J．Boman氏の最近の2つの関連する結果，

distributionの台と解析性，Radon変換と楕円体領
域の特殊な関係性についての解説
（On J．Boman＇s recent 2 related results about the support of a distribution and its analyticity，and a special relationship between Radon transformations and ellipsoidal regions）

Kiyoomi Kataoka

Graduate School of Mathematical Sciences the University of Tokyo

2022．12．20
東京大学大学院数理科学研究科 解析学火曜セミナー

Contents

1. Real analyticity of the C^{1} surface which is the support of a distribution (Jan Boman) : Regularity of a distribution and of the boundary of its support, The Journal of Geometric Analysis vol.32, Article number 300 (2022).
2. The support of a Radon transform and ellipsoidal regions (Jan Boman) : A hypersurface containing the support of a Radon transform must be an ellipsoid. II: The general case; J. Inverse III-Posed Probl. 2021; 29(3): 351-367.
3. A new proof of the Arnold conjecture and some related results (I.Newton, V.I.Arnold, A.Koldobsky-A.Merkurjev-V.Yaskin, M.Agranovsky, J.Boman)

The Arnold Conjecture. There is a book "Arnold's Problem" 2nd edition, Springer-Verlag, Berlin, 2004, 656 pages by Vladimir I. Arnold:

Problem 1990-27 $(=1987-14)$ An ovaloid in \mathbb{R}^{n} (that is, a closed hypersurface bounding a convex body) is said to be algebraically integrable if the volume cut off by a hyperplane from this ovaloid is an algebraic function of the hyperplane. Do there exist algebraically integrable smooth ovaloids different from ellipsoid in \mathbb{R}^{n} with odd n ? This is generalization of Newton's theorem for higher dimensions.

Newton's theorem about ovals (lemma 28 of section VI of book 1 of Newton's Principia) There is no convex smooth (meaning infinitely differentiable) curve such that the area cut off by a line $a x+b y=c$ is an algebraic function of a, b, and c. As for the
assumption, the smoothness of convex curves is necessary, because triangles and Huygens Iemniscate $\left(x^{2}+y^{2}\right)^{2}=2 \alpha^{2}\left(x^{2}-y^{2}\right)$ are algebraically integrable.

Indeed, for $\alpha>0,-1<a<b<1$, put

$$
D:=\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x^{2}+y^{2}\right)^{2} \leq 2 \alpha^{2}\left(x^{2}-y^{2}\right), a x \leq y \leq b x\right\}
$$

Then,

$$
|D|=\alpha^{2}\left(\frac{b}{1+b^{2}}-\frac{a}{1+a^{2}}\right)
$$

Jan Boman

Professor emeritus in mathematics

Research interests

Radon transforms, Integral geometry, Mathematical problems related to Computerized tomography, Microlocal analysis

Publications

A list of some of my publications can be found here.
Conference on Integral Geometry and Tomography in August 2008

How to reach me

Jan Boman
Department of Mathematics
Stockholm University
S-10691 Stockholm
Sweden

1. Real analyticity of the C^{1} surface which is the support of a distribution

Theorem $1.1 U$: a neighborhood of ${ }^{\circ}\left(\in \mathbb{R}^{n}\right), \Psi(x) \in C^{1}(U)$.
$\Sigma:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R} \mid y=\psi(x), x \in U\right\}$.
If a distribution: $f(x, y) \in \mathscr{D}^{\prime}(U \times \mathbb{R})$ satisfies the following (i),(ii):

$$
\begin{equation*}
(\stackrel{\circ}{x}, \Psi(\stackrel{\circ}{x})) \in \operatorname{supp}(f) \subset \Sigma, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{WF}_{\mathrm{A}}(f) \cap\left\{(\stackrel{\circ}{x}, \Psi(\stackrel{\circ}{x}) ; \xi \cdot d x+0 \cdot d y) \mid 0 \neq \xi \in \mathbb{R}^{n}\right\}=\emptyset \tag{ii}
\end{equation*}
$$

(That is, $f(x, y)$ depends real analytically on x).
Then, $\Psi(x)$ is analytic at $x=\stackrel{\circ}{x}$.
Remark 1.2. A similar result does not hold in C^{∞} category. $f(x, y)=\varphi(x) e^{-1 / x^{2}} \delta\left(y-|x|^{3}\right)\left(\varphi(x) \in C_{0}^{\infty}(\mathbb{R}), \varphi(x) \equiv 1(|x|<\epsilon)\right)$.

Corollary 1.3. Let $\mathrm{Y}(t)$ be the Heaviside function, and $u(x, y)(\not \equiv 0)$ be an analytic function at $\left({ }_{x}^{\circ}, \Psi(x)\right)$. Then, Theorem 1.1 also holds for $f(x, y)=u(x, y) Y(y-\Psi(x))$.

Remark 1.4. Because we can apply the theorem to $g:=u_{y} \cdot \partial_{y} f-u_{y} \cdot f=u(x, y) \delta(y-\Psi(x))$. On the other hand, a similar result does not hold for a distribution supported by the half space $\{y \geq \Psi(x)\}$. For example,

$$
f(x, y)=Y\left(y-x^{2}\right)+Y\left(y-x^{2}+x^{3}\right)
$$

is supported by $\left\{y \geq x^{2}-(x)_{+}^{3}\right\}$, and f satisfies the condition (ii) at $(0,0)$, where $(t)_{+}=t(t \geq 0),=0(t<0)$. But, its boundary is only of C^{2} class, but not of C^{3} class at (0,0).

Proof of Theorem 1.1. By translation, we may assume $\Psi(\stackrel{\circ}{x})>$ 0 . By the assumption on $\mathrm{WF}_{A}(f)$, we can substitute any fixed
value for x in $f(x, y)$. Therefore, we can write $f(x, y)$ as follows:

$$
f(x, y)=\sum_{j=0}^{m-1}(-1)^{j} q_{j}(x) \delta^{(j)}(y-\Psi(x))
$$

where $m(\geq 1)$ depends on x, but m is locally bounded since f is a distribution on $U \times \mathbb{R}$. Further, again by the WF_{A} assumption,

$$
h_{\ell}(x):=\int_{-\infty}^{\infty} f(x, y) y^{\ell} d y=\sum_{j=0}^{m-1} \ell(\ell-1) \cdots(\ell-j+1) q_{j}(x) \Psi(x)^{\ell-j}
$$

is an analytic function of x at $\stackrel{\circ}{x}$ for $\ell=0,1,2, \ldots$ Put

$$
Q(x)={ }^{t}\left(q_{0}(x), \ldots, q_{m-1}(x)\right), \quad H_{s}={ }^{t}\left(h_{s}(x), \ldots, h_{m-1+s}(x)\right)
$$

We may assume $q_{m-1}(x) \not \equiv 0$ at $\stackrel{\circ}{x}$. Then we have a series of
linear equations:

$$
M_{s} Q=H_{s}\left(C^{\omega} \text {-vector }\right), \quad(\forall s=0,1,2, \ldots)
$$

where

$$
M_{s}=\left(c_{s+k, j} \Psi^{s+k-j}\right)_{k, j=0,1, \ldots, m-1}, \quad c_{\ell, j}:=\ell!/(\ell-j)!
$$

Lemma 1.5. For $\forall s=0,1,2, \ldots$

$$
\Psi(x)^{m s} q_{m-1}(x)^{m}
$$

is analytic at $x=\stackrel{\circ}{x}$.
Proof of Lemma 1.5. Put

$$
N=\left((k+1) \delta_{k+1, j}\right)_{k, j=0,1, \ldots, m-1}
$$

Then, we have

$$
M_{s+1}=M_{s}(\Psi I+N)=M_{0}(\Psi I+N)^{s+1}
$$

$$
N^{\ell}=\left((k+1) \cdots(k+\ell) \delta_{k+\ell, j}\right)_{k, j=0,1, \ldots, m-1}
$$

Note that

$$
\operatorname{det}\left(M_{s} Q, \cdots, M_{s+m-1} Q\right)=\operatorname{det}\left(H_{s}, \cdots, H_{s+m-1}\right) \in C^{\omega} \quad(s=0,1,2, \ldots)
$$

The left hand side is equal to

$$
\begin{aligned}
& \operatorname{det}\left(M_{s} \cdot\left(Q,(\Psi I+N) Q, \cdots,(\Psi I+N)^{m-1} Q\right)\right) \\
& =\operatorname{det} M_{s} \cdot \operatorname{det}\left(Q,(\Psi I+N) Q, \cdots,(\Psi I+N)^{m-1} Q\right) \\
& =\operatorname{det} M_{0} \operatorname{det}(\Psi I+N)^{s} \cdot \operatorname{det}\left(Q, \cdots,(\Psi I+N)^{m-1} Q\right) \\
& =\operatorname{det} M_{0} \cdot \Psi^{m s} \cdot \operatorname{det}\left(Q, N Q, N^{2} Q, \cdots, N^{m-1} Q\right) \\
& =1!2!\cdots(m-1)!\cdot \Psi^{m s} \cdot(\pm 1)\left(\prod_{p=1}^{m-1} p^{p}\right) \cdot q_{m-1}^{m}
\end{aligned}
$$

$$
=(\pm 1)(m-1)!^{m} \Psi^{m s} q_{m-1}^{m}
$$

This completes the proof of Lemma 1.5. By this lemma, $B(x):=$ $q_{m-1}(x)^{m} \not \equiv 0, A(x):=\psi(x)^{m} q_{m-1}(x)^{m}$ are analytic at $\stackrel{\circ}{x}$ (put $s=0$, or $s=1$). Therefore $\psi(x)^{m}=A(x) / B(x)$, and

$$
B(x)(A(x) / B(x))^{s}
$$

is analytic at $\stackrel{\circ}{x}$ for any $s=0,1,2, \ldots$. Since the ring R of all analytic functions at $\stackrel{\circ}{x}$ is a UFD (unique factorization domain), $A(x) / B(x)$ must belong to R (use uniqueness of prime factorization!). Hence $\Psi(x)^{m}$ is analytic at $\stackrel{\circ}{x}$. Remembering $\Psi(\underset{x}{x})>0$, we have the analyticity of $\Psi(x)$ at $\stackrel{\circ}{x}$. Further by using the equations:

$$
M_{0} Q=H_{0}, \quad \operatorname{det} M_{0}=1!2!\cdots(m-1)!\neq 0
$$

we get the analyticity of $Q={ }^{t}\left(q_{0}(x), \ldots, q_{m-1}(x)\right)$ at ${ }^{\circ}$.

2. The support of a Radon transform and ellipsoidal regions

$D \subset \mathbb{R}^{n}$: a bounded convex open set such that $0 \in D$. $f(x) \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that supp $f \subset \bar{D}$ (the closure of D). Then the Radon transform of f :
$R f(\omega, p):=\int_{x \cdot \omega=p} f(x) d S=\int_{\mathbb{R}^{n}} \delta(x \cdot \omega-p) f(x) d x, \quad(\omega, p) \in S^{n-1} \times \mathbb{R}$
Here $d S$ is the $(n-1)$-dim measure on hyperplanes. Define

$$
\rho(\omega):=\sup \{x \cdot \omega \mid x \in D\} .
$$

Then

$$
\operatorname{supp}(R f(\omega, p)) \subset\left\{(\omega, p) \in S^{n-1} \times \mathbb{R} \mid-\rho(-\omega) \leq p \leq \rho(\omega)\right\}
$$

Theorem 2.1. Suppose that $f \not \equiv 0$, and that
$\operatorname{supp}(R f(\omega, p)) \subset \Sigma_{D}:=\left\{(\omega, p) \in S^{n-1} \times \mathbb{R} \mid p=\rho(\omega)\right.$, or $\left.-\rho(-\omega)\right\}$.
Further suppose that ∂D is a strictly convex C^{2} boundary. Then, D is an ellipsoidal region. That is, after some translation and some rotation of coordinates, we have

$$
D=\left\{x \in \mathbb{R}^{n} \left\lvert\, \sum_{j=1}^{n} \frac{x_{j}^{2}}{\beta_{j}}-1<0\right.\right\}
$$

with some $\beta_{1}, \ldots, \beta_{n}>0$.

Remark 2.2. He only assumed that D is a bounded open convex domain in his paper in 2021. But there is a proof gap: $q_{m-1}(\omega) \not \equiv$ $0 \stackrel{?}{\Rightarrow} q_{m-1}(\omega) q_{m-1}(-\omega) \not \equiv 0$ for some function $q_{m-1}(\omega)$ on S^{n-1}. Concerning this, he assumend $D=-D$ (symmetric condition) in
the former paper in 2020. Together with the result of Theorem 1.1, we can conclude Theorem 2.1 under the strictly convex C^{2} boundary condition because $\Sigma_{D}=\{p= \pm \rho(\pm \omega)\}$ becomes a C^{1} surface in $S^{n-1} \times \mathbb{R}$. Hence, $\rho(\omega)$ and $q_{m-1}(\omega)$ becomes real analytic, and so $q_{m-1}(\omega) \not \equiv 0 \Rightarrow q_{m-1}(\omega) q_{m-1}(-\omega) \not \equiv 0$.

Example 2.3. Set $D=\left\{x \in \mathbb{R}^{2}| | x \mid=\sqrt{x_{1}^{2}+x_{2}^{2}}<1\right\}$, and

$$
f(x):=\frac{1}{\pi}\left(\left(1-|x|^{2}\right)_{+}^{-1 / 2}+\Delta_{x}\left(1-|x|^{2}\right)_{+}^{1 / 2}\right)
$$

then, $R f(\omega, p)=\delta(p-1)+\delta(p+1)$. This is because

$$
R f(\omega, p)=\chi_{\{|p|<1\}}(\omega)+\partial_{p}^{2}\left(\frac{1}{2}\left(1-p^{2}\right)_{+}\right)=\delta(p-1)+\delta(p+1)
$$

Remark 2.4. (Application of Theorem 1.1 to Radon transforms)

Assume that D is locally expressed by

$$
D=\left\{x_{n}>\varphi\left(x^{\prime}\right)\right\}, \quad\left(\varphi_{x_{i} x_{j}}\left(x^{\prime}\right)\right)_{i, j=1, \ldots, n-1} \gg 0
$$

then $x \cdot \omega=x^{\prime} \cdot \omega^{\prime}+\varphi\left(x^{\prime}\right) \omega_{n}$ takes the maximum on ∂D at $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)=x^{\prime}(\omega)$ such that

$$
\varphi_{x_{i}}\left(x^{\prime}\right)=-\omega_{i} / \omega_{n} \quad(i=1, \ldots, n-1)
$$

Hence, by the inverse mapping theorem,

$$
\rho(\omega)=x^{\prime}(\omega) \cdot \omega^{\prime}+\varphi\left(x^{\prime}(\omega)\right) \cdot \omega_{n}
$$

is a C^{1} function of ω. Further, in $\left\{\omega_{n}>0\right\}$, we can take $y^{\prime}=$ $\omega^{\prime} / \omega_{n}$ as coordinates of S^{n-1}. Since $x_{n}+x^{\prime} \cdot y^{\prime}-p \sqrt{1+\left|y^{\prime}\right|^{2}}=0$,

$$
R f\left(y^{\prime}, p\right)=\sqrt{1+\left|y^{\prime}\right|^{2}} \int_{\mathbb{R}^{n-1}} f\left(x^{\prime}, p \sqrt{1+\left|y^{\prime}\right|^{2}}-y^{\prime} \cdot x^{\prime}\right) d x^{\prime}
$$

Therefore, the cotangential direction of the analytic wavefront set of the integrand is

$$
\begin{aligned}
& \eta^{\prime} d x^{\prime}+\eta_{n} d\left(p \sqrt{1+\left|y^{\prime}\right|^{2}}-y^{\prime} \cdot x^{\prime}\right) \\
& =\left(\eta^{\prime}-\eta_{n} y^{\prime}\right) d x^{\prime}+\eta_{n} \sqrt{1+\left|y^{\prime}\right|^{2}} d p+\eta_{n}(* *) d y^{\prime}
\end{aligned}
$$

Hence,

$$
\mathrm{WF}_{A}(R f) \subset\left\{\left(y^{\prime}, p ; \xi^{\prime} d y^{\prime} \pm \sqrt{1+\left|y^{\prime}\right|^{2}} d p\right) \mid y^{\prime}, p, \xi^{\prime}\right\}
$$

and so $R f\left(y^{\prime}, p\right)$ is depending real analytically on y^{\prime}. Thus Theorem 1.1 can be applied to $R f\left(y^{\prime}, p\right)$ and $\Sigma_{D}=\left\{p=\rho\left(y^{\prime}\right)\right\}$.

Proof of Theorem 2.1.: Note that $R f(-\omega,-p)=R f(\omega, p)$ by the definition of a Radon transform. Hence we can assume the
following form of $R f(\omega, p)$:

$$
R f(\omega, p)=\sum_{j=0}^{m-1}\left(q_{j}(\omega) \delta^{(j)}(p-\rho(\omega))+(-1)^{j} q_{j}(-\omega) \delta^{(j)}(p+\rho(-\omega))\right)
$$

Since $R f(\omega, p)$ depends real analytically on ω, the argument similar to the proof of Theorem 1.1 is available. Consider the moments of $R f(\omega, p)$ with respect to p :

$$
h_{\ell}(\omega):=\int_{\mathbb{R}} p^{\ell} R f(\omega, p) d p=\int_{\mathbb{R}^{n}} f(x)(x \cdot \omega)^{\ell} d x \quad(\ell=0,1, \ldots)
$$

where $h_{\ell} \in \mathcal{P}_{\ell}:=\left\{\right.$ homogeneous polynomials of $\omega \in \mathbb{R}^{n}$ with degree $\left.\ell\right\}$.
Therefore, putting $c_{\ell, j}=\ell!/(\ell-j)$!, we have

$$
\sum_{j=0}^{m-1}(-1)^{j} c_{\ell, j}\left(\rho(\omega)^{\ell-j} q_{j}(\omega)+(-1)^{\ell} \rho(-\omega)^{\ell-j} q_{j}(-\omega)\right)=h_{\ell}(\omega) \in \mathcal{P}_{\ell}
$$

Using the notation $\tilde{q}_{j}(\omega)=q_{j}(-\omega), \tilde{\rho}(\omega)=\rho(-\omega)$, we set

$$
\begin{aligned}
Q & :={ }^{t}\left(q_{0}, \ldots, q_{m-1}, \tilde{q}_{0}, \ldots, \tilde{q}_{m-1}\right), \\
H_{s} & :={ }^{t}\left(h_{s}, \ldots, h_{s+m-1}, h_{s+m}, \ldots, h_{s+2 m-1}\right), \\
M_{s} & :=\left(M_{s}^{\prime}, M_{s}^{\prime \prime}\right), \\
M_{s}^{\prime} & :=\left((-1)^{j} c_{s+k, j} \rho^{s+k-j}\right)_{k=0, \ldots, 2 m-1, j=0,1, \ldots, m-1}, \\
M_{s}^{\prime \prime} & :=\left((-1)^{j-m+s+k} c_{s+k, j-m} \tilde{\rho}^{s+k-j+m}\right)_{k=0, \ldots, 2 m-1, j=m, \ldots, 2 m-1} .
\end{aligned}
$$

Hence we get $M_{s} Q=H_{s}(s=0,1,2, \ldots)$. We prepare 3 lemmas.
Lemma 2.5. $(\rho(\omega) \tilde{\rho}(\omega))^{m}$ is a polynomial in ω. Proof. Setting

$$
N^{\prime}=\left((k+1) \delta_{k+1, j}\right)_{k, j=0,1, \ldots, m-1}, N^{\prime \prime}=\left((k-m+1) \delta_{k+1, j}\right)_{k, j=m, \ldots, 2 m-1}
$$

we have

$$
M_{s+1}^{\prime}=\rho M_{s}^{\prime}\left(\rho I_{m}-N^{\prime}\right), \quad M_{s+1}^{\prime \prime}=M_{s}^{\prime \prime}\left(-\tilde{\rho} I_{m}+N^{\prime \prime}\right)
$$

Therefore,

$$
M_{s+1}=M_{s}\left(\begin{array}{cc}
\rho I_{m}-N^{\prime} & 0 \\
0 & -\tilde{\rho} I_{m}+N^{\prime \prime}
\end{array}\right)=M_{0}\left(\begin{array}{cc}
\rho I_{m}-N^{\prime} & 0 \\
0 & -\tilde{\rho} I_{m}+N^{\prime \prime}
\end{array}\right)^{s+1}
$$

So we consider the following determinant as before:

$$
\operatorname{det}\left(M_{s} Q, \ldots, M_{s+2 m-1} Q\right)=\operatorname{det}\left(H_{s}, \ldots, H_{s+2 m-1}\right) \in \mathcal{P}_{*}
$$

$$
\text { with } *=s+(s+1)+\cdots+(s+2 m-1)=m(2 s+2 m-1) . \text { Then }
$$ the left side is equal to

$$
\operatorname{det} M_{s} \cdot \operatorname{det}\left(Q, K Q, \ldots, K^{2 m-1} Q\right)
$$

where

$$
K=\left(\begin{array}{cc}
\rho I_{m}-N^{\prime} & 0 \\
0 & -\tilde{\rho} I_{m}+N^{\prime \prime}
\end{array}\right), \quad M_{s}=M_{0} K^{s}
$$

We have

$$
\operatorname{det} M_{s}=\operatorname{det} M_{0} \cdot(\operatorname{det} K)^{s}=\operatorname{det} M_{0} \cdot(-\rho \tilde{\rho})^{m s}
$$

As for det M_{0}, we can find the value:

$$
\operatorname{det} M_{0}=C_{m} \cdot(\rho+\tilde{\rho})^{m^{2}}
$$

where C_{m} is a non-zero constant. Since $\rho(\omega), \tilde{\rho}(\omega)=\rho(-\omega)$ are positive, det $M_{0} \neq 0$.
Further, as for

$$
A:=\operatorname{det}\left(Q, K Q, \ldots, K^{2 m-1} Q\right)
$$

putting
$Q={ }^{t}\left(Q^{\prime}, Q^{\prime \prime}\right), Q^{\prime}:={ }^{t}\left(q_{0}, \ldots, q_{m-1}\right), Q^{\prime \prime}:={ }^{t}\left(\tilde{q}_{0}, \ldots, \tilde{q}_{m-1}\right)$, we obtain

$$
K^{\ell} Q=\binom{\left(\rho I_{m}-N^{\prime}\right)^{\ell} Q^{\prime}}{\left(-\tilde{\rho} I_{m}+N^{\prime \prime}\right)^{\ell} Q^{\prime \prime}}
$$

So,

$$
A=\operatorname{det}\left(\begin{array}{ccc}
Q^{\prime} & \left(\rho I_{m}-N^{\prime}\right) Q^{\prime} \cdots & \left(\rho I_{m}-N^{\prime}\right)^{2 m-1} Q^{\prime} \\
Q^{\prime \prime} & \left(-\tilde{\rho} I_{m}+N^{\prime \prime}\right) Q^{\prime \prime} \cdots & \left(-\tilde{\rho} I_{m}+N^{\prime \prime}\right)^{2 m-1} Q^{\prime \prime}
\end{array}\right)
$$

and we can find its value

$$
A=C_{m}^{\prime}\left(q_{m-1} \tilde{q}_{m-1}\right)^{m}(\rho+\tilde{\rho})^{m^{2}}
$$

where C_{m}^{\prime} is a non-zero constant. Hence we have

$$
\left(q_{m-1} \tilde{q}_{m-1}\right)^{m}(\rho+\tilde{\rho})^{2 m^{2}} \cdot(\rho \tilde{\rho})^{m s} \in \mathcal{P}_{m(2 s+2 m-1)} \quad(s=0,1, \ldots)
$$

So, if $q_{m-1}(\omega) \tilde{q}_{m-1}(\omega)=q_{m-1}(\omega) q_{m-1}(-\omega) \not \equiv 0$, the argument similar to the proof of Theorem 1.1 works because the polynomial ring is a UFD. Hence $(\rho(\omega) \tilde{\rho}(\omega))^{m}$ is a homogeneous polynomial of order $2 m$.

Lemma 2.6. $\rho(\omega)-\tilde{\rho}(\omega), \rho(\omega) \tilde{\rho}(\omega)$ are homogeneous rational functions of ω.
Proof. To get more information from

$$
M_{s} Q=H_{s} \quad(s=0,1,2, \ldots)
$$

we remove Q from these equations, and make equations among $H_{s}(s=0,1,2, \ldots)$ such that

$$
H_{s+1}=S_{s} H_{s}
$$

To do so, we must find a matrix S_{s} satisfying

$$
S_{s} M_{s}=M_{s+1}
$$

The following nilpotent matrix P lifts each row by 1 row :

$$
P=\left(\delta_{k+1, j}\right)_{k, j=0,1, \ldots, 2 m-1}
$$

So, we can assume the following form of S_{s} :

$$
S_{s}:=\binom{\left(\delta_{k+1, j}\right)_{k=0,1, \ldots, 2 m-2, j=0, \ldots, 2 m-1}}{\sigma_{2 m}, \sigma_{2 m-2}, \ldots, \sigma_{2}, \sigma_{1}}
$$

Since $M_{s}=M_{0} K^{s}$, we have

$$
M_{s+1}=S_{s} M_{s} \quad \leftrightarrows \quad M_{0} K=S_{s} M_{0}
$$

So, we can put $s=0$, and the equations for $\sigma_{\ell}(\ell=1,2, \ldots, 2 m)$ are written as follows: For $j=0,1, \ldots, m-1$ with $(u, v)=(\rho,-\tilde{\rho})$,

$$
\left\{\begin{array}{l}
\sum_{\ell=1}^{2 m} c_{2 m-\ell, j} u^{-\ell} \sigma_{\ell}(u, v)=c_{2 m, j}, \\
\sum_{\ell=1}^{2 m} c_{2 m-\ell, j} v^{-\ell} \sigma_{\ell}(u, v)=c_{2 m, j} .
\end{array}\right.
$$

Boman found the solutions $\sigma_{\ell}(u, v)$ as the following coefficients:

$$
G(t)=(t-u)^{m}(t-v)^{m}=t^{2 m}-\sum_{j=0}^{2 m-1} t^{j} \sigma_{2 m-j}(u, v)
$$

So, $\sigma_{1}(u, v)=m(u+v), \quad \sigma_{2}(u, v)=-\frac{m(m-1)}{2}\left(u^{2}+v^{2}\right)-m^{2} u v$.
Since

$$
S_{0} H_{\ell}=H_{\ell+1} \quad(\ell=0,1, \ldots)
$$

we obtain the following equations from the $2 m$-th component:

$$
\sum_{k=0}^{2 m-1} \sigma_{2 m-k} h_{k+\ell}=h_{\ell+2 m} \quad(\ell=0,1, \ldots)
$$

We consider these equations for $\ell=0,1, \ldots, 2 m-1$ as the equations for $\sigma_{\ell}(\ell=1,2, \ldots, 2 m)$. To do so, we must investigate the determinant of

$$
W_{0}:=\left(h_{j+k}\right)_{j, k=0,1, \ldots, 2 m-1}=\left(M_{0} Q, M_{1} Q, \cdots, M_{2 m-1} Q\right)
$$

Since
$\operatorname{det} W_{0}=\operatorname{det} M_{0} \cdot \operatorname{det}\left(Q, K Q, K^{2} Q, \cdots, K^{2 m-1} Q\right)=\operatorname{det} M_{0} \cdot A \not \equiv 0$
as seen before, σ_{*} is written as

$$
\left(\begin{array}{c}
\sigma_{2 m} \\
\vdots \\
\sigma_{1}
\end{array}\right)=W_{0}^{-1}\left(\begin{array}{c}
h_{2 m} \\
\vdots \\
h_{4 m-1}
\end{array}\right)
$$

Therefore, $\rho(\omega)-\tilde{\rho}(\omega)=u+v=\sigma_{1} / m, \quad \rho(\omega) \tilde{\rho}(\omega)=-u v=$ $\frac{1}{m}\left(\sigma_{2}+\frac{m-1}{2 m} \sigma_{1}^{2}\right)$ are homogeneous rational functions of ω with degrees 1 and 2 respectively.

Lemma 2.7. $\rho(\omega) \tilde{\rho}(\omega), \rho(\omega)-\tilde{\rho}(\omega)$ are homogeneous polynomials of ω with degrees 2 and 1 respectively.
proof. As for $\rho(\omega) \tilde{\rho}(\omega)$, we can write $\rho(\omega) \tilde{\rho}(\omega)=U(\omega) / V(\omega)$ (the irreducible fraction expression) by Lemma 2.6, where U, V are some homogeneous polynomials of ω. By the proof of Lemma 2.5, we have
$\left(q_{m-1} \tilde{q}_{m-1}\right)^{m}(\rho+\tilde{\rho})^{2 m^{2}} \cdot\left(\frac{U(\omega)}{V(\omega)}\right)^{m s} \in \mathcal{P}_{m(2 s+2 m-1)} \quad(s=0,1, \ldots)$.
So, by the similar argument as before, we obtain that $V(\omega)$ is a non-zero constant. Namely, $\rho(\omega) \tilde{\rho}(\omega)$ is a homogeneous
polynomial with degree 2 .
Concerning $\rho-\tilde{\rho}$, we consider the Trace of the matrix K^{ℓ} :
$\operatorname{Tr}\left(K^{\ell}\right)=\operatorname{Tr}\left(\begin{array}{cc}\left(\rho I_{m}-N^{\prime}\right)^{\ell} & 0 \\ 0 & \left(-\tilde{\rho} I_{m}+N^{\prime \prime}\right)^{\ell}\end{array}\right)=m\left\{\rho(\omega)^{\ell}+(-\tilde{\rho}(\omega))^{\ell}\right\}$.
Since $M_{0} K=S M_{0}$ by the definition of $S=S_{0}$, we have $S=$ $M_{0} K M_{0}^{-1}$ and so $\operatorname{Tr}\left(S^{\ell}\right)=\operatorname{Tr}\left(K^{\ell}\right)=m\left\{\rho(\omega)^{\ell}+(-\tilde{\rho}(\omega))^{\ell}\right\}$. Further, since $H_{\ell+1}=S H_{\ell}=S^{\ell+1} H_{0}$, putting

$$
W_{\ell}:=\left(h_{j+k+\ell}\right)_{j, k=0,1, \cdots, 2 m-1}=\left(H_{\ell}, \cdots, H_{\ell+2 m-1}\right)=S^{\ell} W_{0}
$$

we have $S^{\ell}=W_{\ell} W_{0}^{-1}$. Therefore $\operatorname{Tr}\left(S^{\ell}\right)$ is the coefficient of $(-\lambda)^{m-1}$ of

$$
\operatorname{det}\left(W_{\ell} W_{0}^{-1}-\lambda I_{m}\right) .
$$

Hence the denominator of $\rho(\omega)^{\ell}+(-\tilde{\rho}(\omega))^{\ell}$ is a divisor of $\left(\operatorname{det} W_{0}\right)^{2 m}$ for any $\ell=1,2,3, \ldots$. Let $\rho(\omega)-\tilde{\rho}(\omega):=X(\omega) / Y(\omega)$ (the irre-
ducible fraction expression). Then,

$$
\begin{aligned}
& (X / Y)^{2}=\rho(\omega)^{2}+\tilde{\rho}(\omega)^{2}-2 \rho \tilde{\rho} \\
& (X / Y)^{4}=\rho(\omega)^{4}+\tilde{\rho}(\omega)^{4}-4 \rho \tilde{\rho}(X / Y)^{2}-2(\rho \tilde{\rho})^{2}
\end{aligned}
$$

Since $\rho \tilde{\rho}$ is a polynomial, the denominators of right-sides remain as divisors of $\left(\operatorname{det} W_{0}\right)^{2 m}$. On the other hand the denominators of the left sides increase if Y is not a constant when we consider $(X / Y)^{2^{s}}(s=1,2,3, \ldots)$. Contradiction! So Y is a non-zero constant, and $\rho(\omega)-\tilde{\rho}(\omega)$ is a homogeneous polynomial with degree 1. This completes the proof of Lemma 2.7.

By Lemma 2.7, we have a vector $\alpha \in \mathbb{R}^{n}$ such that

$$
\rho(\omega)-\rho(-\omega)=\alpha \cdot \omega
$$

Take a new coordinate system $x^{\prime}=x-\frac{1}{2} \alpha$ for D. Then

$$
\rho^{\prime}(\omega)=\sup \left\{\left.\left(x-\frac{1}{2} \alpha\right) \cdot \omega \right\rvert\, x \in K\right\}=\rho(\omega)-\frac{1}{2} \alpha \cdot \omega .
$$

Therefore

$$
\rho^{\prime}(\omega)-\rho^{\prime}(-\omega)=\rho(\omega)-\frac{1}{2} \alpha \cdot \omega-\left(\rho(-\omega)+\frac{1}{2} \alpha \cdot \omega\right)=0
$$

On the other hand, since $\rho^{\prime}(\omega)^{2}=\rho^{\prime}(\omega) \rho^{\prime}(-\omega)$ is a homogeneous polynomial $Z(\omega)$ with degree 2 , we conclude that

$$
\rho^{\prime}(\omega)=\sqrt{Z(\omega)}
$$

Since $Z(\omega)$ should be a positive definite homogeneous polynomial with degree 2 , under a suitable rotation of D, we get the form

$$
Z(\omega)=\beta_{1} \omega_{1}^{2}+\cdots+\beta_{n} \omega_{n}^{2}
$$

with some positive constants $\beta_{1}, \ldots, \beta_{n}$. Then,
$D=$ Interior of $\bigcap_{\omega \in S^{n-1}}\{x \cdot \omega \leq \sqrt{Z(\omega)}\}=\left\{x \in \mathbb{R}^{n} \left\lvert\, \sum_{j=1}^{n} \frac{x_{j}^{2}}{\beta_{j}}-1<0\right.\right\}$.

3. A new proof of the Arnold conjecture and some related results

3.1. The volume function for D and the Radon transform of χ_{D}. Let $D(\ni 0)$ be a bounded domain of \mathbb{R}^{n}, and $\chi_{D}(x)$ be its characteristic function. Then,
$R \chi_{D}(\omega, p)=\left|D \cap\left\{x \in \mathbb{R}^{n} \mid x \cdot \omega=p\right\}\right| \quad((n-1)$-dimensional volume $)$.
Hence, the volume function for D is given by

$$
V_{D}(\omega, p)=|D \cap\{x \cdot \omega<p\}|=\int_{-\rho(-\omega)}^{p} R \chi_{D}(\omega, s) d s
$$

Example 3.1.1. For $\mathbb{D}:=\left\{x \in \mathbb{R}^{n}| | x \mid:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}<1\right\}$,

$$
R \chi_{\mathbb{D}}(\omega, p)=c_{n-1}\left(1-p^{2}\right)_{+}^{(n-1) / 2}
$$

for some $c_{n-1}>0$ because $\mathbb{D} \cap\{x \cdot \omega=p\}$ is an ($n-1$)-dimensional ball with radius $\sqrt{1-p^{2}}$. For any ellipsoidal region D, there is an affine bijective map:

$$
x:=\Phi(\tilde{x})=\sum_{j=1}^{n} a_{i j} \tilde{x}+b_{i}: \mathbb{D} \xrightarrow{\sim} D, \quad \tilde{\omega}_{j}:=\sum_{i=1}^{n} a_{i j} \omega_{i},|\tilde{\omega}|:=\sqrt{\sum_{j=1}^{n} \tilde{\omega}_{j}^{2}} .
$$

Hence, we have

$$
R \chi_{D}(\omega, p)=c_{n-1}\left|\operatorname{det}\left(a_{i j}\right)\right| \cdot|\tilde{\omega}|^{-n}\left(|\tilde{\omega}|^{2}-(p-b \cdot \omega)^{2}\right)_{+}^{(n-1) / 2}
$$

3.2. A.Koldobsky-A.Merkurjev-V.Yaskin's result: On polynomially integrable convex bodies, Advances in Mathematics 320 (2017), 876-886. They proved : For an odd n and a C^{∞} smooth
convex ∂D, if the volume function $V_{D}(\omega, p)$ is a polynomial of p with degree< N (N : independent of ω), then D is an ellipsoidal region.

3.3. M.L.Agranovsky's results:

1. On polynomially integrable domains in Euclidean spaces, in: Complex Analysis and Dynamical Systems, New Trends and Open Problems, Birkhauser (2018), 1-21. He proved:
In Theorem 2, There are no polynomially integrable domain with C^{2}-smooth boundary in \mathbb{R}^{n} with even n.
In Theorem 5, If a smoothly bounded domain D in \mathbb{R}^{n} (with n odd) is polynomially integrable, then it is convex.
In Theorem 7, he got a weaker version of A.Koldobsky-A.Merkurjev-
V.Yaskin's result.
2. On algebraically integrable bodies. In: Contemporary Mathematics, Functional Analysis and Geometry. Selim Krein Centennial, AMS, Providence RI, 33-44 (2019): Let $n \geq 3$ be odd and $D \subset \mathbb{R}^{n}$ be a bounded domain with infinitely smooth boundary ∂D. Further suppose that D is an algebraically integrable domain, free of real singularities, then, D is a polynomially integrable domain. Hence, D is an ellipsoidal region.
His arguments (for n :odd) are as follows:
(D : bdd, C^{∞} boundary) $+\left(V_{D}(\omega, p)\right.$: algebraic in $\left.p\right)$
$\Longrightarrow\left(D:\right.$ bdd, C^{∞} boundary $)+\left(V_{D}(\omega, p)\right.$: polynomial in $\left.p\right)$
$\Longrightarrow\left(D:\right.$ bdd, convex, C^{∞} boundary $)+\left(V_{D}(\omega, p)\right.$: polynomial in $\left.p\right)$
$\Longrightarrow D$: an ellipsoidal region.
3.4. Boman's new proof: His new proof is for the part:
($D:$ bdd, C^{2} strictly convex boundary $)+\left(V_{D}(\omega, p)\right.$: polynomial in $\left.p\right)$
$\Longrightarrow D$: an ellipsoidal region.
Proof. Since $R \chi_{D}(\omega, p)=\partial_{p} V_{D}(\omega, p), R \chi_{D}(\omega, p)$ is a polynomial of p, whose degree is less than an integer N independent of ω. Therefore, for a sufficiently large integer $m>0$, we have

$$
0=\partial_{p}^{2 m} R \chi_{D}(\omega, p)=R\left(\Delta_{x}^{m} \chi_{D}\right)(\omega, p), \quad p \in(-\rho(-\omega), \rho(\omega))
$$

For any distribution $f(x)$ with compact support, we have

$$
\begin{aligned}
\left(\partial_{p}\right)^{2 m} R f(\omega, p) & =\int_{\mathbb{R}^{n}} \delta^{(2 m)}(x \cdot \omega-p) f(x) d x=\int_{\mathbb{R}^{n}} \delta(x \cdot \omega-p) \Delta_{x}^{m} f(x) d x \\
& =R\left(\left(\Delta_{x}\right)^{m} f\right)(\omega, p)
\end{aligned}
$$

$g(x)=\Delta_{x}^{m} \chi_{D}(x)$ is a distribution with support in a compact set \bar{D}, and the support of its Radon transform is included in $\Sigma_{D}=\{p= \pm \rho(\pm \omega)\}$. Further $\Delta_{x}^{m} \chi_{D}(x) \not \equiv 0$ because its Fourier transform $\left(-|\xi|^{2}\right)^{m} \mathscr{F}\left[\chi_{D}\right](\xi) \not \equiv 0$. Therefore, by Theorem 2.1, we conclude that D is an ellipsoidal region.

Appendix (Theorems of M.L.Agranovsky).

In this section, D is a bounded domain in \mathbb{R}^{n} such that $0 \in D$.
4.1. The volume function $V_{D}(\omega, p)$ is algebraic \Rightarrow polynomial.
Definition 4.1.1. $V_{D}(\omega, p)$ is said to be algebraic in p if there is a polynomial $Q(\omega, p, w)$ in p, w given by
$Q(\omega, p, w)=\sum_{j=0}^{N} q_{j}(\omega, p) w^{j}, q_{j}(\omega, p)=\sum_{k=0}^{k_{j}} q_{j k}(\omega) p^{k} \quad(j=0, \ldots, N)$,
where $q_{j k}(\omega) \in C^{0}\left(S^{n-1}\right)$ such that $Q\left(\omega, p, V_{D}(\omega, p)\right)=0$ on $S^{n-1} \times(-\delta, \delta)$ for some small $\delta>0$. Further we assume the following conditions (i), (ii) on the discriminant $\operatorname{Disc}_{Q}(\omega, p)$ of Q.

Discriminant Conditions:

(i) $\operatorname{Disc}_{Q}(\omega, p) \neq 0$ on $S^{n-1} \times\{p \in \mathbb{C} \mid \operatorname{Im} p=0\}$, (ii) $d(\omega) \neq$ $0\left(\forall \omega \in S^{n-1}\right)$ for the highest coefficient $d(\omega)$ of $\operatorname{Disc}_{Q}(\omega, p)$ in p.

In general, the discriminant of a polynomial

$$
P(w):=a_{0}+a_{1} w+\cdots+a_{N} w^{N}=a_{N}\left(w-\beta_{1}\right) \cdots\left(w-\beta_{N}\right)
$$

is defined by

$$
a_{N}^{2 N-2} \prod_{i<j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

which is the resultant of $P(w), P^{\prime}(w)$. On the other hand ours is

$$
\operatorname{Disc}_{Q}(\omega, p):=q_{N}(\omega, p)^{2 N-1} \prod_{i<j}\left(w_{i}(\omega, p)-w_{j}(\omega, p)\right)^{2}
$$

where $\left\{w_{i}(\omega, p)\right\}_{i=1}^{N}$ are all the roots of $Q(\omega, p, w)=0$ in w.

Key Lemma 4.1.2. For n odd, and $\operatorname{supp} f$: compact, then,

$$
\int_{S^{n-1}}\left(\partial_{p}^{n-1} R f\right)(\omega, x \cdot \omega) d S(\omega)=(-1)^{(n-1) / 2} 2^{n} \pi^{n-1} f(x)
$$

This integral vanishes for n even.
We consider the L^{2}-inner product for functions α, β on $S^{n-1}=$ $\left\{\omega \in \mathbb{R}^{n}| | \omega \mid=1\right\}:$

$$
\langle\alpha, \beta\rangle:=\int_{S^{n-1}} \alpha(\omega) \overline{\beta(\omega)} d S(\omega)
$$

To obtain a global expression of $V_{D}(\omega, p)$ in p, we use an expansion of V_{D} by orthogonal polynomials of ω; that is, an expansion
by spherical harmonic functions on \mathbb{R}^{n}. Let

$$
\mathscr{H}_{k}:=\left\{f(\omega) \in \mathcal{P}_{k} \mid \Delta_{\omega} f=0\right\} .
$$

Key Lemma 4.1.3. Let $\left\{Y_{k}^{(m)}(\omega)\right\}_{m},(m=0, \pm 1, \pm 2, \ldots, \pm k)$ be the orthonormal base of \mathscr{H}_{k} with respect to the inner product on S^{n-1} for $k=0,1,2, \ldots$ Putting

$$
V_{k, m}(p):=\int_{S^{n-1}} V_{D}(\omega, p) \cdot \overline{Y_{k}^{(m)}(\omega)} d S(\omega)
$$

we have a global expression of V_{D} in p :

$$
V_{D}(\omega, p)=\sum_{k=0}^{\infty} \sum_{m=-k}^{k} V_{k, m}(p) Y_{k}^{(m)}(\omega)
$$

4.2. The volume function $V_{D}(\omega, p)$ is polynomial $\Rightarrow D$ is convex.
(Or the convergence radius of $\sum_{j=0}^{\infty}\left(\partial^{j} V_{D}(\omega, 0) / \partial p^{j}\right) \cdot p^{j}$ is Iarger than the diameter of $D \Rightarrow D$ is convex.)

Key Lemma 4.2.1.(Parseval type formula for Radon transforms.)
For odd n and suitable functions $f(x), g(x)$ on \mathbb{R}^{n}, we have
$\int_{\mathbb{R}^{n}} f(x) g(x) d x=\frac{1}{2\left(-4 \pi^{2}\right)^{(n-1) / 2}} \int_{S^{n-1} \times \mathbb{R}^{2}} \partial_{p}^{n-1} R f(\omega, p) \cdot R g(\omega, p) d p d S(\omega)$.
For example, $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), g \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ with compact support K.

ご清聴ありがとうございました！

