有界領域の体積関数の代数性に関する Agranovsky 達の結果について

(On the results of Agranovsky et-al. concerning algebraicity of the volume function of a bounded domain)

Kiyoomi Kataoka
Graduate School of Mathematical Sciences
the University of Tokyo

2023.3.8

「代数解析学の研究集会」

於:日本大学理工学部駿河台キャンパス タワースコラ (駿河台校舎) S504

Contents

- 1. Newton's theorem and the Arnold conjecture on the volume functions of bounded convex domains in \mathbb{R}^n .
- 2. M.L.Agranovsky's theorems on the algebraic volume functions of bounded domains in \mathbb{R}^n with odd n.
- 3. The inversion formula for Radon transformations, the Parsevaltype formula and the proofs.

1. Newton's theorem and the Arnold conjecture.

1.1.Newton's theorem about ovals (lemma 28 of section VI of book 1 of Newton's Principia) There is no convex smooth (meaning infinitely differentiable) curve such that the area S(a,b,c) cut off by a line ax + by = c is an algebraic function of a,b, and c.

As for the assumption, the smoothness (no analytic singularity) of convex curves is necessary, because triangles and Bernoulli lemniscate $(x^2+y^2)^2=2\alpha^2(x^2-y^2)$ are algebraically integrable.

Indeed, for $\alpha > 0, -1 < a < b < 1$, put

$$D_{a,b}:=\{(x,y)\in\mathbb{R}^2\mid (x^2+y^2)^2\leq 2\alpha^2(x^2-y^2), ax\leq y\leq bx\}.$$
 Then,

$$|D_{a,b}| = \alpha^2 \left(\frac{b}{1+b^2} - \frac{a}{1+a^2} \right).$$

1.2. The volume function for D and the Radon transform.

 $D \subset \mathbb{R}^n$: a bounded open set such that $0 \in D$.

 $f(x) \in \mathscr{D}'(\mathbb{R}^n)$ such that $\operatorname{supp} f \subset \overline{D}$ (the closure of D). Then the Radon transform of f:

$$Rf(\omega, p) := \int_{x \cdot \omega = p} f(x) dS = \int_{\mathbb{R}^n} \delta(x \cdot \omega - p) f(x) dx, \quad (\omega, p) \in S^{n-1} \times \mathbb{R}$$

Here dS is the (n-1)-dim measure on hyperplanes. Define

$$\rho(\omega) := \sup\{x \cdot \omega \mid x \in D\}.$$

Then

$$\operatorname{supp}\left(Rf(\omega,p)\right)\subset\{(\omega,p)\in S^{n-1}\times\mathbb{R}\mid -\rho(-\omega)\leq p\leq\rho(\omega)\}.$$

Let $\chi_D(x)$ be the characteristic function of D. Then, we have $R\chi_D(\omega,p)=|D\cap\{x\in\mathbb{R}^n\mid x\cdot\omega=p\}|$ ((n-1)-dimensional volume), where $(\omega,p)\in S^{n-1}\times\mathbb{R}.$

Hence the volume function for D is given by

$$V_D(\omega, p) = |D \cap \{x \cdot \omega < p\}| = \int_{-\infty}^p R\chi_D(\omega, s) ds.$$

Example 1.2.1. For $\mathbb{D} := \{x \in \mathbb{R}^n \mid |x| := \sqrt{x_1^2 + \dots + x_n^2} < 1\}$,

$$R\chi_{\mathbb{D}}(\omega, p) = c_{n-1}(1-p^2)_{+}^{(n-1)/2},$$

for some $c_{n-1}>0$ because $\mathbb{D}\cap\{x\cdot\omega=p\}$ is an (n-1)-dimensional ball with radius $\sqrt{1-p^2}$. Here, $(t)_+=t$ $(t>0)_+=0$ $(t\leq 0)_+$

For any ellipsoidal region D, there is an affine bijective map:

$$x := \Phi(\tilde{x}) = \sum_{j=1}^{n} a_{ij} \tilde{x} + b_i : \mathbb{D} \xrightarrow{\sim} D, \quad \tilde{\omega}_j := \sum_{i=1}^{n} a_{ij} \omega_i, \ |\tilde{\omega}| := \sqrt{\sum_{j=1}^{n} \tilde{\omega}_j^2}.$$

Hence, we have

$$R\chi_D(\omega, p) = c_{n-1} |\det(a_{ij})| \cdot |\tilde{\omega}|^{-n} \left(|\tilde{\omega}|^2 - (p - b \cdot \omega)^2 \right)_+^{(n-1)/2}.$$

1.3. Arnold's conjecture on volume functions.

In a book "Arnold's Problem" 2nd edition, Springer-Verlag, Berlin, 2004, 656 pages by Vladimir I. Arnold:

Problem 1990-27(=1987-14) An ovaloid in \mathbb{R}^n (that is, a closed hypersurface bounding a convex body) is said to be algebraically integrable if the volume cut off by a hyperplane from this ovaloid is an algebraic function of the hyperplane. Do there exist algebraically integrable smooth ovaloids different from ellipsoid in \mathbb{R}^n with odd n? This is generalization of Newton's theorem for higher dimensions.

1.4. Polynomially integrable domains.

A.Koldobsky-A.Merkurjev-V.Yaskin's result: On polynomially integrable convex bodies, Advances in Mathematics 320

(2017), 876-886. They proved : For an odd n and a C^{∞} smooth convex ∂D , if the volume function $V_D(\omega, p)$ is a polynomial of p with degree < N (N: independent of ω), then D is an ellipsoidal region.

Similar results are obtained by two authors:

- (1) M.L.Agranovsky: On polynomially integrable domains in Euclidean spaces, in: Complex Analysis and Dynamical Systems, New Trends and Open Problems, Birkhauser (2018), 1-21,
- (2) J. Boman (a new approach): A hypersurface containing the support of a Radon transform must be an ellipsoid. II: The general case; J. Inverse III-Posed Probl. 2021; 29(3): 351—367.

Boman's theorem. Suppose that $f \not\equiv 0$, and that

$$\operatorname{supp}\left(Rf(\omega,p)\right)\subset \Sigma_D:=\{(\omega,p)\in S^{n-1}\times\mathbb{R}\mid p=\rho(\omega), \operatorname{or}-\rho(-\omega)\}.$$

Further suppose that ∂D is a strictly convex C^2 boundary. Then, D is an ellipsoidal region. That is, after some translation and some rotation of coordinates, we have

$$D = \left\{ x \in \mathbb{R}^n \mid \sum_{j=1}^n \frac{x_j^2}{\beta_j} - 1 < 0 \right\}$$

with some $\beta_1, \ldots, \beta_n > 0$.

Boman's new proof: His new proof is for the part:

 $(D: \mathsf{bdd}, C^2 \mathsf{strictly} \mathsf{convex} \mathsf{boundary}) + (V_D(\omega, p): \mathsf{polynomial} \mathsf{in} p)$ $\Longrightarrow D: \mathsf{an} \mathsf{ ellipsoidal} \mathsf{ region}.$ **Proof.** Since $R\chi_D(\omega, p) = \partial_p V_D(\omega, p)$, $R\chi_D(\omega, p)$ is a polynomial of p, whose degree is less than an integer N independent of ω . Therefore, for a sufficiently large integer m > 0, we have

$$0 = \partial_p^{2m} R \chi_D(\omega, p) = R(\Delta_x^m \chi_D)(\omega, p), \quad p \in (-\rho(-\omega), \rho(\omega)).$$

This is because for any distribution f(x) with compact support, we have

$$(\partial_p)^{2m} Rf(\omega, p) = \int_{\mathbb{R}^n} \delta^{(2m)}(x \cdot \omega - p) f(x) dx$$
$$= \int_{\mathbb{R}^n} \delta(x \cdot \omega - p) \Delta_x^m f(x) dx = R((\Delta_x)^m f)(\omega, p).$$

 $g(x) = \Delta_x^m \chi_D(x)$ is a distribution with support in a compact set \overline{D} , and the support of its Radon transform is included in $\Sigma_D = \{p = \pm \rho(\pm \omega)\}$. Further $\Delta_x^m \chi_D(x) \not\equiv 0$ because its Fourier transform $(-|\xi|^2)^m \mathscr{F}[\chi_D](\xi) \not\equiv 0$. Therefore, by Boman's theorem, we conclude that D is an ellipsoidal region.

2. M.L.Agranovsky's theorems on the algebraic volume functions of bounded domains in \mathbb{R}^n with odd n.

2.1. Agranovsky's results 1.

In "On polynomially integrable domains in Euclidean spaces, in: Complex Analysis and Dynamical Systems, New Trends and Open Problems, Birkhauser (2018), 1-21", he obtained:

Theorem 2, There are no polynomially integrable domain with C^2 -smooth boundary in \mathbb{R}^n with even n.

Theorem 5, If a smoothly bounded domain D in \mathbb{R}^n (with n odd) is polynomially integrable, then it is convex.

Theorem 7, he got a weaker version of A.Koldobsky-A.Merkurjev-V.Yaskin's result.

2.2. Agranovsky's result 2.

In "On algebraically integrable bodies. In: Contemporary Mathematics, Functional Analysis and Geometry. Selim Krein Centennial, AMS, Providence RI, 33–44 (2019)":

Let $n \geq 3$ be odd and $D \subset \mathbb{R}^n$ be a bounded domain with infinitely smooth boundary ∂D . Further suppose that D is an algebraically integrable domain, free of real singularities, then, D is a polynomially integrable domain. Hence, D is an ellipsoidal region.

His arguments (for n:odd) are as follows:

```
(D:\mathsf{bdd},C^\infty) boundary) +(V_D(\omega,p):\mathsf{algebraic}\ \mathsf{in}\ p)
```

$$\Longrightarrow (D : \mathsf{bdd}, C^{\infty} \mathsf{boundary}) + (V_D(\omega, p) : \mathsf{polynomial} \mathsf{in} p)$$

$$\Longrightarrow (D : \mathsf{bdd}, \mathsf{convex}, C^{\infty} \mathsf{boundary}) + (V_D(\omega, p) : \mathsf{polynomial} \mathsf{in} p)$$

 $\Longrightarrow D$: an ellipsoidal region.

2.3. The precise definition of an algebraic volume function.

Definition 2.3.1. $V_D(\omega, p)$ is said to be algebraic in p if there is a polynomial $Q(\omega, p, w)$ in p, w given by

$$Q(\omega, p, w) = \sum_{j=0}^{N} q_j(\omega, p) w^j, \ q_j(\omega, p) = \sum_{k=0}^{k_j} q_{jk}(\omega) p^k \ (j = 0, \dots, N),$$

where $q_{jk}(\omega) \in C^0(S^{n-1})$ such that $Q(\omega, p, V_D(\omega, p)) = 0$ on $S^{n-1} \times (-\delta, \delta)$ for some small $\delta > 0$. Further we assume the following conditions (i), (ii) on the discriminant $\operatorname{Disc}_Q(\omega, p)$ of Q.

Discriminant Conditions:

(i)
$$\operatorname{Disc}_{\mathcal{O}}(\omega,p)\neq 0$$
 on $S^{n-1}\times\{p\in\mathbb{C}\mid \operatorname{Im} p=0\}$, (ii) $d(\omega)\neq$

0 $(\forall \omega \in S^{n-1})$ for the highest coefficient $d(\omega)$ of $\mathrm{Disc}_Q(\omega,p)$ in p.

In general, the discriminant of a polynomial

$$P(w) := a_0 + a_1 w + \dots + a_N w^N = a_N (w - \beta_1) \dots (w - \beta_N)$$
 is defined by

$$a_N^{2N-2} \prod_{i < j} (\beta_i - \beta_j)^2,$$

which is the resultant of P(w), P'(w). On the other hand ours is

$$\mathsf{Disc}_Q(\omega, p) := q_N(\omega, p)^{2N-1} \prod_{i < j} (w_i(\omega, p) - w_j(\omega, p))^2,$$

where $\{w_i(\omega, p)\}_{i=1}^N$ are all the roots of $Q(\omega, p, w) = 0$ in w.

3. The inversion formula for Radon transformations, the Parseval-type formula and the proofs.

3.1. The inversion formula for Radon transformations.

$$\delta(x) = \lim_{\epsilon \to +0} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi - \epsilon |\xi|} d\xi = \frac{1}{(2\pi)^n} \int_{|\xi| = 1} \frac{(n-1)! dS(\xi)}{(+0 - ix \cdot \xi)^n}$$
$$= \frac{(n-1)!}{(-2\pi i)^n} \int_{S^{n-1}} \frac{1}{(x \cdot \xi + i0)^n} dS(\xi).$$

Hence,

$$\int_{S^{n-1}} \frac{1}{(x \cdot \xi \pm i0)^n} dS(\xi) = \frac{(\mp 2\pi i)^n}{(n-1)!} \delta(x).$$

So we have

$$\int_{S^{n-1}} \left(\frac{1}{(x \cdot \xi - i0)^n} - \frac{1}{(x \cdot \xi + i0)^n} \right) dS(\xi) = \frac{(1 - (-1)^n)(2\pi i)^n}{(n-1)!} \delta(x).$$

Since

$$\int_{S^{n-1}} (\partial_p^{n-1} Rf)(\xi, x \cdot \xi) dS(\xi)$$

$$= \int_{S^{n-1}} dS(\xi) \int_{\mathbb{R}^n} (-1)^{n-1} \delta^{(n-1)}((y-x) \cdot \xi) f(y) dy,$$

and

$$\delta^{(n-1)}(t) = \frac{(-1)^{n-1}(n-1)!}{2\pi i} \left(\frac{1}{(t-i0)^n} - \frac{1}{(t+i0)^n} \right),$$

Theorem 3.1.1. For n odd, and supp f: compact, then,

$$\int_{S^{n-1}} (\partial_p^{n-1} Rf)(\omega, x \cdot \omega) dS(\omega) = (-1)^{(n-1)/2} 2^n \pi^{n-1} f(x).$$

For n even, this integral vanishes, instead we have

$$\int_{S^{n-1}} dS(\xi) \int_{-\infty}^{\infty} \frac{1}{s+i0} \partial_p^{n-1} Rf(\xi, x \cdot \xi - s) ds = (-2\pi i)^n f(x).$$

Theorem 3.1.2.(Parseval type formula for Radon transforms.)

For odd n, $f(x) \in C_0^{\infty}(\mathbb{R}^n)$, and $g(x) \in \mathcal{D}'(\mathbb{R}^n)$ with compact support, we have

$$\int_{\mathbb{R}^n} f(x)g(x)dx = \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1} \times \mathbb{R}} \partial_p^{n-1} Rf(\omega, p) \cdot Rg(\omega, p) dp \, dS(\omega).$$

Proof. Since n is odd, we have

$$f(x) = \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}} (\partial_p^{n-1} Rf)(\omega, x \cdot \omega) dS(\omega),$$

$$\int_{\mathbb{R}^n} f(x)g(x)dx = \frac{1}{2(2\pi i)^{n-1}} \int_{\mathbb{R}^n} g(x)dx \int_{S^{n-1}} (\partial_p^{n-1}Rf)(\omega, x \cdot \omega)dS(\omega)$$

$$= \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}} dS(\omega) \int_{\mathbb{R}^n} (\partial_p^{n-1}Rf)(\omega, x \cdot \omega) \cdot g(x)dx$$

$$= \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}} dS(\omega) \int_{\mathbb{R}} (\partial_p^{n-1}Rf)(\omega, p) \cdot Rg(\omega, p)dp$$

$$= \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}\times\mathbb{R}} (\partial_p^{n-1} Rf)(\omega, p) \cdot Rg(\omega, p) dp dS(\omega).$$

3.2. Proof of $(V_D(\omega, p))$:algebraic in $p \Rightarrow$ polynomial in p)

Lemma 3.2.1. For odd n, $\partial_p^{n+2}V_D(-\omega,-p)=\partial_p^{n+2}V_D(\omega,p)$ and

$$\int_{S^{n-1}} \partial_p^{n+2} V_D(\omega, x \cdot \omega) dS(\omega) = 0 \quad (\forall x \in D).$$

Proof. Since $V_D(\omega, p) + V_D(-\omega, -p) = |D|$, we have the first equality. Further, apply the inversion formula to $f(x) = \Delta_x \chi_D(x)$. Then,

$$\int_{S^{n-1}} (\partial_p^{n-1} R(\Delta_x \chi_D))(\omega, x \cdot \omega) dS(\omega)$$

$$= (-1)^{(n-1)/2} 2^n \pi^{n-1} \Delta_x \chi_D(x) = 0 \quad (x \in D).$$

Since $R(\Delta_x \chi_D)(\omega, p) = \partial_p^2 R \chi_D(\omega, p) = \partial_p^3 V_D(\omega, p)$, we have the last equality.

Under the discriminant condition for $Q(\omega, p, w)$, $V_D(\omega, p)$ becomes holomorphic in a neighborhood of $\{p \in \mathbb{C} \mid \text{Im } p = 0\}$, in particular $\partial_p^{n+2}V_D(\omega, p)$ has a power series expansion at p = 0:

$$\partial_p^{n+2}V_D(\omega,p) = \sum_{j=0}^{\infty} \beta_j(\omega)p^j.$$

From now on, we consider the L^2 -inner product for functions α, β on $S^{n-1} = \{\omega \in \mathbb{R}^n \mid |\omega| = 1\}$:

$$\langle \alpha, \beta \rangle := \int_{S^{n-1}} \alpha(\omega) \overline{\beta(\omega)} dS(\omega).$$

Lemma 3.2.2. If $V_D(\omega, p)$ is holomorphic at p = 0, then

$$\beta_j \perp \bigcup_{k=0}^{j+1} \mathcal{P}_k \ (j=0,1,2,\ldots),$$

where $\mathcal{P}_{\ell} := \{\text{homogeneous polynomials of } \omega \in \mathbb{R}^n \text{ with degree } \ell \}.$

Proof By Lemma 3.2.1, we have

$$\sum_{j=0}^{\infty} \int_{S^{n-1}} \beta_j(\omega) (x \cdot \omega)^j dS(\omega) = 0 \quad (\forall x, |x| < \epsilon).$$

Since its j-th term is the homogeneous polynomial of x with degree j, we have

$$\int_{S^{n-1}} \beta_j(\omega)(x \cdot \omega)^j dS(\omega) = 0 \quad (\forall x \in \mathbb{R}^n, \forall j = 0, 1, \ldots).$$

Finite sums of $(x \cdot \omega)^j$ with $x \in \mathbb{R}^n$ generate any homogeneous

polynomials of ω with degree j, and so we conclude

$$\beta_j(\omega) \perp \mathcal{P}_j \quad (j = 0, 1, 2, \ldots).$$

Further, for $\ell = 0, 1, 2, \dots, [j/2]$ we have an imbedding:

$$\mathcal{P}_{j-2\ell} \ni P(\omega) \hookrightarrow |\omega|^{2\ell} P(\omega) \in \mathcal{P}_j.$$

So,

$$\beta_j(\omega) \perp \bigcup_{\ell=0}^{[j/2]} \mathcal{P}_{j-2\ell} \quad (j=0,1,2,\ldots).$$

On the other hand, by the same lemma we obtain that $\partial_p^{n+2}V_D(\omega,p) = \sum_{j=0}^{\infty} \beta_j(\omega)p^j$ is an even function in (ω,p) , and so

$$\beta_j(-\omega) = (-1)^j \beta_j(\omega) \quad (\forall j).$$

Since any $P(\omega) \in \mathcal{P}_k$ satisfies $P(-\omega) = (-1)^k P(\omega)$, for odd j - k we have

$$\beta_j(-\omega)P(-\omega) = (-1)^{j-k}\beta_j(\omega)P(\omega) = -\beta_j(\omega)P(\omega).$$

Therefore its integral on S^{n-1} vanishes; that is,

$$eta_j \perp igcup_{k-j= ext{odd}} \mathcal{P}_k$$
 .

Thus the proof is completed.

To obtain a global expression of $V_D(\omega, p)$ in p, we use an expansion of V_D by orthogonal polynomials of ω ; that is, an expansion by spherical harmonic functions on \mathbb{R}^n . Let

$$\mathcal{H}_k := \{ f(\omega) \in \mathcal{P}_k \mid \Delta_{\omega} f = 0 \}.$$

Proposition 3.2.3. Let $\{Y_k^{(m)}(\omega)\}_m, (m=0,\pm 1,\pm 2,...,\pm k)$ be the orthonormal base of \mathcal{H}_k with respect to the inner product

on S^{n-1} for $k=0,1,2,\ldots$ Then, for any $\alpha(\omega)\in L^2(S^{n-1})$, we have

$$\alpha(\omega) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} \alpha_{k,m} Y_k^{(m)}(\omega), \quad \alpha_{k,m} = \int_{S^{n-1}} \alpha(\omega) \overline{Y_k^{(m)}(\omega)} dS(\omega).$$

So putting

$$V_{k,m}(p) := \int_{S^{n-1}} V_D(\omega, p) \cdot \overline{Y_k^{(m)}(\omega)} dS(\omega),$$

we have a global expression of V_D in p:

$$V_D(\omega, p) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} V_{k,m}(p) Y_k^{(m)}(\omega).$$

Lemma 3.2.4. Assume that $V_D(\omega, p)$ is holomorphic at p = 0, then, $V_{k,m}(p)$ is a polynomial of p with degree $\leq k + n$.

Proof. For holomorphic functions, complex differentiation com-

mutes with integration. So we have for $|p| \ll 1$

$$\partial_p^{n+2} V_{k,m}(p) = \int_{S^{n-1}} \partial_p^{n+2} V_D(\omega, p) \cdot \overline{Y_k^{(m)}(\omega)} dS(\omega)$$

$$= \sum_{j=0}^{\infty} \int_{S^{n-1}} \beta_j(\omega) p^j \cdot \overline{Y_k^{(m)}(\omega)} dS(\omega) = \sum_{j=0}^{k-2} p^j \int_{S^{n-1}} \beta_j(\omega) \cdot \overline{Y_k^{(m)}(\omega)} dS(\omega).$$

This completes the proof.

Since $V_D(\omega, p)$ is an algebraic function of p, for any fixed ω , $V_D(\omega, p)$ extends analytically in p along any curve in $\mathbb{C} \setminus S_\omega$ starting from p = 0. Here

$$S_{\omega} := \{ p \in \mathbb{C} \mid \mathsf{Disc}_{Q}(\omega, p) = 0 \}$$

is a finite set. So, $V_{k,m}(p)$ also extends analytically in p along the same curve. Since $V_{k,m}(p)$ is a polynomial at p=0, such

an analytic extension is the same polynomial. The expansion formula

$$V_D(\omega, p) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} V_{k,m}(p) Y_k^{(m)}(\omega).$$

holds along such a curve, so we can conclude that $V_D(\omega, p)$ is an entire function of p. Further since

$$Q(\omega, p, w) = \sum_{j=0}^{N} q_j(\omega, p) w^j, \ q_j(\omega, p) = \sum_{k=0}^{k_j} q_{jk}(\omega) p^k \ (j = 0, \dots, N),$$

setting $L := \max\{k_1, \dots, k_N\}$, we know that the number of

$$\{p \in \mathbb{C} \mid Q(\omega, p, c) = 0\} \supset \{p \in \mathbb{C} \mid V_D(\omega, p) = c\}.$$

is at most L for generic $c \in \mathbb{C}$. By the great Picard theorem, we can conclude that $V_D(\omega, p)$ is a polynomial in p with degree $\leq L$.

Therefore,

$$V_D(\omega, p) = \sum_{j=0}^{L} \frac{\partial_p^j V_D(\omega, 0)}{j!} p^j.$$

3.3. The volume function $V_D(\omega, p)$ is polynomial $\Rightarrow D$ is convex.

(Or the convergence radius of $\sum_{j=0}^{\infty} (\partial^{j} V_{D}(\omega, 0)/\partial p^{j}) \cdot p^{j}$ is larger than the diameter of $D \Rightarrow D$ is convex.)

Assume that the volume function $V_D(\omega,p)$ is holomorphic at p=0 and

$$V_D(\omega, p) = \sum_{k=0}^{\infty} \gamma_k(\omega) p^k.$$

Lemma 3.3.1. For $k \ge n+1$, $\gamma_k(\omega) \perp \mathcal{P}_{k-n}$.

Proof. Since $R\chi_D(\omega,p)=\partial_p V_D(\omega,p)$, in a neighborhood of x=0 we have

$$1 = \chi_D(x) = \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}} (\partial_p^{n-1} \partial_p V_D)(\omega, x \cdot \omega) dS(\omega)$$

$$= \sum_{k=0}^{\infty} \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}} \gamma_k(\omega) \cdot (\partial_p^n p^k)|_{p=x \cdot \omega} dS(\omega)$$

$$= \sum_{k=n}^{\infty} \frac{1}{2(2\pi i)^{n-1}} \frac{k!}{(k-n)!} \int_{S^{n-1}} \gamma_k(\omega) \cdot (x \cdot \omega)^{k-n} dS(\omega).$$

Hence, for any k - n > 0,

$$\int_{S^{n-1}} \gamma_k(\omega) \cdot (x \cdot \omega)^{k-n} dS(\omega) = 0 \quad (\forall x \in \mathbb{R}^n).$$

Therefore,

$$\int_{S^{n-1}} \gamma_k(\omega) \cdot R(\omega) dS(\omega) = 0 \quad (\forall R(\omega) \in \mathcal{P}_{k-n}).$$

Proof of 3.3. Let \widehat{D} be the convex hull of D. Suppose that $\widehat{D} \neq D$. Choose a $\psi(x) \in C_0^{\infty}(\mathbb{R}^n)$ such that

$$\operatorname{supp}(\psi) \subset \widehat{D}, \quad I := \int_{\partial D} \psi(x) \nu_1(x) dS(x) > 0,$$

where $\nu(x)$ is the outer unit normal vector for ∂D . We choose a coodinate $x=(x_1,\ldots,x_n)$ of \mathbb{R}^n as

$$\nu_1(x) > 0$$
 on $supp(\psi)$.

$$I = \int_{\partial D} \psi(x)\nu_{1}(x)dS(x) = \int_{D} \partial_{x_{1}}\psi(x)dx = \int_{\mathbb{R}^{n}} \partial_{x_{1}}\psi(x) \cdot \chi_{D}(x)dx$$

$$= \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1} \times \mathbb{R}} \partial_{p}^{n-1} R(\partial_{x_{1}}\psi)(\omega, p) \cdot R\chi_{D}(\omega, p)dp dS(\omega)$$

$$= \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1} \times \mathbb{R}} \partial_{p}^{n-1}(\omega_{1}\partial_{p}R\psi(\omega, p)) \cdot R\chi_{D}(\omega, p)dp dS(\omega)$$

$$= \frac{1}{2(2\pi i)^{n-1}} \int_{S^{n-1}\times\mathbb{R}} \omega_1(\partial_p^n R\psi)(\omega, p) \cdot R\chi_D(\omega, p) dp dS(\omega).$$

Now we perform the integration by parts; move ∂_p^n from $R\psi(\omega, p)$ to $R\chi_D(\omega, p)$. Indeed, the integral end points in p are

$$p_{+}(\omega) := \sup\{x \cdot \omega \mid x \in D\}, \quad p_{-}(\omega) := \inf\{x \cdot \omega \mid x \in D\}.$$

On the other hand

$$\operatorname{supp} \psi(x) \subset \widehat{D} \subset \{x \in \mathbb{R}^n \mid p_{-}(\omega) < x \cdot \omega < p_{+}(\omega)\}.$$

So, for a sufficiently small $\epsilon > 0$, we have

$$\operatorname{supp} \psi(x) \subset \{x \in \mathbb{R}^n \mid p_{-}(\omega) + \epsilon < x \cdot \omega < p_{+}(\omega) - \epsilon\}.$$

Thus we obtain the following (we use the convergence radius of $V_D(\omega, p)$ at p = 0 is larger than the diameter of D!)

$$I = \frac{(-1)^n}{2(2\pi i)^{n-1}} \int_{S^{n-1} \times \mathbb{R}} \omega_1 R\psi(\omega, p) \cdot (\partial_p^n R\chi_D)(\omega, p) dp dS(\omega)$$

$$= \frac{(-1)^n}{2(2\pi i)^{n-1}} \int_{S^{n-1} \times \mathbb{R}} \omega_1 R\psi(\omega, p) \cdot \partial_p^{n+1} V_D(\omega, p) dp dS(\omega)$$

$$= \frac{(-1)^n}{2(2\pi i)^{n-1}} \sum_{k=n+1}^{\infty} \frac{k!}{(k-n-1)!} \int_{S^{n-1}} \omega_1 \gamma_k(\omega) dS(\omega)$$

$$\times \int_{p_-(\omega)+\epsilon}^{p_+(\omega)-\epsilon} R\psi(\omega, p) \cdot p^{k-n-1} dp.$$

Since $R\psi(\omega, p) = 0$ $(p \notin [p_- + \epsilon, p_+ - \epsilon])$, we have

$$I = \frac{(-1)^n}{2(2\pi i)^{n-1}} \sum_{k=n+1}^{\infty} \frac{k!}{(k-n-1)!} \int_{S^{n-1}} \omega_1 \gamma_k(\omega) dS(\omega)$$
$$\times \int_{-\infty}^{\infty} R\psi(\omega, p) \cdot p^{k-n-1} dp.$$

We note here that

$$\varphi_k(\omega) := \int_{-\infty}^{\infty} R\psi(\omega, p) \cdot p^{k-n-1} dp = \int_{\mathbb{R}^n \times \mathbb{R}} \psi(x) \delta(x \cdot \omega - p) p^{k-n-1} dp dx$$

$$= \int_{\mathbb{R}^n} \psi(x)(x \cdot \omega)^{k-n-1} dx \in \mathcal{P}_{k-n-1}.$$

Therefore for $k \ge n + 1$ we have

$$\int_{S^{n-1}} \omega_1 \gamma_k(\omega) dS(\omega) \int_{-\infty}^{\infty} R\psi(\omega, p) \cdot p^{k-n-1} dp$$

$$= \int_{S^{n-1}} \omega_1 \varphi_k(\omega) \cdot \gamma_k(\omega) dS(\omega) = 0.$$

This is because $\omega_1 \varphi_k(\omega) \in \mathcal{P}_{k-n}$ $(k \ge n+1)$. So $\gamma_k(\omega) \perp \omega_1 \varphi_k(\omega)$. Consequently, we have I = 0. Contradiction! Therefore D is convex.

Appendix 1. Newton's proof.

(An ovaloid:
$$((x+0.5)^2+1.2y^2)^2 = (x+0.5)^3+0.3(x+0.5)y^2$$
)

Assume $0 \in D \subset \mathbb{R}^2$, and let $r(\theta)(>0)$ be a continuous function with period 2π such that $\partial D = \{(r(\theta)\cos\theta, r(\theta)\sin\theta) \mid \theta \in \mathbb{R}\}.$

We define the area function $S(\theta)$ of D by

$$S(\theta) := \int_0^\theta \frac{1}{2} r(\theta')^2 d\theta'.$$

Then it is sufficient to prove that $S(\theta)$ never be any algebraic function of $t = \tan \theta$.

Proof. (Newton's proof) We assume that $S(\theta)$ is an algebraic function of $t = \tan \theta$. Hence we have a polynomial R(s;t) of s:

$$R(s;t) = \sum_{j=0}^{J} \alpha_j(t)s^j, \quad R(S(\arctan t);t) = 0 \quad (\forall t),$$

where $\alpha_j(t)$'s are polynomials of t such that $\alpha_J(t) \not\equiv 0$. Since ∂D has no analytic singularities, $S(\theta)$ is analytic in $\mathbb R$ with respect to θ . Consider the following spiral curve:

$$C := \{ (S(\theta) \cos \theta, S(\theta) \sin \theta) \mid \theta \in \mathbb{R} \}$$

Then C is an analytic curve in \mathbb{R}^2 .

Since

$$C \cap \{y = tx\} \subset \{(x, tx) \mid R(\sqrt{1 + t^2} |x|; t) = 0\},$$

 $C \cap \{y = tx\}$ is a finite set for any given $t \in \mathbb{R}$. However it is clear by the picture of C that $C \cap \{y = tx\}$ is an infinite set. Contradiction!

Appendix 2. Algebraically integrable domains in \mathbb{R}^2 .

We consider only domains of the following type:

$$D = \{(x, y) \in \mathbb{R}^2 \mid P(x, y)^2 - Q(x, y) < 0\},\$$

where P(x,y) is a positive semi-definite second-order homogeneous polynomial, and Q(x,y) is a homogeneous polynomial with degree ≤ 3 .

Theorem. If a connected component of D is algebraically integrable, then after a suitable linear coordinate transformation, D is equal to either one of

$${(x^2+y^2)^2-2(x^2-y^2)<0}, {x^4-(x^2-y^2)<0}.$$

Bernoulli lemniscate: $(x^2 + y^2)^2 - 2(x^2 - y^2) = 0$.

Gerono (Huygens) lemniscate: $x^4 - (x^2 - y^2) = 0$.

ご清聴ありがとうございました!