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The Arnold Conjecture. There is a book “Arnold’s Problem”
2nd edition, Springer-Verlag, Berlin, 2004, 656 pages by Vladimir
I. Arnold:
Problem 1990-27(=1987-14) An ovaloid in Rn (that is, a
closed hypersurface bounding a convex body) is said to be alge-
braically integrable if the volume cut oÆ by a hyperplane from
this ovaloid is an algebraic function of the hyperplane. Do there
exist algebraically integrable smooth ovaloids diÆerent from el-
lipsoid in Rn with odd n? This is generalization of Newton ’ s
theorem for higher dimensions.

Newton’s theorem about ovals (lemma 28 of section VI of
book 1 of Newton’s Principia) There is no convex smooth (mean-
ing infinitely diÆerentiable) curve such that the area cut oÆ by a
line ax+ by = c is an algebraic function of a, b, and c. As for the



assumption, the smoothness of convex curves is necessary, be-
cause triangles and Huygens lemniscate (x2+y2)2 = 2Æ2(x2°y2)
are algebraically integrable.

Indeed, for Æ > 0,°1 < a < b < 1, put

D := {(x, y) 2 R2 | (x2 + y2)2 ∑ 2Æ2(x2 ° y2), ax ∑ y ∑ bx}.
Then,

|D| = Æ2
µ

b

1 + b2
°

a

1 + a2

∂
.





1. Real analyticity of the C1surface which is
the support of a distribution

Theorem 1.1 U：a neighborhood of
±
x(2 Rn), ™(x) 2 C1(U).

ß := {(x, y) 2 Rn £ R | y = ™(x), x 2 U}.
If a distribution:f(x, y) 2 D 0(U £R) satisfies the following (i),(ii):

(i) (
±
x,™(

±
x)) 2 supp(f) Ω ß,

(ii) WFA(f) \ {(±x,™(
±
x); ª · dx + 0 · dy) | 0 6= ª 2 Rn} = ;

(That is, f(x, y) depends real analytically on x).

Then, ™(x) is analytic at x =
±
x.

Remark 1.2. A similar result does not hold in C1 category.
f(x, y) = '(x)e°1/x2

±(y°|x|3) ('(x) 2 C10 (R), '(x) ¥ 1 (|x| < ≤))．



Corollary 1.3. Let Y(t) be the Heaviside function, and
u(x, y)( 6¥ 0) be an analytic function at (

±
x,™(

±
x)). Then, Theorem

1.1 also holds for f(x, y) = u(x, y)Y(y °™(x)).

Remark 1.4. Because we can apply the theorem to
g := uy · @yf ° uy · f = u(x, y)±(y °™(x)). On the other hand, a
similar result does not hold for a distribution supported by the
half space {y ∏ ™(x)}. For example,

f(x, y) = Y (y ° x2) + Y (y ° x2 + x3)

is supported by {y ∏ x2°(x)3+}, and f satisfies the condition (ii)
at (0,0), where (t)+ = t (t ∏ 0),= 0 (t < 0). But, its boundary
is only of C2 class, but not of C3 class at (0,0).

Proof of Theorem 1.1. By translation, we may assume ™(
±
x) >

0. By the assumption on WFA(f), we can substitute any fixed



value for x in f(x, y). Therefore, we can write f(x, y) as follows:

f(x, y) =
m°1X

j=0
(°1)jqj(x)±

(j)(y °™(x)),

where m(∏ 1) depends on x, but m is locally bounded since f is
a distribution on U £R. Further, again by the WFA assumption,

h`(x) :=
Z 1

°1
f(x, y)y`dy =

m°1X

j=0
`(`° 1) · · · (`° j +1)qj(x)™(x)`°j

is an analytic function of x at
±
x for ` = 0,1,2, . . .. Put

Q(x) = t(q0(x), . . . , qm°1(x)), Hs = t(hs(x), . . . , hm°1+s(x)).

We may assume qm°1(x) 6¥ 0 at
±
x. Then we have a series of



linear equations:

MsQ = Hs (C!-vector), (8s = 0,1,2, . . .),

where

Ms =
≥
cs+k,j™

s+k°j
¥

k,j=0,1,...,m°1
, c`,j := `!/(`° j)!.

Lemma 1.5. For 8s = 0,1,2, . . .

™(x)msqm°1(x)
m

is analytic at x =
±
x.

Proof of Lemma 1.5. Put

N =
≥
(k + 1)±k+1,j

¥

k,j=0,1,...,m°1
.

Then, we have

Ms+1 = Ms(™I + N) = M0(™I + N)s+1,



N` =
≥
(k + 1) · · · (k + `)±k+`,j

¥

k,j=0,1,...,m°1
.

Note that

det(MsQ, · · · , Ms+m°1Q) = det(Hs, · · · , Hs+m°1) 2 C! (s = 0,1,2, . . .).

The left hand side is equal to

det
µ
Ms ·

≥
Q, (™I + N)Q, · · · , (™I + N)m°1Q

¥∂

= detMs · det
µ
Q, (™I + N)Q, · · · , (™I + N)m°1Q

∂

= detM0 det(™I + N)s · det
µ
Q, · · · , (™I + N)m°1Q

∂

= detM0 ·™ms · det(Q, NQ, N2Q, · · · , Nm°1Q)

= 1!2! · · · (m° 1)! ·™ms · (±1)

0

@
m°1Y

p=1
pp

1

A · qm
m°1



= (±1)(m° 1)!m™msqm
m°1.

This completes the proof of Lemma 1.5. By this lemma, B(x) :=
qm°1(x)m 6¥ 0, A(x) := ™(x)mqm°1(x)m are analytic at

±
x (put

s = 0, or s = 1). Therefore ™(x)m = A(x)/B(x), and

B(x)(A(x)/B(x))s

is analytic at
±
x for any s = 0,1,2, . . .. Since the ring R of all

analytic functions at
±
x is a UFD (unique factorization domain),

A(x)/B(x) must belong to R (use uniqueness of prime factoriza-
tion!). Hence ™(x)m is analytic at

±
x. Remembering ™(

±
x) > 0,

we have the analyticity of ™(x) at
±
x. Further by using the equa-

tions:

M0Q = H0, detM0 = 1!2! · · · (m° 1)! 6= 0,

we get the analyticity of Q = t(q0(x), . . . , qm°1(x)) at
±
x.



2. The support of a Radon transform and
ellipsoidal regions

D Ω Rn: a bounded convex open set such that 0 2 D.
f(x) 2 D 0(Rn) such that supp f Ω D (the closure of D). Then
the Radon transform of f :

Rf(!, p) :=
Z

x·!=p
f(x)dS =

Z

Rn
±(x·!°p) f(x)dx, (!, p) 2 Sn°1£R

Here dS is the (n° 1)-dim measure on hyperplanes. Define

Ω(!) := sup{x · ! | x 2 D}.

Then

supp
≥
Rf(!, p)

¥
Ω {(!, p) 2 Sn°1 £ R | °Ω(°!) ∑ p ∑ Ω(!)}.



Theorem 2.1. Suppose that f 6¥ 0, and that

supp
≥
Rf(!, p)

¥
Ω ßD := {(!, p) 2 Sn°1£R | p = Ω(!),or °Ω(°!)}.

Further suppose that @D is a strictly convex C2 boundary. Then,
D is an ellipsoidal region. That is, after some translation and
some rotation of coordinates, we have

D =

8
<

:x 2 Rn |
nX

j=1

x2
j

Øj
° 1 < 0

9
=

;

with some Ø1, . . . , Øn > 0.

Remark 2.2. He only assumed that D is a bounded open convex
domain in his paper in 2021. But there is a proof gap: qm°1(!) 6¥
0 ?) qm°1(!)qm°1(°!) 6¥ 0 for some function qm°1(!) on Sn°1.
Concerning this, he assumend D = °D (symmetric condition) in



the former paper in 2020. Together with the result of Theorem
1.1, we can conclude Theorem 2.1 under the strictly convex C2

boundary condition because ßD = {p = ±Ω(±!)} becomes a C1

surface in Sn°1 £ R. Hence, Ω(!) and qm°1(!) becomes real
analytic, and so qm°1(!) 6¥ 0 ) qm°1(!)qm°1(°!) 6¥ 0.

Example 2.3. Set D = {x 2 R2 | |x| =
q

x2
1 + x2

2 < 1}, and

f(x) :=
1

º

µ
(1° |x|2)°1/2

+ + ¢x(1° |x|2)1/2
+

∂
,

then, Rf(!, p) = ±(p° 1) + ±(p + 1). This is because

Rf(!, p) = ¬{|p|<1}(!) + @2
p

µ1

2
(1° p2)+

∂
= ±(p° 1) + ±(p + 1).

Remark 2.4. (Application of Theorem 1.1 to Radon transforms)



Assume that D is locally expressed by

D = {xn > '(x0)},
≥
'xixj(x

0)
¥

i,j=1,...,n°1
¿ 0,

then x · ! = x0 · !0 + '(x0)!n takes the maximum on @D at
x0 = (x1, . . . , xn°1) = x0(!) such that

'xi(x
0) = °!i/!n (i = 1, . . . , n° 1).

Hence, by the inverse mapping theorem,

Ω(!) = x0(!) · !0 + '(x0(!)) · !n

is a C1 function of !. Further, in {!n > 0}, we can take y0 =

!0/!n as coordinates of Sn°1. Since xn + x0 · y0 ° p
q

1 + |y0|2 = 0,

Rf(y0, p) =
q

1 + |y0|2
Z

Rn°1
f(x0, p

q
1 + |y0|2 ° y0 · x0)dx0.



Therefore, the cotangential direction of the analytic wavefront
set of the integrand is

¥0dx0 + ¥nd(p
q

1 + |y0|2 ° y0 · x0)

= (¥0 ° ¥ny0)dx0 + ¥n

q
1 + |y0|2 dp + ¥n(§§)dy0.

Hence,

WFA(Rf) Ω
Ω
(y0, p; ª0dy0 ±

q
1 + |y0|2dp) | y0, p, ª0

æ
,

and so Rf(y0, p) is depending real analytically on y0. Thus The-
orem 1.1 can be applied to Rf(y0, p) and ßD = {p = Ω(y0)}.

Proof of Theorem 2.1.: Note that Rf(°!,°p) = Rf(!, p) by
the definition of a Radon transform. Hence we can assume the



following form of Rf(!, p):

Rf(!, p) =
m°1X

j=0

µ
qj(!)±(j)(p°Ω(!))+(°1)jqj(°!)±(j)(p+Ω(°!))

∂
.

Since Rf(!, p) depends real analytically on !, the argument
similar to the proof of Theorem 1.1 is available. Consider the
moments of Rf(!, p) with respect to p:

h`(!) :=
Z

R
p`Rf(!, p)dp =

Z

Rn
f(x)(x · !)`dx (` = 0,1, . . .),

where h` 2 P` := {homogeneous polynomials of ! 2 Rn with degree `}.
Therefore, putting c`,j = `!/(`° j)!, we have

m°1X

j=0
(°1)jc`,j

µ
Ω(!)`°jqj(!)+(°1)`Ω(°!)`°jqj(°!)

∂
= h`(!) 2 P`.



Using the notation q̃j(!) = qj(°!), Ω̃(!) = Ω(°!), we set

Q := t(q0, . . . , qm°1, q̃0, . . . , q̃m°1),
Hs := t(hs, . . . , hs+m°1, hs+m, . . . , hs+2m°1),
Ms := (M 0

s, M 00
s ),

M 0
s :=

≥
(°1)jcs+k,jΩ

s+k°j
¥

k=0,...,2m°1,j=0,1,...,m°1
,

M 00
s :=

≥
(°1)j°m+s+kcs+k,j°mΩ̃ s+k°j+m

¥

k=0,...,2m°1,j=m,...,2m°1
.

Hence we get MsQ = Hs (s = 0,1,2, . . .). We prepare 3 lemmas.

Lemma 2.5. (Ω(!)Ω̃(!))m is a polynomial in !.
Proof. Setting

N 0 =
≥
(k + 1)±k+1,j

¥

k,j=0,1,...,m°1
, N 00 =

≥
(k °m + 1)±k+1,j

¥

k,j=m,...,2m°1

we have

M 0
s+1 = ΩM 0

s(ΩIm °N 0), M 00
s+1 = M 00

s (°Ω̃Im + N 00).



Therefore,

Ms+1 = Ms

√
ΩIm °N 0 0

0 °Ω̃Im + N 00

!

= M0

√
ΩIm °N 0 0

0 °Ω̃Im + N 00

!s+1

.

So we consider the following determinant as before:

det
≥
MsQ, . . . , Ms+2m°1Q

¥
= det(Hs, . . . , Hs+2m°1) 2 P§,

with § = s+(s+1)+ · · ·+(s+2m°1) = m(2s+2m°1)．Then
the left side is equal to

detMs · det(Q, KQ, . . . , K2m°1Q),

where

K =

√
ΩIm °N 0 0

0 °Ω̃Im + N 00

!

, Ms = M0 Ks.

We have

detMs = detM0 · (detK)s = detM0 · (°ΩΩ̃)ms.



As for detM0, we can find the value:

detM0 = Cm · (Ω + Ω̃)m2
,

where Cm is a non-zero constant. Since Ω(!), Ω̃(!) = Ω(°!) are
positive, detM0 6= 0.
Further, as for

A := det(Q, KQ, . . . , K2m°1Q),

putting
Q = t(Q0, Q00), Q0 := t(q0, . . . , qm°1), Q00 := t(q̃0, . . . , q̃m°1), we
obtain

K`Q =

√
(ΩIm °N 0)`Q0

(°Ω̃Im + N 00)`Q00

!

.

So,

A = det

√
Q0 (ΩIm °N 0)Q0 · · · (ΩIm °N 0)2m°1Q0

Q00 (°Ω̃Im + N 00)Q00 · · · (°Ω̃Im + N 00)2m°1Q00

!

,



and we can find its value

A = C0m(qm°1q̃m°1)
m(Ω + Ω̃)m2

,

where C0m is a non-zero constant. Hence we have

(qm°1q̃m°1)
m(Ω + Ω̃)2m2

· (ΩΩ̃)ms 2 Pm(2s+2m°1) (s = 0,1, . . .).

So, if qm°1(!)q̃m°1(!) = qm°1(!)qm°1(°!) 6¥ 0, the argument
similar to the proof of Theorem 1.1 works because the polynomial
ring is a UFD. Hence (Ω(!)Ω̃(!))m is a homogeneous polynomial
of order 2m.

Lemma 2.6. Ω(!) ° Ω̃(!), Ω(!)Ω̃(!) are homogeneous rational
functions of !.
Proof. To get more information from

MsQ = Hs (s = 0,1,2, . . .),



we remove Q from these equations, and make equations among
Hs (s = 0,1,2, . . .) such that

Hs+1 = SsHs.

To do so, we must find a matrix Ss satisfying

SsMs = Ms+1.

The following nilpotent matrix P lifts each row by 1 row :

P = (±k+1,j)k,j=0,1,...,2m°1.

So, we can assume the following form of Ss:

Ss :=

√
(±k+1,j)k=0,1,...,2m°2,j=0,...,2m°1

æ2m, æ2m°2, . . . , æ2, æ1

!

.

Since Ms = M0Ks, we have

Ms+1 = SsMs ø M0K = SsM0.



So, we can put s = 0, and the equations for æ` (` = 1,2, . . . ,2m)
are written as follows: For j = 0,1, . . . , m°1 with (u, v) = (Ω,°Ω̃),

8
<

:

P2m
`=1 c2m°`,ju

°`æ`(u, v) = c2m,j,P2m
`=1 c2m°`,jv

°`æ`(u, v) = c2m,j.

Boman found the solutions æ`(u, v) as the following coe±cients:

G(t) = (t° u)m(t° v)m = t2m °
2m°1X

j=0
tj æ2m°j(u, v).

So, æ1(u, v) = m(u + v), æ2(u, v) = °m(m°1)
2 (u2 + v2)°m2uv.

Since

S0H` = H`+1 (` = 0,1, . . .),



we obtain the following equations from the 2m-th component:

2m°1X

k=0
æ2m°khk+` = h`+2m (` = 0,1, . . .).

We consider these equations for ` = 0,1, . . . ,2m ° 1 as the
equations for æ` (` = 1,2, . . . ,2m). To do so, we must investigate
the determinant of

W0 :=
≥
hj+k

¥

j,k=0,1,...,2m°1
=

µ
M0Q, M1Q, · · · , M2m°1Q

∂
.

Since

detW0 = detM0·det
µ
Q, KQ, K2Q, · · · , K2m°1Q

∂
= detM0·A 6¥ 0

as seen before, æ§ is written as
0

B@
æ2m
...

æ1

1

CA = W°1
0

0

B@
h2m
...

h4m°1

1

CA .



Therefore, Ω(!) ° Ω̃(!) = u + v = æ1/m, Ω(!)Ω̃(!) = °uv =
1
m(æ2 + m°1

2m æ2
1) are homogeneous rational functions of ! with

degrees 1 and 2 respectively.

Lemma 2.7. Ω(!)Ω̃(!), Ω(!)° Ω̃(!) are homogeneous polynomi-
als of ! with degrees 2 and 1 respectively.
proof. As for Ω(!)Ω̃(!), we can write Ω(!)Ω̃(!) = U(!)/V (!)
(the irreducible fraction expression) by Lemma 2.6, where U, V

are some homogeneous polynomials of !. By the proof of Lemma
2.5, we have

(qm°1q̃m°1)
m(Ω+Ω̃)2m2

·
√

U(!)

V (!)

!ms

2 Pm(2s+2m°1) (s = 0,1, . . .).

So, by the similar argument as before, we obtain that V (!)
is a non-zero constant. Namely, Ω(!)Ω̃(!) is a homogeneous



polynomial with degree 2.
Concerning Ω° Ω̃, we consider the Trace of the matrix K`:

Tr(K`) = Tr

√
(ΩIm °N 0)` 0

0 (°Ω̃Im + N 00)`

!

= m{Ω(!)`+(°Ω̃(!))`}.

Since M0K = SM0 by the definition of S = S0, we have S =
M0KM°1

0 and so Tr(S`) = Tr(K`) = m{Ω(!)` + (°Ω̃(!))`}.
Further, since H`+1 = SH` = S`+1H0, putting

W` :=
≥
hj+k+`

¥

j,k=0,1,··· ,2m°1
= (H`, · · · , H`+2m°1) = S`W0,

we have S` = W`W
°1
0 . Therefore Tr(S`) is the coe±cient of

(°∏)m°1 of

det
≥
W`W

°1
0 ° ∏Im

¥
.

Hence the denominator of Ω(!)`+(°Ω̃(!))` is a divisor of (detW0)2m

for any ` = 1,2,3, . . .. Let Ω(!) ° Ω̃(!) := X(!)/Y (!) (the irre-



ducible fraction expression). Then,

(X/Y )2 = Ω(!)2 + Ω̃(!)2 ° 2ΩΩ̃,

(X/Y )4 = Ω(!)4 + Ω̃(!)4 ° 4ΩΩ̃(X/Y )2 ° 2(ΩΩ̃)2,
...

Since ΩΩ̃ is a polynomial, the denominators of right-sides remain
as divisors of (detW0)2m. On the other hand the denominators
of the left sides increase if Y is not a constant when we consider
(X/Y )2

s
(s = 1,2,3, . . .). Contradiction! So Y is a non-zero

constant, and Ω(!) ° Ω̃(!) is a homogeneous polynomial with
degree 1. This completes the proof of Lemma 2.7.

By Lemma 2.7, we have a vector Æ 2 Rn such that

Ω(!)° Ω(°!) = Æ · !.



Take a new coordinate system x0 = x° 1
2Æ for D. Then

Ω0(!) = sup{(x°
1

2
Æ) · ! | x 2 K} = Ω(!)°

1

2
Æ · !.

Therefore

Ω0(!)° Ω0(°!) = Ω(!)°
1

2
Æ · ! ° (Ω(°!) +

1

2
Æ · !) = 0.

On the other hand, since Ω0(!)2 = Ω0(!)Ω0(°!) is a homogeneous
polynomial Z(!) with degree 2, we conclude that

Ω0(!) =
q

Z(!).

Since Z(!) should be a positive definite homogeneous polyno-
mial with degree 2, under a suitable rotation of D, we get the
form

Z(!) = Ø1!2
1 + · · ·+ Øn!2

n



with some positive constants Ø1, . . . , Øn. Then,

D = Interior of
\

!2Sn°1

Ω
x · ! ∑

q
Z(!)

æ
=

8
<

:x 2 Rn |
nX

j=1

x2
j

Øj
° 1 < 0

9
=

; .



3. A new proof of the Arnold conjecture and
some related results

3.1. The volume function for D and the Radon transform
of ¬D. Let D(3 0) be a bounded domain of Rn, and ¬D(x) be
its characteristic function. Then,

R¬D(!, p) = |D \ {x 2 Rn | x · ! = p}| ((n°1)°dimensional volume).

Hence, the volume function for D is given by

VD(!, p) = |D \ {x · ! < p}| =
Z p

°Ω(°!)
R¬D(!, s)ds.

Example 3.1.1.　For D := {x 2 Rn | |x| :=
q

x2
1 + · · ·+ x2

n < 1},

R¬D(!, p) = cn°1(1° p2)(n°1)/2
+ ,



for some cn°1 > 0 because D\{x·! = p} is an (n°1)-dimensional

ball with radius
q

1° p2. For any ellipsoidal region D, there is an
a±ne bijective map:

x := ©(x̃) =
nX

j=1
aijx̃+bi : D ª°! D, !̃j :=

nX

i=1
aij!i, |!̃| :=

vuuut
nX

j=1
!̃2

j .

Hence, we have

R¬D(!, p) = cn°1|det(aij)| · |!̃|°n
µ
|!̃|2 ° (p° b · !)2

∂(n°1)/2

+
.

3.2. A.Koldobsky-A.Merkurjev-V.Yaskin’s result:　On poly-
nomially integrable convex bodies, Advances in Mathematics 320
(2017), 876-886. They proved : For an odd n and a C1 smooth



convex @D, if the volume function VD(!, p) is a polynomial of p

with degree< N (N : independent of !), then D is an ellipsoidal
region.

3.3. M.L.Agranovsky’s results:

1. On polynomially integrable domains in Euclidean spaces,
in: Complex Analysis and Dynamical Systems, New Trends and
Open Problems, Birkhauser (2018), 1-21. He proved:
In Theorem 2, There are no polynomially integrable domain with
C2-smooth boundary in Rn with even n.
In Theorem 5, If a smoothly bounded domain D in Rn (with n

odd) is polynomially integrable, then it is convex.
In Theorem 7, he got a weaker version of A.Koldobsky-A.Merkurjev-
V.Yaskin’s result.



2. On algebraically integrable bodies. In: Contemporary Math-
ematics, Functional Analysis and Geometry. Selim Krein Cen-
tennial, AMS, Providence RI, 33–44 (2019): Let n ∏ 3 be odd
and D Ω Rn be a bounded domain with infinitely smooth bound-
ary @D. Further suppose that D is an algebraically integrable
domain, free of real singularities, then, D is a polynomially inte-
grable domain. Hence, D is an ellipsoidal region.
His arguments (for n:odd) are as follows:

(D : bdd, C1 boundary) + (VD(!, p) : algebraic in p)
=) (D : bdd, C1 boundary) + (VD(!, p) : polynomial in p)
=) (D : bdd, convex, C1 boundary) + (VD(!, p) : polynomial in p)
=) D : an ellipsoidal region.

3.4. Boman’s new proof: His new proof is for the part:

(D : bdd, C2 strictly convex boundary) + (VD(!, p) : polynomial in p)



=) D : an ellipsoidal region.

Proof. Since R¬D(!, p) = @pVD(!, p), R¬D(!, p) is a polynomial
of p, whose degree is less than an integer N independent of !.
Therefore, for a su±ciently large integer m > 0, we have

0 = @2m
p R¬D(!, p) = R(¢m

x ¬D)(!, p), p 2 (°Ω(°!), Ω(!)).

For any distribution f(x) with compact support, we have

(@p)2mRf(!, p) =
Z

Rn
±(2m)(x · ! ° p)f(x)dx =

Z

Rn
±(x · ! ° p)¢m

x f(x)dx

= R((¢x)mf)(!, p).

g(x) = ¢m
x ¬D(x) is a distribution with support in a compact

set D, and the support of its Radon transform is included in
ßD = {p = ±Ω(±!)}. Further ¢m

x ¬D(x) 6¥ 0 because its Fourier
transform (°|ª|2)mF [¬D](ª) 6¥ 0. Therefore, by Theorem 2.1,
we conclude that D is an ellipsoidal region.



Appendix (Theorems of M.L.Agranovsky).

In this section, D is a bounded domain in Rn such that 0 2 D.

4.1. The volume function VD(!, p) is algebraic ) polyno-
mial.
Definition 4.1.1. VD(!, p) is said to be algebraic in p if there is
a polynomial Q(!, p, w) in p, w given by

Q(!, p, w) =
NX

j=0
qj(!, p)wj, qj(!, p) =

kjX

k=0
qjk(!)pk (j = 0, . . . , N),

where qjk(!) 2 C0(Sn°1) such that Q(!, p, VD(!, p)) = 0 on
Sn°1 £ (°±, ±) for some small ± > 0. Further we assume the
following conditions (i), (ii) on the discriminant DiscQ(!, p) of
Q.



Discriminant Conditions:
(i) DiscQ(!, p) 6= 0 on Sn°1 £ {p 2 C | Im p = 0}, (ii) d(!) 6=
0 (8! 2 Sn°1) for the highest coe±cient d(!) of DiscQ(!, p) in
p.

In general, the discriminant of a polynomial

P (w) := a0 + a1w + · · ·+ aNwN = aN(w ° Ø1) · · · (w ° ØN)

is defined by

a2N°2
N

Y

i<j

(Øi ° Øj)
2,

which is the resultant of P (w), P 0(w). On the other hand ours is

DiscQ(!, p) := qN(!, p)2N°1 Y

i<j

(wi(!, p)° wj(!, p))2,



where {wi(!, p)}N
i=1 are all the roots of Q(!, p, w) = 0 in w.

Key Lemma 4.1.2. For n odd, and supp f : compact, then,
Z

Sn°1
(@n°1

p Rf)(!, x · !)dS(!) = (°1)(n°1)/22nºn°1f(x).

This integral vanishes for n even.

We consider the L2-inner product for functions Æ, Ø on Sn°1 =
{! 2 Rn | |!| = 1}:

hÆ, Øi :=
Z

Sn°1
Æ(!)Ø(!)dS(!).

To obtain a global expression of VD(!, p) in p, we use an expan-
sion of VD by orthogonal polynomials of !; that is, an expansion



by spherical harmonic functions on Rn. Let

Hk := {f(!) 2 Pk | ¢!f = 0}.

Key Lemma 4.1.3. Let {Y (m)
k (!)}m, (m = 0,±1,±2, ...,±k) be

the orthonormal base of Hk with respect to the inner product
on Sn°1 for k = 0,1,2, . . .. Putting

Vk,m(p) :=
Z

Sn°1
VD(!, p) · Y (m)

k (!)dS(!),

we have a global expression of VD in p:

VD(!, p) =
1X

k=0

kX

m=°k

Vk,m(p)Y (m)
k (!).



4.2. The volume function VD(!, p) is polynomial ) D is

convex.

(Or the convergence radius of
P1

j=0(@
jVD(!,0)/@pj) · pj is larger

than the diameter of D ) D is convex.)

Key Lemma 4.2.1.(Parseval type formula for Radon trans-

forms.)

For odd n and suitable functions f(x), g(x) on Rn, we have
Z

Rn
f(x)g(x)dx =

1

2(°4º2)(n°1)/2

Z

Sn°1£R
@n°1

p Rf(!, p)·Rg(!, p)dp dS(!).

For example, f 2 C10 (Rn), g 2 D 0(Rn) with compact support K.



ご清聴ありがとうございました！


