS(φ) = (µ− λ)φ+

(∫

X

λφ

)

1X .

Proof. Denote by h and h′ the projections from S×
Y
S ′ to S and S ′ respectively.

Consider the following diagram:

S ×
Y
S ′

	�
�h @

@
h′

R

S X ×X

r
?

S ′

	�
�f @

@
g

R
�������

q1
	�
�g′

HHHHHHq2 j
@
@
f ′

R

X Y X.

Since the square

S ×
Y
S ′

	��
h @@

h′

R

S 2 S ′

@@
g
R 	��

g′

Y
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is of Cartesian, we have

RS′ ◦ RS(φ) =

∫

f ′

(g′∗
∫

g

(f ∗φ))

=

∫

f ′◦h′

((f ◦ h)∗φ)

=

∫

q2

∫

r

r∗q∗1φ

=

∫

q2

k(x, x′)q∗1φ.

Here we have

k(x, x′) =

∫

r

r∗1X×X

=

∫

r

1S×
Y

S′.

Hence, it is enough to note that, under the hypothesis,
∫

r

1S×
Y

S′ = µ1∆X
+ λ1X\∆X

= (µ− λ)1∆X
+ λ1X×X ,

where ∆X is the diagonal of X ×X.

Since

∫

q2

1∆X
q∗1φ = φ and

∫

q2

1X×X q∗1φ =

∫

X

φ, we get the result.

In [14], Schapira applied this formula to correspondences of real flag man-
ifolds.

We consider the following diagram, which is called a correspondence

Fn+1(1, q)

=���f ZZZ
g
~

Fn+1(1) Fn+1(q),

where f and g are projections.
We set R(n+1;1,q) = RS and R(n+1;q,1) = RS′ , where S = Fn+1(1, q) and

S ′ = Fn+1(q, 1). Then this situation satisfies the hypotheses of the previous
theorem, because we have

r−1(x, x′) '

{

Fn−1(q − 2) (x 6= x′),
Fn(q − 1) (x = x′).

Therefore we can apply the above formula to this case.
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Proposition 1.21. ([14, Proposition4.1]) For any φ ∈ CF (Fn+1(1)), we
have

R(n+1;q,1) ◦ R(n+1;1,q)(φ)

= (µn(q − 1) − µn−1(q − 2))φ+ µn−1(q − 2)

(∫

Fn+1(1)

φ

)

1Fn+1(1).

In particular, when n is odd and q = n, we can obtain an inversion
formula for R(n+1;1,q).

2 Inversion transforms of Radon transforms

of constructible functions

We generalize the situation which we apply Schapira’s formula in the previous
subsection. Namely we consider the following diagrams;

Fn+1(p) × Fn+1(q)

	�
�

�
�

p1

∪ @
@

@
@

p2

R

Fn+1(p, q)

�����
f

HHHH
g
j

Fn+1(p) Fn+1(q).

We consider the following problems in this paper;

(i) an inversion formula for R(n+1;1,q) in the case when n is even or q 6= n,

(ii) an inversion formula for R(n+1;p,q) in the case when 1 < p and 1 < q
hold.

That is, we consider the reconstruction of φ from RS(φ) on more general
Grassmann manifolds.

2.1 A minor modification of Schapira’s formula

First, we will modify Schapira’s formula. We inherit the situation from Sec-
tion 1.4.
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Definition 2.1. For a ψ ∈ CF (Y ), we define

R0(ψ) =

∫

p1

1X×Y (p∗2ψ)

=

∫

p1

(p∗2ψ)

=

(
∫

Y

ψ

)

1X .

Proposition 2.2. Let φ ∈ CF (X). Then we have

R0 ◦ RS(φ) =

∫

X

(µφ)1X .

Proof. A constructible function φ is represented by φ =
∑

i

ci1Ki
, where

{Ki} is a locally finite family of compact subanalytic contractible subsets.
By the linearity of transforms, it is enough to show this formula only for a
characteristic function 1K of a compact subanalytic contractible subset K.

Since the square

X × Y

	��
p1 @@

p2R

X 2 Y

@@
aX

R 	��
aY

{pt}

is of Cartesian, we have

R0 ◦ RS(1K) =

∫

p1

p∗2

∫

p2

(1S · p∗11K)

= a∗X

∫

aY

∫

p2

(1S · p∗11K)

= a∗X

∫

aX

∫

p1

(1S · p∗11K).

Here for any φ ∈ CF (X), we have
(

a∗X

∫

aX

φ

)

(x) =

(
∫

aX

φ

)

({pt})

=

∫

X

φ(x′)1a−1

X
({pt})(x

′)

=

(
∫

X

φ

)

1X(x),

17



and
(
∫

p1

1S · p∗11K

)

(x) =

∫

X×Y

1S(x′, y′)1K×Y (x′, y′)1{x}×Y (x′, y′)

=

∫

X×Y

1(({x}∩K)×Y )∩S(x′, y′)

= µ1K.

This is because the Euler-Poincaré index of

{x} × Y ∩ S ' {y ∈ Y | (x, y) ∈ S}

is µ which is the Euler-Poincaré index of the fibers in the case of x = x′ of
Schapira’s hypotheses.

Therefore we get

R0 ◦ RS(φ) = a∗X

∫

aX

∫

p1

(1S · p∗11K)

= a∗X

∫

aX

(χ(Zx)1K)

=

(
∫

X

µ1K

)

1X .

Definition 2.3. For a ψ ∈ CF (Y ), we define

R−1(ψ) =

∫

p1

(µ1S′ − λ1X×Y )(p∗2ψ)

= µRS′(ψ) − λR0(ψ).

Proposition 2.4. Let φ ∈ CF (X). Then we have

R−1 ◦ RS(φ) = µ(µ− λ)φ.

In particular, if µ(µ − λ) is not zero, we can reconstruct the original con-
structible function φ from its Radon transform RS(φ) by dividing the last
term by this constant µ(µ− λ).

18



Proof. By Schapira’s formula and Proposition 2.2, we have

R−1 ◦ RS(φ) = µRS′ ◦ RS(φ) − λR0 ◦ RS(φ)

= µ

{

(µ− λ)φ+ λ

(∫

X

φ

)

1X

}

− λµ

(∫

X

φ

)

1X

= µ(µ− λ)φ.

We apply this result to the complex or real Grassmann manifolds [1, 5].
We consider the following correspondence,

Fn+1(1, q)

=���f ZZZ
g
~

Fn+1(1) Fn+1(q).

Then Schapira’s hypotheses are satisfied. We remark that

µ = µn(q − 1),
λ = µn−1(q − 2).

First, when we consider the complex case [5], we have

µn(p) =

(

n

p

)

. (2.1.1)

Therefore since for any q > 1 the hypotheses of proposition are satisfied,
we can obtain an inversion formula for Radon transform R(n+1;1,q).

Next, when we consider the real case [11, 12], we have

µn(p) =















0 (if p(n− p) is odd),
(E

(n

2

)

E
(p

2

)

)

(if p(n− p) is even).
(2.1.2)

Here E
(n

2

)

denotes the integral part of
n

2
,

(

a

b

)

is the binomial coefficient.

If q is odd in 1 < q < n + 1, the hypotheses are satisfied. Then we can
obtain an inversion formula for Radon transform R(n+1;1,q).
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2.2 Inversion formulas on Grassmann manifolds

For p < q, we consider the following situation:

Fn+1(p) × Fn+1(q)

	�
�

�
�

p1

∪ @
@

@
@

p2

R

Fn+1(p, q)

�����
f

HHHH
g
j

Fn+1(p) Fn+1(q).

We set X = Fn+1(p), Y = Fn+1(q) and S = Fn+1(p, q).

We remark that Schapira’s hypotheses are not satisfied for 1 < p.
We introduce the new sets to construct to an inversion formula for R(n+1;p,q).

Definition 2.5.

(i) Si = {(y, x) ∈ Y ×X | dim(y ∩ x) = i } for i = 0, 1, · · ·p,

(ii) Zj = {(x1, x2) ∈ X ×X | dim(x1 ∩ x2) = j } for j = 0, 1, · · ·p.

Remark 2.6. We remark that we have

X ×X =

p
∐

j=0

Zj.

Consider the following diagram:

S ×
Y
Si

	�
�h @

@
h′

R

S X ×X

r
?

Si

	�
�f @

@
g

R�������

q1
	�
�g′

HHHHHHq2 j
@
@
f ′

R

X Y X.

Note that Zp = {(x1, x2) ∈ X×X | x1 = x2} and we have

∫

q2

1Zp
q∗1φ = φ.

By the same argument as Section 1.4 and Section 2.1, we should modify the

kernel such that

∫

r

(kernel) is equal to 1Zp
.

We calculate

∫

r

1S×
Y

Si
;

(
∫

r

1S×
Y

Si

)

(x1, x2) =

p
∑

j=0





∫

S×
Y

Si

1r−1(x1,x2)∩r−1(Zj)



 · 1Zj
.
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We calculate the homeomorphism of r−1(x1, x2) ∩ S ×
Y
Si when we fix

(x1, x2) ∈ Zj. We have

r−1(x1, x2) ∩ S ×
Y
Si

=

{

y ∈ Fn+1(q)

∣

∣

∣

∣

x1 ⊂ y
dim(x2 ∩ y) = i

}

(dim(x1 ∩ x2) = j).

Here we consider conditions in the quotient space E/x1. Then we have

r−1(x1, x2) ∩ S ×
Y
Si

'

{

∅ (i < j),
{

y ∈ Fn+1−p(q − p)
∣

∣ dim(x ∩ y) = i− j
}

(i ≥ j)

(dimx = p− j)

=

{

∅ (i < j),
Ωi,j \ Ωi+1,j (i ≥ j),

where we denote by

Ωi,j = {y ∈ Fn+1−p(q − p) | dim(x ∩ y) ≥ i− j } (dimx = p− j).

This set is the Schubert variety.

Therefore we should calculate the Euler-Poincaré index χc(Ωi,j \ Ωi+1,j)
with compact supports. Moreover we have the additivity

χc(Ωi,j \ Ωi+1,j) = χc(Ωi,j) − χc(Ωi+1,j).

So it is enough to calculate the Euler-Poincaré index χc(Ωi,j) with com-
pact supports. In Section 1.2, we calculated these values.

First we consider complex Grassmann manifolds i.e. E = Cn+1.
Therefore we get

χc(r
−1(x1, x2) ∩ r

−1(Zj) ∩ S ×
Y
Si)

=







0 (i < j),
(

p− j

i− j

)(

n + 1 − 2p+ j

q − p− i+ j

)

(i ≥ j)

= : cij.

Next we consider real Grassmann manifolds i.e. E = Rn+1.
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Then we get

(−1)(q−p)(n+1−q)χc(r
−1(x1, x2) ∩ r

−1(Zj) ∩ S ×
Y
Si)

=







































0, (i < j)
∣

∣

∣

∣

∣

p−i
∑

l=0

(−1)lµl+i−j−1(l)µn+1−p−i+j−l(q − p− i + j)

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

p−i−1
∑

l=0

(−1)lµl+i−j(l)µn−p−i+j−l(q − p− i + j − 1)

∣

∣

∣

∣

∣

,

(i > j)

µn+1−2p+j(q − p) (i = j)

= : (−1)(q−p)(n+1−q)cij.

We can unify these two cases.
Note that cij is independent of the choice of (x1, x2) in Zj. Therefore we

have

(
∫

r

1S×
Y

Si

)

(x1, x2) =

p
∑

j=0

cij1Zj
.

Here, we define the (p + 1)-type matrix Cp,q = (cij)0≤i,j≤p. This is the
lower triangular matrix, so the absolute value of this determinant detCp,q is
equal to

|detCp,q| =

p
∏

j=0

µn+1−2p+j(q − p) (2.2.1)

in the both situations. In particular it is Z-valued.

Under the preparation above, we define the kernel function of an inversion
formula for R(n+1;p,q).

We get the equation

Cp,q











1Z0

1Z1

...
1Zp











=















∫

r
1S×

Y
S0

∫

r
1S×

Y
S1

...
∫

r
1S×

Y
Sp















.
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By Cramer’s formula, we can solve this equation with respect to 1Zp
;

detCp,q · 1Zp
= det





















c00 0 · · · 0
∫

r
1S×

Y
S0

c10 c11
. . .

...
∫

r
1S×

Y
S1

...
...

. . . 0
...

cp−1,0 cp−1,1 · · · cp−1,p−1

∫

r
1S×

Y
Sp−1

cp,0 cp,1 · · · cp,p−1

∫

r
1S×

Y
Sp





















.

Definition 2.7. We define the kernel function of an inversion formula for
the Radon transform as follows;

Kp,q = det















c00 0 · · · 0 1S0

c10 c11
. . .

... 1S1

...
...

. . . 0
...

cp−1,0 cp−1,1 · · · cp−1,p−1 1Sp−1

cp,0 cp,1 · · · cp,p−1 1Sp















.

Then we can define R−1(ψ) for a ψ ∈ CF (Fn+1(q)) by

R−1(ψ) =

∫

p1

Kp,q · (p
∗
2ψ).

Therefore we have the main result.

Theorem 2.8. For any φ ∈ CF (Fn+1(p)), we have

R−1 ◦ R(n+1;p,q)(φ) = detCp,q · φ.

In particular, if detCp,q is not equal to zero, we can reconstruct the original
constructible function φ from its Radon transform R(n+1;p,q)(φ) by dividing
the last term by this constant detCp,q.
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Proof. We can calculate in the same way as Schapira’s formula. So we have

R−1 ◦ R(n+1;p,q)(φ)

=

∫

p1

Kp,q ·

(

p∗2

∫

p2

1S · p∗1φ

)

=

∫

q2







































det





















c00 0 · · · 0
∫

r
1S×

Y
S0

c10 c11
. . .

...
∫

r
1S×

Y
S1

...
...

. . . 0
...

cp−1,0 cp−1,1 · · · cp−1,p−1

∫

r
1S×

Y
Sp−1

cp,0 cp,1 · · · cp,p−1

∫

r
1S×

Y
Sp



























































q∗1φ

=

∫

q2

detCp,q1Zp
q∗1φ

= detCp,q · φ .

(Remark that

∫

q2

1Zp
q∗1φ = φ.)

First, we consider the complex case. If p+ q ≤ n+ 1 is satisfied, we have
detCp,q 6= 0 from (2.1.1) and (2.2.1). Then we obtain an inversion formula
for R(n+1;p,q).

Next, we consider the real case. If it is satisfied that p + q ≤ n + 1 and
q − p is even, we have detCp,q 6= 0 from (2.1.2) and (2.2.1). Then we obtain
an inversion formula for R(n+1;p,q).

In the case of p = q, the inversion formula is clear because R(n+1;p,q)(φ) =
φ holds.

Moreover, in the case of p > q, by the duality, we can get;






(n+ 1 − p) < (n+ 1 − q),
Fn+1(n + 1 − p) ' Fn+1(p),
Fn+1(n + 1 − q) ' Fn+1(q).

So, we have only to consider the result in the case of p < q. That is,
in the complex case, for p + q ≥ n + 1 we obtain an inversion formula for
R(n+1l;p,q). In the real case, when p+ q ≥ n+ 1 and p− q is even, we obtain
an inversion formula for R(n+1;p,q).
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Remark 2.9. In Section 2.1, we obtain an inversion formula at p = 1. In
the terminologies of Section 2.2, we note that

1Fn+1(1)×Fn+1(q) = 1S0
+ 1S1

.

Therefore the formula in Section 2.1 is the same one in Section 2.2 at
p = 1.

3 The inverse transform of the Radon trans-

form

In the previous section, we constructed inversion formulas of Radon trans-
forms. For general p and q, these formulas are not always inverse transforms
of Radon transforms. In this section, we show that these inversion formulas
are inverse transforms of Radon transforms when p+ q = n+ 1 holds. Inver-
sion formulas constructed in the previous section give left inverse transforms,
speaking more concretely, so we show that these formulas give right inverse
transforms.

For p < q and p+ q = n+ 1 we consider the following diagram:

Fn+1(p) × Fn+1(q)

	�
�

�
�

p1

∪ @
@

@
@

p2

R

Fn+1(p, q)

�����
f

HHHH
g
j

Fn+1(p) Fn+1(q).

We set X = Fn+1(p), Y = Fn+1(q) and S = Fn+1(p, q).

We introduce the following sets similarly as in the previous section.

Definition 3.1.

(i) Si = {(y, x) ∈ Y ×X | dim(y ∩ x) = i } for i = 0, 1, · · ·p,

(ii) Z ′
j = {(y1, y2) ∈ Y ×Y | dim(y1∩y2) = j+(q−p) } for j = 0, 1, · · ·p.

Remark 3.2. Let l be the dimension of y1 ∩ y2. Because span[y1, y2] is a
subspace of the total space E = kn+1 (k = R or C), we have an inequality

2q − l ≤ n + 1 = p+ q.

Therefore we have q − p ≤ l ≤ q.
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Moreover we remark that

Y × Y =

p
∐

j=0

Z ′
j.

We calculate RS ◦ R−1 similarly in previous sections.
Consider the following diagram:

Si ×
X
S

	�
�h′ @

@
h

R

Si Y × Y

r′

?
S

	�
�g′ @

@
f ′

R�������

q′
1

	�
�f

HHHHHHq′
2 j

@
@
g

R

Y X Y.

In the same way as Schapira’s formula, we calculate

∫

r′
1Si×

X
S;

Proposition 3.3. We have

(
∫

r′
1Si×

X
S

)

=

p
∑

j=0

cij · 1Z′

j
,

where Cp,q = (cij)0≤i,j≤p is the coefficient matrix defined in the previous sec-
tion.

Proof.

(
∫

r′
1Si×

X
S

)

(y1, y2) =

p
∑

j=0





∫

Si×
X

S

1r′−1(y1,y2)∩r′−1(Z′

j)



 · 1Z′

j
.

First, we calculate the homeomorphism of r′−1(y1, y2)∩ Si ×
X
S for (y1, y2) ∈

Z ′
j.

We have

r′−1(y1, y2) ∩ Si ×
X
S

=

{

x ∈ Fn+1(p)

∣

∣

∣

∣

x ⊂ y1

dim(x ∩ y2) = i

}

(dim(y1 ∩ y2) = j + q − p)

= {x ∈ Fq(p) | dim(x ∩ y1 ∩ y2) = i}

= Ω′
i,j \ Ω′

i+1,j ,
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where we denote by

Ω′
i,j = {x ∈ Fq(p) | dim(x ∩ y) ≥ i} (dimy = j + q − p).

This set is the Schubert variety.

Therefore we should calculate the Euler-Poincaré index χc(Ω
′
i,j \ Ω′

i+1,j)
with compact supports. Moreover we have the additivity

χc(Ω
′
i,j \ Ω′

i+1,j) = χc(Ω
′
i,j) − χc(Ω

′
i+1,j).

So it is enough to calculate the Euler-Poincaré index χc(Ω
′
i,j) with com-

pact supports.

Here we consider Young diagrams corresponding to Ωi,j in the previous
section and that of Ω′

i,j. We remember the definition of Ωi,j;

Ωi,j = {y ∈ Fq(q − p) |dim(x ∩ y) = i− j } (dimx = p− j).

So the Young diagram λΩi,j
= (a1, a2, · · · , aq−p) with at most q − p rows

p columns corresponding to Ωi,j is

al =

{

i (1 ≤ l ≤ i− j),
0 (i− j + 1 ≤ l ≤ q − p).

On the other hand, the Young diagram λΩ′

i,j
= (b1, b2, · · · , bp) with at

most p rows q − p columns corresponding to Ω′
i,j is

bl =

{

i− j (1 ≤ l ≤ i),
0 (i+ 1 ≤ l ≤ p).

These Young diagrams have the following shapes;

i − j q − p − i + j

p − i

i λΩi,j

(λΩi,j
)

i p − i

q − p − i + j

i − j λΩ′

i,j

(λΩ′

i,j
)
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(figure 4)

This implies that we have

χc(Ωi,j) = χc(Ω
′
i,j).

Therefore we have

χc(r
′−1(y1, y2) ∩ r

′−1(Z ′
j) ∩ Si ×

X
S) = cij.

Theorem 3.4. Let p + q = n + 1 hold. If all the conditions are satisfied
for the construction of the inversion formula of the Radon transform in the
previous section, this inversion formula becomes the inverse transform of the
Radon transform. Namely, we get the following statement in each case.

(i) In the complex case, the Radon transform is the non-trivial isomor-
phism from CF (Fn+1(p)) to CF (Fn+1(q)) up to constant.

(ii) In the real case, if q− p is even the Radon transform is the non-trivial
isomorphism from CF (Fn+1(p)) to CF (Fn+1(q)) up to constant.

Moreover, through the Euler-Poincaré index χ, the Radon transform gives
the non-trivial isomorphism between Grothendieck groups.

Proof. It is enough to show that R−1 is a right inverse of R(n+1;p,q). By the
same argument as the previous section, we should show this statement only
when p < q holds.

For any ψ ∈ CF (Fn+1(q)), we have

RS ◦ R−1(ψ)

=

∫

p2

1S ·

(

p∗1

∫

p1

Kp,q · p
∗
2ψ

)

=

∫

q′
2







































det





















c00 0 · · · 0
∫

r
1S0×

X
S

c10 c11
. . .

...
∫

r
1S1×

X
S

...
...

. . . 0
...

cp−1,0 cp−1,1 · · · cp−1,p−1

∫

r
1Sp−1×

X
S

cp,0 cp,1 · · · cp,p−1

∫

r
1Sp×

X
S



























































q′∗1 ψ.
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We set

z = det





















c00 0 · · · 0
∫

r
1S0×

X
S

c10 c11
. . .

...
∫

r
1S1×

X
S

...
...

. . . 0
...

cp−1,0 cp−1,1 · · · cp−1,p−1

∫

r
1Sp−1×

X
S

cp,0 cp,1 · · · cp,p−1

∫

r
1Sp×

X
S





















.

By Cramer’s formula, there exist constructible functions x0, x1, · · · , xp−1

such that we have

Cp,q















x0

x1
...

xp−1

z















= (detCp,q)



















∫

r
1S0×

X
S

∫

r
1S1×

X
S

...
∫

r
1Sp−1×

X
S

∫

r
1Sp×

X
S



















= (detCp,q)Cp,q















1Z′

0

1Z′

1

...
1Z′

p−1

1Z′

p















.

By multiplying the matrix (detCp,q)(Cp,q)−1 whose coefficients are Z-
valued, we obtain

detCp,qz = (detCp,q)21Z′

p
.

So we have z = detCp,q · 1Z′

p
.

Therefore for any ψ ∈ CF (Fn+1(q)) we have

R(n+1;p,q) ◦ R
−1(ψ) =

∫

q′
2

detCp,q1Z′

p
q′∗1 ψ

= detCp,q · ψ,

where we remark that
∫

q′
2

1Z′

p
q′∗1 ψ = ψ.

4 Application : The indices of Radon trans-

forms for D-modules

In this section we apply our result to the calculation of indices of D-modules.
We review definition of Radon-Penrose transforms of D-modules. For

more details on basic properties of D-modules and Radon-Penrose transforms
for D-modules, we refer to [3, 9].
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Consider a correspondence of complex analytic manifolds:

S

=��f ZZ
g

~
X Y.

Definition 4.1. For F ∈ Ob(Db(X)), we set:

ΦS(F ) = Rg!f
−1(F )[dimS − dimX].

Definition 4.2. For M ∈ Ob(Db(DX)), we set:

ΦSM =

∫

g

Df ∗M.

We call this the Radon-Penrose transform for D-module.

Proposition 4.3. ([3, Proposition 2.6]) Let M ∈ Ob(Db
good(DX)). Assume

that f is non-characteristic for M, and that g is proper on f−1(suppM).
Then we have

ΦSRHomDX
(M,OX) = RHomDY

(ΦSM,OY ).

Here we consider the index of the Radon-Penrose transforms of D-modules.
Let M ∈ Ob(Db

rh(DX)) be a complex of regular holonomic D-modules.
Then we remark that

Sol(M) = RHomDX
(M,OX)

is C-constructible ([8, 10]). Moreover we define

χ(M) = χ(Sol(M)).

Proposition 4.4. Let M ∈ Ob(Db
rh(DX)). Assume f is non-characteristic

for M, and that g is proper on f−1(suppM). Then we have

χ(ΦS(M)) = (−1)dimS−dimXRS(χ(M)).

Proof. Under the hypotheses RHom and Radon transforms are compatible
and so are χ and operations.

χ(ΦS(M)) = χ(RHomDY
(ΦS(M),OY ))

= χ(ΦSRHomDX
(M,OX))

= χ(Rg!f
−1RHomDX

(M,OX)[dimS − dimX])

=

∫

g

f ∗χ(Sol(M)[dimS − dimX])

= (−1)dimS−dimXRS(χ(Sol(M)))

= (−1)dimS−dimXRS(χ(M)).
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We consider complex Grassmann manifolds. Set X = Fn+1(p), Y =
Fn+1(q), S = Fn+1(p, q) for p + q ≤ n + 1, p < q or p + q ≥ n + 1, p > q.
Then since we have an inversion formula for RS, we can calculate the index
of χ(Sol(M)) from the index of its Radon transform χ(ΦS(M)).

5 The image of the Radon transform of the

characteristic function on a Schubert cell

In this section, we characterize the image of the Radon transform of the
characteristic function on a Schubert cell. We consider the following corre-
spondence;

S = Fn+1(p, q)

=�
�

�f Z
Z

Z
g

~
X = Fn+1(p) Fn+1(q) = Y.

In this section, we consider the complement of Young diagram λc when we
consider the Schubert cell. We denote the whole of increasing sequences like
this by Λp,n−p. We denote the Schubert cell corresponding to λc = α ∈ Λp,n−p

by Ω◦
α in this section.

Definition 5.1.

(i) For an α = (a1, a2, · · · , ap) ∈ Λp,n−p, we define a new sequence α̂ ∈ Λp,n;

α̂ = (a1 + 1, a2 + 2, · · · , ap + p).

(ii) Let α = (a1, a2, · · · , ap) ∈ Λp,n and β = (b1, b2, · · · , bq) ∈ Λq,m for
p < q. Then we define α ⊂ β if and only if for each i (1 ≤ i ≤ p) there
exists j (1 ≤ j ≤ q) such that ai = bj. We denote this correspondence
of numbers by σα,β, that is σα,β(i) = j.

Definition 5.2. Let α = (a1, a2, · · · , ap) ∈ Λp,n−p, β = (b1, b2, · · · , bq) ∈
Λq,n−q such that α ⊂ β. Then we define

cα,β =

p
∑

k=1

σα,β(k) − k.

We characterize the image of the Radon transform of 1Ω◦

α
.
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Theorem 5.3. Let α ∈ Λp,n−p.

(i) In the complex case, we have

RS(1Ω◦

α
) =



























∑

α̂⊂β̂

1Ω◦

β
for p ≤ q,

∑

α̂⊃β̂

1Ω◦

β
for p ≥ q,

where β̂ ranges through sequences in Λq,n containing (or contained by)
α̂.

(ii) In the real case, we have

RS(1Ω◦

α
) =



























∑

α̂⊂β̂

(−1)c
α̂,β̂1Ω◦

β
for p ≤ q,

∑

α̂⊃β̂

(−1)c
β̂,α̂1Ω◦

β
for p ≥ q,

where β̂ ranges through sequences in Λq,n containing (or contained by)
α̂.

Proof. It is enough to show when p < q.
We calculate

RS(1Ω◦

α
)(y) =

∫

X

1g−1(y)∩S∩f−1(Ω◦

α).

Here we have

g−1(y) ∩ S ∩ f−1(Ω◦
α)

'







x ∈ Fn+1(p)

∣

∣

∣

∣

∣

∣

x ⊂ y,
dim(x ∩ Vai+i) = i,
dim(x ∩ Vai+i−1) = i− 1

(i = 1, 2, · · · , p)







.

Here we fix an x ∈ Ωα. To satisfy x ⊂ y, y must have the same gaps of
dimensions of intersection with the complete flag of E as ones of x. Therefore
β̂ must satisfy β̂ ⊃ α̂.

Let x ∈ Ωα, y ∈ Ωβ where α̂ ⊂ β̂. Then we can modify the basis of
the whole space E to contain the basis of y without modifying the original
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complete flag. y has the complete flag which is a subflag of the complete flag
of E. That is, we define the complete flag of y;

Vb1+1 ⊂ Vb2+2 ⊂ · · · ⊂ Vbq+q

‖ ‖ · · · ‖
V ′

1 ⊂ V ′
2 ⊂ · · · ⊂ V ′

q = y.

By considering in y, then the fiber above is a Schubert cell of Fq(p);

g−1(y) ∩ S ∩ f−1(Ω◦
α)

'

{

x ∈ Fq(p)

∣

∣

∣

∣

dim(x ∩ Vai+i) = i,
dim(x ∩ Vai+i−1) = i− 1

(i = 1, 2, · · · , p)

}

'

{

x ∈ Fq(p)

∣

∣

∣

∣

∣

dim(x ∩ V ′
σ

α̂,β̂
(i)) = i,

dim(x ∩ V ′
σ

α̂,β̂
(i)−1) = i− 1

(i = 1, 2, · · · , p)

}

.

Therefore we should calculate the Euler-Poincaré index with compact
supports of this Schubert cell. In the complex case, it is equal to 1. In the
real case, it is equal to (−1)c

α̂,β̂ . So we obtain results.

We can represent this formula with using Young diagrams when p = 1,
q = n.

Definition 5.4. For a Young diagram λ = (k) with at most a row and n
columns, we define its dual with at most n rows and a column;

n− k
λ∗ = (1, 1, · · · , 1, 1, 0, 0, · · · , 0).

Definition 5.5. Let λ be a Young diagram with at most a row and n
columns. For a Young diagram with at most n rows and a columns µ, we
define

τλ(µ) =

{

n− |λ| (for n− |λ| < |µ|),
n− |λ| − 1 (for n− |λ| ≥ |µ|).

Proposition 5.6. Let λ be any Young diagram with a row and n columns.

(i) In the complex case, we have

RS(1Ω◦

λ
) =

∑

µ6=λ∗

1Ω◦

µ
,
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where µ ranges through Young diagrams with at most n rows and a
column which are not equal to λ∗.

When we denote Young diagrams by λk = (k) (0 ≤ k ≤ n), we can
represent this formula by a matrix;

RS











1Ωλ0

1Ωλ1

...
1Ωλn











=















0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
. . .

...
1 1 1 · · · 0

























1Ωλ∗

0

1Ωλ∗

1

...
1Ωλ∗

n











.

(ii) In the real case, we have

RS(1Ω◦

λ
) =

∑

µ6=λ∗

(−1)τλ(µ)1Ω◦

µ
,

where µ ranges through Young diagrams with at most n rows and a
column which are not equal to λ∗.

When we denote Young diagrams by λk = (k) (0 ≤ k ≤ n), we can
represent this formula by a matrix;

RS











1Ωλ0

1Ωλ1

...
1Ωλn











=















0 (−1)n−1 (−1)n−1 · · · (−1)n−1

(−1)n−1 0 (−1)n−2 · · · (−1)n−2

(−1)n−2 (−1)n−2 0 (−1)n−3

...
...

. . .
...

1 1 1 · · · 0

























1Ωλ∗

0

1Ωλ∗

1

...
1Ωλ∗

n











.
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