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The Arnold Conjecture. There is a book "Arnold’'s Problem”
2nd edition, Springer-Verlag, Berlin, 2004, 656 pages by Vladimir
I. Arnold:

Problem 1990-27(=1987-14) An ovaloid in R"™ (that is, a
closed hypersurface bounding a convex body) is said to be alge-
braically integrable if the volume cut off by a hyperplane from
this ovaloid is an algebraic function of the hyperplane. Do there
exist algebraically integrable smooth ovaloids different from el-
lipsoid in R™ with odd n7?  This is generalization of Newton’ s
theorem for higher dimensions.

Newton’s theorem about ovals (lemma 28 of section VI of
book 1 of Newton's Principia) There is no convex smooth (mean-
ing infinitely differentiable) curve such that the area cut off by a
line ax+ by = c is an algebraic function of a,b, and c¢. As for the



assumption, the smoothness of convex curves is necessary, be-
cause triangles and Huygens lemniscate (22 +42)?2 = 2a2(z2—y?)
are algebraically integrable.

y=b

D
L7

y=ax

Indeed, for a > 0,—-1<a<b<1, put
D = {(z,y) € R? | (z° + y?)? < 2a°(z” — y?),az < y < ba}.
Then,

|D|:a2(1ﬁb2_1ja2>'
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1. Real analyticity of the Clsurface which is
the support of a distribution

Theorem 1.1 U:a neighborhood of z(€ R?), W(x) € CL(U).
> i={(z,y) eR"XR|y=W(z),z € U}.
If a distribution: f(z,vy) € 2'(U x R) satisfies the following (i), (ii):

() (z,W(z)) € supp(f) C X,

(i) WFA(f) N{(2,W(2);§ do+ 0-dy) |0# £ €R} =0
(That is, f(x,y) depends real analytically on x).

Then, W(z) is analytic at = = .

Remark 1.2. A sQimiIar result does not hold in C°° category.
flzy) = @(@)e Y 65(y—|z3) (p(z) € CE(R), p(z) = 1 (Jz] < €)).



Corollary 1.3. Let Y(¢) be the Heaviside function, and
w(z,y)(# 0) be an analytic function at (z, W(2)). Then, Theorem
1.1 also holds for f(z,y) = u(z,y)Y(y — W(x)).

Remark 1.4. Because we can apply the theorem to

g = uy-Oyf —uy-f=ulz,y)(y—V(x)). On the other hand, a
similar result does not hold for a distribution supported by the
half space {y > W(x)}. For example,

flz,y) =Y(y—2%) + Y(y — 2° + )
is supported by {y > #%—(x)3 }, and f satisfies the condition (ii)
at (0,0), where (t); =t (t >0),= 0 (t < 0). But, its boundary
is only of C? class, but not of C3 class at (0, 0).

Proof of Theorem 1.1. By translation, we may assume W(z) >
0. By the assumption on WF 4(f), we can substitute any fixed



value for xz in f(x,y). Therefore, we can write f(x,vy) as follows:

flzy) = 3 (=1)g;(x)sY) (y — w(a)),

j=0
where m(> 1) depends on z, but m is locally bounded since f is
a distribution on U x R. Further, again by the WF 4 assumption,

he(z) 1= /_ f(z,y)y'dy = Z 0l —1)- (£ —j+1)gi(z)W(x)"

7=0
IS an analytic function of z at z for £ = 0,1,2,.... Put
Q(z) ="(qo(®),...,qm-1(x)), Hs="(hs(x),... , hp_14s()).

We may assume ¢, 1(z) # 0 at 2. Then we have a series of



linear equations:
MsQ = Hs (C%-vector), (Vs=0,1,2,...),
where
— Ass+k—) rp— — NI
Ms (CS+’~€>JW >k:,j:O,1,...,m—1’ ce =4/ =)
Lemma 1.5. ForvVvs=0,1,2,...

W ()" gm—1(x)™

IS analytic at z = T
Proof of Lemma 1.5. Put

N = ((k+ 1)6p11)

Then, we have

k,j=0,1,...m—1"

Myyq = Ms(WI+ N) = Mo(WI + N)5T1



Nt = ((k +1)---(k+ e)ak%j)
Note that

det(MSQ7 o 7Ms—|—m—1Q) — det(H57 e 7H8—|—m—1) € Cw (8 — 07 17 27 .- )
The left hand side is equal to

det (M; - (Q, (WI+N)Q, -+, (WI+ N)""1Q))

k,j=0,1,...m—1"

= det Ms - det (Q, (\UI + N)Q, cee (\UI + N)m_lQ)
= det Mo det(WI + N)* - det (Q, (W4 N)m_1Q>

= det MO TS det(Q) NQ) N2Q7 e 7Nm_1Q)

m—1
:1!2!---(m1)!-wm3-(i1)<ﬂ pp) Q1
p=1



= (+1)(m — 1)Imymsgm__.

This completes the proof of Lemma 1.5. By thislemma, B(z) :=
g 1(2)™ % 0, A(x) = W(x)Mq,, 1(x)™ are analytic at z (put
s =0, or s=1). Therefore W(x)™ = A(x)/B(x), and

B(z)(A(z)/B(x))”

IS analytic at z for any s = 0,1,2,.... Since the ring R of all
analytic functions at z is a UFD (unique factorization domain),
A(x)/B(x) must belong to R (use uniqueness of prime factoriza-
tion!). Hence W(z)™ is analytic at z. Remembering W(z) > 0,
we have the analyticity of W(z) at z. Further by using the equa-
tions:

MoQZHo, detMO:1!2!---(m—1)!7éO,
we get the analyticity of Q = t(qo(2),...,qm_1(z)) at z.



2. The support of a Radon transform and
ellipsoidal regions

D C R™: a bounded convex open set such that 0 € D.
f(x) € 2/(R™) such that supp f € D (the closure of D). Then
the Radon transform of f:

Rf(w,p)i= [ _ f@)dS= [ 8(w—p)f(@)ds, (w,p)ES"IxR
T-W=p R”™
Here dS is the (n — 1)-dim measure on hyperplanes. Define
p(w) :=sup{z-w |z € D}.
Then

supp (Rf(w,p)) C {(w,p) € S" T xR | —p(~w) < p < p(w)}.



Theorem 2.1. Suppose that f # 0, and that

supp (Rf(w,p)) CXp:={(w,p) € STl R | p = p(w),or —p(—w)}.

Further suppose that 9D is a strictly convex C2 boundary. Then,
D is an ellipsoidal region. That is, after some translation and
some rotation of coordinates, we have

.
D=SzeR"| Y L-1<0
with some B31,...,08, > 0.

Remark 2.2. He only assumed that D is a bounded open convex
domain in his paper in 2021. But thereis a proof gap: ¢,,,_1(w) #
0 dm—1(w)gym_1(—w) Z 0 for some function ¢,,_1(w) on S7—1.
Concerning this, he assumend D = —D (symmetric condition) in



the former paper in 2020. Together with the result of Theorem
1.1, we can conclude Theorem 2.1 under the strictly convex C2
boundary condition because > = {p = +p(+w)} becomes a C*!
surface in S~ 1 x R. Hence, p(w) and ¢,,_1(w) becomes real

analytic, and so gy,—1(w) Z 0 = gp—1(w)gm—1(—w) # 0.

Example 2.3. Set D = {z ¢ R? | |z| = \/x% + x3 < 1}, and

f@) == (A= 12P3 + 2.1 - 1PY?).

then, Rf(w,p) =6(p—1)+d6(p+ 1). This is because

RI(p) = Xpjeny (@) + 02 (50 =D ) = 60— 1) + 6+ 1).

Remark 2.4. (Application of Theorem 1.1 to Radon transforms)



Assume that D is locally expressed by

D={an>e@)}, (po,@))

then z-w = 2’ - W' + p(a2’)w, takes the maximum on 0D at
= (x1,...,2,-1) = 2'(w) such that

1>>O,

1,9=1,....n—

() = —w;/wn (G=1,...,n—1).
Hence, by the inverse mapping theorem,
p(w) =2’ (w) - ' + (@' (w)) - wn

is a ¢! function of w. Further, in {wy, > 0}, we can take ¢y =
w' Jwy, as coordinates of S»~1. Since acn—I—:I:’~y’—p\/1 + 13/|2 = 0,

Rf(y,p) =1+ |y/|? /Rnl F@ o1+ )2 =y 2



Therefore, the cotangential direction of the analytic wavefront
set of the integrand is

n'dx’ + nnd(p\/ 14y =y - 2')
= (1 — gy )dz’ 4+ nay/1 + |12 dp 4 nn(xx)dy/.

Hence,

WF 4(Rf) C {(y’,p; gy +1/1+ |y/)2dp) y’,p,£’} ,

and so Rf(vy',p) is depending real analytically on y'. Thus The-
orem 1.1 can be applied to Rf(vy',p) and Zp = {p = p(¢/)}.

Proof of Theorem 2.1.: Note that Rf(—w, —p) = Rf(w,p) by
the definition of a Radon transform. Hence we can assume the



following form of Rf(w,p):

m—1

Ri@,p) = 3 (4@)6Dp=p@)F(~1g;(~)6D (pFp(-w)) ).
=0

Since Rf(w,p) depends real analytically on w, the argument

similar to the proof of Theorem 1.1 is available. Consider the

moments of Rf(w,p) with respect to p:

h(w) = [ p'RfF(w.p)dp = [ f@@)(@ w)de (€=0,1,..),

where hy € P, := {homogeneous polynomials of w € R™ with degree ¢}.
Therefore, putting ¢y ; = £!/(£ — j)!, we have

m—1

> (=g (p(@) ai(@)+ (-1 p(-w)g;(-w) ) = he(w) € Py
j=0



Using the notation g;(w) = ¢;(—w), p(w) = p(—w), we set

Q : t(QO) ° '7Qm—17607 ° '7§m—1)7

Hs :="(hs, s hotm—1, Rsms - -5 gtom—1),
Ms = (M, M),

I — (¢ _1\J . 3—I—k—j>
M = (( 1) Cstk,p k=0,....2m—1,j=0,1,...m—1’

. — k 55tk—j
Mé’ = ((—1)‘7 mest Cs+k,j—mP o ]+m)k:o ...2m—1,j=m,....2m—1"

Hence we get M.(Q = Hs (s =0,1,2,...). We prepare 3 lemmas.

Lemma 2.5. (p(w)p(w))™ is a polynomial in w.
Proof. Setting

N' = ((k 4 1)dp41,)

we have

" __ . .
k,j=0,1,...m—1 N7 = ((k m 1)5k+1’7)k,j=m,...,2m—1

M 1 = pMy(ply — N'), M 1 = MJ(—pLn + N").



Therefore,

v — g (PIn =N 0 _ oy (PIm— N’ 0 st
s+1 — S 0 _ﬁlm‘|‘N” — 0 0 —ﬁ]m+N” .

So we consider the following determinant as before:

det (MSQ, o MS+2m_1Q) = det(Hs, ..., Hyytom_1) € Px,

with x =s4+(s+1)4+---4+(s+2m—-—1) =m(2s+2m—1). Then
the left side is equal to

det M, - det(Q, KQ, ..., K2 1),
where

— pIm—N/ 0 — S

We have
det Mg = det My - (det K)® = det Mgy - (—pp)"™°.



As for det Mgy, we can find the value:
2
detMO:Cm(p_l_p)m )

where Cy, is @ non-zero constant. Since p(w), p(w) = p(—w) are
positive, det My #= 0.
Further, as for

A:=det(Q,KQ,..., K*10)

putting
Q =4Q,Q", Q =%, sqn-1), Q" = "do,-.,dm_1), We

obtain

(pIm — N)Q) >
(_ﬁIm_I_N//)eQ//

K'Q = <
So,

A = det (@’ (pIm = NQ' -+ (plm — N')2" 1) )
Q// (—ﬁlm—l—N//)QH"' (—ﬁ[m—I—N")Qm_lQ” y



and we can find its value

_ _ 2
A=Cl(gm-1Gm_1)"(p+ )™,

where C/. is a non-zero constant. Hence we have

- - 2 -

(Gm—1Gm—1)" (0 +5)"™ - (pD)™* € Ppy(2stom-1) (s=0,1,...).
So, if ¢gm—1(W)gm-1(w) = gn-1(W)gm—1(—w) # 0, the argument
similar to the proof of Theorem 1.1 works because the polynomial

ring is a UFD. Hence (p(w)p(w))™ is a homogeneous polynomial
of order 2m.

Lemma 2.6. p(w) — p(w), p(w)p(w) are homogeneous rational
functions of w.

Proof. To get more information from

MSQ:HS (82071,2,...),



we remove Q from these equations, and make equations among
Hs (s=0,1,2,...) such that

HS—|—1 — SsHs.
To do so, we must find a matrix Ss satisfying
SSMS — MS—l—l
The following nilpotent matrix P lifts each row by 1 row :

P = (0k4+1,)k,j=01,.. 2m—1-
So, we can assume the following form of Sg:

O2m>02m—2,---,02,01

Since Ms = MgK?®, we have

S, — ((5k+1,j)k=o,1,...,2m—2,j=0,...,2m—1> |

MS"—]. — SSMS = MOK — SsMO



So, we can put s = 0, and the equations for oy ({ =1,2,...,2m)
are written as follows: For 7 =0,1,...,m—1 with (u,v) = (p, —p),

Z%ﬁl CQm—é,jU_gaﬁ(ua v) = C2m, s
2 — _
Zﬁgl C2m—1,5Y Eae(u, v) = C2m,j-

Boman found the solutions o,(u,v) as the following coefficients:

2m—1
Gt)=(t—uw)"(t—v)"=t""— Y ) oop_i(u,v).
j=0
So, o1(u,v) =m(u+v), oo(u,v)= —W(’LLQ + v2) — m2uw.

Since

SoHy = Hy41 (£ =0,1,...),



we obtain the following equations from the 2m-th component:

2m—1
> Tom—thkte=hpgom (=0,1,...).
k=0
We consider these equations for ¢/ = 0,1,...,2m — 1 as the
equations foroy ({ = 1,2,...,2m). To do so, we must investigate

the determinant of
WO L= (hj_l_k)j,kzo,l,...,Qm—l — <MOQ7 M1Q7 R 7M2m—1Q>'
Since
det Wy = det My-det (Q, KQ,K?Q, - ,KQm_lQ) = det My-A Z 0
as seen before, o4 is written as
02m _q h2nz
o1 hgm—1



Therefore, p(w) —p(w) = u+v = o01/m, plw)plw) = —uv =
(0o + %—159) are homogeneous rational functions of w with
degrees 1 and 2 respectively.

Lemma 2.7. p(w)p(w), p(w) — p(w) are homogeneous polynomi-
als of w with degrees 2 and 1 respectively.

proof. As for p(w)p(w), we can write p(w)p(w) = U(w)/V(w)
(the irreducible fraction expression) by Lemma 2.6, where U,V
are some homogeneous polynomials of w. By the proof of Lemma
2.5, we have

~ . o U ms
(@m—1Gm-1)"(p+5)" 2(%) € Pr(2stam—1) (s=0,1,...).

So, by the similar argument as before, we obtain that V(w)
is a non-zero constant. Namely, p(w)p(w) is a homogeneous



polynomial with degree 2.
Concerning p — p, we consider the Trace of the matrix K¥:

(pIm — N')* 0 _ AT
Since MgK = SMgy by the definition of § = Sp, we have § =
MoK Mgt and so Tr(SY) = Tr(K’) = m{p(w)’ + (—5(w))"}.
Further, since Hyy, = SHy, = S*T1Hy, putting

Tr(K% = Tr (

L _ .,
Wy = (hj—l—k—|—€>j’kzo’17m’2m_1 = (Hyp, -, Hyyom—1) = S"Wo,

we have S¢ = W,W;'. Therefore Tr(S’) is the coefficient of
(=)™ 1 of
det (W,Wot = Al .

Hence the denominator of p(w)f+(—p(w))* is a divisor of (det Wy)2™
for any £ =1,2,3,.... Let p(w) — p(w) ;= X(w)/Y (w) (the irre-



ducible fraction expression). Then,

(X/Y)? = p(w)® + p(w)* — 2pp,
(X/Y)* = p(w)* + p(w)* — 4pp(X/Y)? — 2(pp)*,

Since pp is a polynomial, the denominators of right-sides remain
as divisors of (det WO)Qm. On the other hand the denominators
of the left sides increase if Y is not a constant when we consider
(X/Y)? (s = 1,2,3,...). Contradiction! So Y is a non-zero
constant, and p(w) — p(w) is a homogeneous polynomial with
degree 1. This completes the proof of Lemma 2.7.

By Lemma 2.7, we have a vector o« € R™ such that

p(w) —p(—w) = a - w.



Take a new coordinate system z/ = x — %oz for D. Then

o (w) = sup{(x — %a) |z K} = plw) — %a W,

T herefore
P(@) = F(~w) = p(w) = sorw — (p(~w) + Sa-w) = 0.

On the other hand, since p/(w)? = p/(w)p/(—w) is a homogeneous
polynomial Z(w) with degree 2, we conclude that

pl(w) =/ Z(w).

Since Z(w) should be a positive definite homogeneous polyno-
mial with degree 2, under a suitable rotation of D, we get the
form

Z(w) = Brwi + - + Bawy,



with some positive constants 34,...,06n. Then,

D = Interior of ﬂ {x-w<\/Z(W)}={$ERn|§:

wesn—1



3. A new proof of the Arnold conjecture and
some related results

3.1. The volume function for D and the Radon transform
of xp. Let D(5 0) be a bounded domain of R", and xp(xz) be
its characteristic function. Then,

Rxp(w,p) =|DN{z e R" |z -w=p} ((n—1)—dimensional volume).

Hence, the volume function for D is given by

p
Vo) =D {e-w<pl= [ Rxpw s)ds

Example 3.1.1. For D :={x € R" | |z| := \/x% + - 4z2 <1},

Rxp(w,p) = cp—1(1 —pQ)Sf_l)/Q,



for some ¢,,_1 > 0 because DN{z-w = p} is an (n—1)-dimensional

pball with radius /1 —p2. For any ellipsoidal region D, there is an
affine bijective map:

n n
r .= CD(%) = Z aZ]:E—I—bZ D = D, (I)] L= Z Qg 5Wi, |&3| L= Z (:)]2
=1 =1 '

Hence, we have

Rxp(w,p) = en1] det(aiy)] - 1152 = (p — b+ w)

3.2. A.Koldobsky-A.Merkurjev-V.Yaskin’s result: On poly-
nomially integrable convex bodies, Advances in Mathematics 320
(2017), 876-886. They proved : For an odd n and a C*° smooth



convex 0D, if the volume function Vp(w,p) is a polynomial of p
with degree< N (N: independent of w), then D is an ellipsoidal

region.

3.3. M.L.Agranovsky’s results:

1. On polynomially integrable domains in Euclidean spaces,
in: Complex Analysis and Dynamical Systems, New Trends and
Open Problems, Birkhauser (2018), 1-21. He proved:

In Theorem 2, There are no polynomially integrable domain with
C2-smooth boundary in R™ with even n.

In Theorem 5, If a smoothly bounded domain D in R"™ (with n
odd) is polynomially integrable, then it is convex.

In Theorem 7, he got a weaker version of A. Koldobsky-A.Merkurjev-

V.Yaskin’s result.



2. On algebraically integrable bodies. In: Contemporary Math-
ematics, Functional Analysis and Geometry. Selim Krein Cen-
tennial, AMS, Providence RI, 33—44 (2019): Let n > 3 be odd
and D C R"™ be a bounded domain with infinitely smooth bound-
ary 0D. Further suppose that D is an algebraically integrable
domain, free of real singularities, then, D is a polynomially inte-
grable domain. Hence, D is an ellipsoidal region.

His arguments (for n:odd) are as follows:

(D : bdd,C* boundary) + (Vp(w, p) : algebraic in p)

— (D : bdd, C*° boundary) + (Vp(w, p) : polynomial in p)

— (D : bdd, convex, C*° boundary) 4+ (Vp(w,p) : polynomial in p)
—= D : an ellipsoidal region.

3.4. Boman’s new proof: His new proof is for the part:

(D : bdd, C? strictly convex boundary) + (Vp(w,p) : polynomial in p)



— D : an ellipsoidal region.

Proof. Since Rxp(w,p) = 0pVp(w,p), Rxp(w,p) is a polynomial
of p, whose degree is less than an integer N independent of w.
T herefore, for a sufficiently large integer m > 0, we have

0 = 8" Rxp(w,p) = R(A'xp)(w,p), p € (—p(—w), p(w)).
For any distribution f(x) with compact support, we have

()" Rf(w,p) = [ 6P (2w —p)f(@)de = [ 8z w—p)ALf(2)do

= R((Az)" f)(w, p).

g(x) = All'xp(x) is a distribution with support in a compact
set D, and the support of its Radon transform is included in
>p={p=*+p(fw)}. Further AT*xp(x) # 0 because its Fourier
transform (—[&|2)™ZF[xpl(€) # 0. Therefore, by Theorem 2.1,
we conclude that D is an ellipsoidal region.



Appendix (Theorems of M.L.Agranovsky).
In this section, D is a bounded domain in R™ such that 0 € D.

4.1. The volume function V,(w,p) is algebraic = polyno-
mial.

Definition 4.1.1. Vp(w,p) is said to be algebraic in p if there is
a polynomial Q(w,p,w) in p,w given by

N | kj
=0 k=0

where g;p(w) € CO9(S"1) such that Q(w,p, Vp(w,p)) = 0 on

sn—1 % (=6,6) for some small § > 0. Further we assume the

following conditions (i), (ii) on the discriminant Discg(w,p) of

Q.



Discriminant Conditions:
(i) Discg(w,p) # 0 on S" 1 x {p € C|Imp = 0}, (ii) d(w) #
0 (Vw € S™~1) for the highest coefficient d(w) of Discg(w,p) in

Jor

In general, the discriminant of a polynomial

P(w) :=ag+ ajw+ -+ ayw? = ay(w—B1) - (w — By)
is defined by
ax 2 T (8i — 8;)2,

1<J
which is the resultant of P(w), P'(w). On the other hand ours is

DiSCQ(w7p) L= QN(wap)QN_l H (wz(w7p> — wj(wap))za
1<J



where {w;(w,p)}_; are all the roots of Q(w,p,w) =0 in w.

Key Lemma 4.1.2. For n odd, and supp f: compact, then,
[gn_l(ﬁg_lRf)(w,x ‘W)dS(w) = (1)~ D/2onpn=1r(yy

This integral vanishes for n even.

We consider the L2-inner product for functions «, 3 on S"~! =
{w e R" | |w| =1}

(. 8) = [, a()B@)dS(w).

To obtain a global expression of Vp(w,p) in p, we use an expan-
sion of Vp by orthogonal polynomials of w; that is, an expansion



by spherical harmonic functions on R™. Let

Ay = {f(W) € Py | Duwf = 0}.

Key Lemma 4.1.3. Let {Yk(m)(w)}m, (m =0,£+1,+2,...,£k) be
the orthonormal base of 7. with respect to the inner product
on S"~1 for k=0,1,2,.... Putting

Vim(®) = [

Sn
we have a global expression of Vp in p:

L Vp(w,p) - VM (w)dS (),

O

k
Vpw,p) = 5 > Vi) Y™ (W),
k=0 m=—%k



4.2. The volume function Vp(w,p) is polynomial = D is
convex.

(Or the convergence radius of Zﬁo(ﬁjVD(w, 0)/0p7) - p? is larger
than the diameter of D = D is convex.)

Key Lemma 4.2.1.(Parseval type formula for Radon trans-
forms.)

For odd n and suitable functions f(x),g(x) on R"™, we have

1 o
/]Rn f(:v)g(x)daf — 2(—471'2)(”_1)/2 /S”_lxRap 1Rf(w,p)-Rg(w,p)dp dS(w).

For example, f € C3°(R"),g € Z'(R™) with compact support K.
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