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1. Newton’s theorem and the Arnold conjecture.

1.1.Newton’s theorem about ovals (lemma 28 of section VI of
book 1 of Newton's Principia) There is no convex smooth (mean-
ing infinitely differentiable) curve such that the area S(a,b,c) cut
off by a line ax + by = c is an algebraic function of a,b, and c.




As for the assumption, the smoothness (no analytic singularity)
of convex curves is necessary, because triangles and Bernoulli
lemniscate (22 +y2)? = 202(¢® —y?) are algebraically integrable.

y=b

D
L7

y=ax

Indeed, for a > 0,—-1<a<b< 1, put
Dyp = {(z,y) € R? | (z° + y*)? < 2a?(z* — y?),az < y < bz}

Then,
b a
D — 2( ——)
Dapl ="\ T2 ~ 1522




1.2. The volume function for D and the Radon transform.

D C R™: a bounded open set such that 0 € D.
f(z) € 2'(R™) such that supp f C D (the closure of D). Then

the Radon transform of f:

Rf(w,p) :=/ f(x)dS = /]Rn 0(x-w—p) f(x)dz, (w,p) € s—1yR

T-W=p

Here dS is the (n — 1)-dim measure on hyperplanes. Define
p(w) :=sup{z-w |z € D}.
Then
supp (Rf(w,p)) C {(w,p) € S" P xR | —p(—w) < p < p(w)}.



Let xp(x) be the characteristic function of D. Then, we have
Rxp(w,p) =|DN{zx e R" |z -w=p} ((n—1)—dimensional volume),

where (w,p) € S"~1 x R.

Hence the volume function for D is given by

p
Vp(w,p) =|DN{z -w < p} = /_OO Rxp(w,s)ds.

Example 1.2.1. For D :={x € R" | |z| := \/x% + - tz2 < 1},

Rxp(w,p) = cp—1(1 —pQ)Sf_l)/Q,

for some ¢,,_1 > 0 because DN{z-w = p} is an (n—1)-dimensional
ball with radius y/1 —p?. Here, (t)4 =t (t>0),=0 (¢t <0).



For any ellipsoidal region D, there is an affine bijective map:

n n
r .= CD(CE) = Z azji—l—bz D = D, (:DJ .= Z Qg 5Wi, |(D| .= Z (:)jz
=1 =1 '

Hence, we have

(
Rxp(w,p) = c,—1]det(a;j)] - |&|_n(|&|2 —p=b w)2>+



1.3. Arnold’s conjecture on volume functions.

In a book “Arnold’'s Problem” 2nd edition, Springer-Verlag, Berlin,
2004, 656 pages by Viadimir I. Arnold:

Problem 1990-27(=1987-14) An ovaloid in R™ (that is, a

closed hypersurface bounding a convex body) is said to be alge-

braically integrable if the volume cut off by a hyperplane from

this ovaloid is an algebraic function of the hyperplane. Do there
exist algebraically integrable smooth ovaloids different from el-

lipsoid in R™ with odd n7 This is generalization of Newton’

s theorem for higher dimensions.

1.4. Polynomially integrable domains.
A.Koldobsky-A.Merkurjev-V.Yaskin’s result: On polynomi-
ally integrable convex bodies, Advances in Mathematics 320



(2017), 876-886. They proved : For an odd n and a C*° smooth
convex 0D, if the volume function Vp(w,p) is a polynomial of p
with degree < N (N: independent of w), then D is an ellipsoidal
region.

Similar results are obtained by two authors:

(1) M.L.Agranovsky: On polynomially integrable domains in Eu-
clidean spaces, in: Complex Analysis and Dynamical Systems,
New Trends and Open Problems, Birkhauser (2018), 1-21,

(2) J. Boman (a new approach): A hypersurface containing the
support of a Radon transform must be an ellipsoid. II: The
general case; J. Inverse Ill-Posed Probl. 2021; 29(3): 351—367.



Boman’s theorem. Suppose that f # 0, and that
supp (Rf(w,p)) Cp:={(w,p) € ST IxR|p=pw),or —p(—w)}.

Further suppose that 9D is a strictly convex C'2 boundary. Then,
D is an ellipsoidal region. That is, after some translation and

some rotation of coordinates, we have

€T

no 2
D:{:peRM 231<O}
jzlﬁj
with some 81,...,08n, > 0.

Boman’s new proof: His new proof is for the part:

(D : bdd, C? strictly convex boundary) + (Vp(w,p) : polynomial in p)
—= D : an ellipsoidal region.



Proof. Since Rxp(w,p) = 0pVp(w,p), Rxp(w,p) is a polynomial
of p, whose degree is less than an integer N independent of w.
T herefore, for a sufficiently large integer m > 0, we have

0 =92"Rxp(w,p) = R(AT'Xxp)(w,p), p € (—p(—w),p(w)).

This is because for any distribution f(xz) with compact support,
we have

(9> Rf(w,p) = [ §CM(@-w—p)f(2)do

= Jon 07w — p)AZ f(z)dr = R((Az)" f)(w,p).
g(x) = Al'xp(x) is a distribution with support in a compact
set D, and the support of its Radon transform is included in
>p={p=*+p(fw)}. Further A*xp(x) # 0 because its Fourier

transform (—[£]2)™Z [xpl(€) # 0. Therefore, by Boman's theo-
rem, we conclude that D is an ellipsoidal region.



2. M.L.Agranovsky’'s theorems on the algebraic
volume functions of bounded domains in R"™ with
odd n.

2.1. Agranovsky’s results 1.

In “On polynomially integrable domains in Euclidean spaces,
in: Complex Analysis and Dynamical Systems, New Trends and
Open Problems, Birkhauser (2018), 1-21", he obtained :
Theorem 2, There are no polynomially integrable domain with
C2-smooth boundary in R" with even n.

Theorem 5, If a smoothly bounded domain D in R"™ (with n
odd) is polynomially integrable, then it is convex.

Theorem 7, he got a weaker version of A.Koldobsky-A.Merkurjev-
V.Yaskin’s result.

2.2. Agranovsky’s result 2.



In “On algebraically integrable bodies. In: Contemporary Math-
ematics, Functional Analysis and Geometry. Selim Krein Cen-
tennial, AMS, Providence RI, 33—44 (2019)":

Letn > 3 beodd and D C R"™ be a bounded domain with infinitely
smooth boundary 0D. Further suppose that D is an algebraically
integrable domain, free of real singularities, then, D is a poly-
nomially integrable domain. Hence, D is an ellipsoidal region.

His arguments (for n:odd) are as follows:

(D : bdd,C* boundary) + (Vp(w, p) : algebraic in p)

— (D : bdd, C*® boundary) 4+ (Vp(w, p) : polynomial in p)

— (D : bdd, convex, C*® boundary) + (Vp(w, p) : polynomial in p)
—= D : an ellipsoidal region.



2.3. The precise definition of an algebraic volume func-
tion.

Definition 2.3.1. Vp(w,p) is said to be algebraic in p if there is
a polynomial Q(w,p,w) in p,w given by

N | &)
5=0 k=0

where g;x(w) € CO(S"1) such that Q(w,p, Vp(w,p)) = 0 on
sn—1 x (=6,6) for some small § > 0. Further we assume the
following conditions (i), (ii) on the discriminant Discg(w,p) of

Q.

Discriminant Conditions:
(i) Discg(w,p) # 0 on S" 1 x {p € C|Imp = 0}, (ii) d(w) #



0 (Vw € 8"~ 1) for the highest coefficient d(w) of Discg(w,p) in
yor

In general, the discriminant of a polynomial

P(w) :=ag+ajw~+---+ayw” = ay(w - 1) - (w — By)
is defined by

a5 2 1B — 8))2,

1<J
which is the resultant of P(w), P'(w). On the other hand ours is

DiSCQ(wap) .= QN(va)QN_l H (wz(wap) — wj(va))Qa
1<

where {wz(w,p)} * 4 are all the roots of Q(w,p,w) =0 in w.



3. The inversion formula for Radon transforma-
tions, the Parseval-type formula and the proofs.

3.1. The inversion formula for Radon transformations.

z) = i 1 ivg—egl e 1 (n — 1)!1dS(€)

_ (n—-1)! 1
- (—2mi)n /Sn—l (x-&+ io)nds(g)'
Hence,
1 _ (F2m)"
/Sn_l (x,giio)ndb’(é) = (n_ 1)!5(35).

SO we have

1 1 (@ = (=)™ (2m)n
Jore ((w-f— 0)" <a:-s+z'0>n> WO ="y @




Since
[ @O RAE 7 ©)ds(©)
- 45(8) /IRn(_l)n_15(n_l)((y —z) - &) f(y)dy,

Sn—l
and

(n—1) 7y (-1 (n—1)! ( 1 B 1 )
o = D t—i0)"  (t+i0))’

Theorem 3.1.1. For n odd, and supp f: compact, then,
[gn_l(ﬁg_lRf)(w,x W)dS(w) = (1) D/2nn=1 ¢y,

For n even, this integral vanishes, instead we have

o0 1 . B .
forn 056 [ it RIE 6 = s = (27" @)



Theorem 3.1.2.(Parseval type formula for Radon trans-
forms.)

For odd n, f(z) € Cg°(R"), and g(z) € Z'(R™) with compact
support, we have

— - n—1
Jon F@9@)de = 55y [ 05T R, p) Rg(w, p)dpdS (),
Proof. Since n is odd, we have

—_ 1 n—1
F@) = iy Jgua O RO 0)dS(w),

— 1 n—1

/Rn f(x)g(x)dxr = > (2riyn-1 /ng(a:)da: /Snl(ap Rf)(w,z - w)dS(w)
1

= 5T Jor 1 ) [ O R) 7 w) - g(a)d

- 2(2;)7@—1 /Snl dS(w) /R(aﬁ_lRf)(W) - Rg(w,p)dp




B 2(27:7;)71—1 /Sn_lxR(az?_lRf)(w,p) - Rg(w, p)dp dS(w).

3.2. Proof of (Vp(w,p) :algebraic in p = polynomial in p)

Lemma 3.2.1. For odd n, 8]’?+2VD(—w,—p) = ;}JFQVD(w,p) and

[ 08TV (w,a - w)dS(@) =0 (v € D).

Proof. Since Vp(w,p) + Vp(—w,—p) = |D|, we have the first
equality. Further, apply the inversion formula to f(z) = A.xp(x).
Then,

/n—l(ag_lR(waD))(wa T w)dS(w)
= (—1)("=D/2onzn=1A v (2) =0 (z € D).



Since R(Azxp)(w,p) = 95Rxp(w,p) = 3Vp(w,p), we have the
last equality.

Under the discriminant condition for Q(w, p, w), Vp(w, p) becomes
holomorphic in a neighborhood of {p € C | Imp = 0O}, in particular
8£+2VD(w,p) has a power series expansion at p = 0:

MT2Vp(w,p) = Y. Bi(w)p’.
j=0

From now on, we consider the L2-inner product for functions
a,Bon S" L ={welR"||w =1}

(. 8) = [, a()B@)dS(w).



Lemma 3.2.2. If Vp(w,p) is holomorphic at p = 0, then
j+1
k=0

where P, .= {homogeneous polynomials of w € R"™ with degree ¢}.
Proof By Lemma 3.2.1, we have

3 Bi(w)(z w)dS(w) =0 (Vz,|z| < €).
j;O/Sn—l J

Since its j-th term is the homogeneous polynomial of = with
degree j5, we have

/Snl Bj(w)(z w)dS(w) =0 (Yz e R",Vj=0,1,...).

Finite sums of (z-w)? with z € R” generate any homogeneous



polynomials of w with degree 5, and so we conclude

Bi(w) LP; (j=0,1,2,...).
Further, for £ =0,1,2,...,[j/2] we have an imbedding:

Pi_o¢ 3 P(w) — |w|[*P(w) € P;.

So,

Li/2]

6]((“)) 1 U Pj—Qﬁ (.72071727)
(=0

On the other hand, by the same lemma we obtain that 8£+2VD(w,p) =
2520 B;(w)p’ is an even function in (w,p), and so

Bi(—w) = (=1)/8;(w) (V).



Since any P(w) € Py, satisfies P(—w) = (—1)kP(w), for odd j — k
we have

Bi(—w)P(~w) = (=1)!7FB;(w) P(w) = —Bj(w) P(w).
T herefore its integral on gn—1 vanishes; that is,
B; L U P .
k—j=odd
Thus the proof is completed.
To obtain a global expression of Vp(w,p) in p, we use an expan-

sion of Vp by orthogonal polynomials of w; that is, an expansion
by spherical harmonic functions on R™. Let

= {f(w) € Py | Awf = 0}.

Proposition 3.2.3. Let {V\"(w)}m, (m = 0,+1,+2, ..., +k) be
the orthonormal base of J7. with respect to the inner product



on S™ 1 for k=0,1,2,.... Then, for any a(w) € L2(S" 1), we
have

00 k

a@) =3 Y ™M@, agm= [ @y @)dsw).
k=0 m=—k

So putting

Vim®) = [ Vb(w,p) - ¥ (@)ds(w),

we have a global expression of Vp in p:

o0 k
Vpw,p) = > S Vi) Y™ (W),
k=0 m=-—%k

Lemma 3.2.4. Assume that Vj(w,p) is holomorphic at p = 0,
then, Vi ,,(p) is a polynomial of p with degree < k + n.
Proof. For holomorphic functions, complex differentiation com-



mutes with integration. So we have for |p| < 1

B Vem) = [

T2V (w,p) - Y™ (w)dS (w)

00 k—2
> [ 1 8@ VD (@)dS() paky [y Bi(@) - Y™ (@)dS ()

This completes the proof.

Since Vp(w,p) is an algebraic function of p, for any fixed w,
Vp(w, p) extends analytically in p along any curve in C\ S, starting
from p = 0. Here

Sw = {p € C| Discg(w,p) = 0}

is a finite set. So, Vi ,,(p) also extends analytically in p along
the same curve. Since Vi ,,(p) is a polynomial at p = 0, such



an analytic extension is the same polynomial. The expansion
formula

©.@)

k
Vpw,p) = 35 > Vi) Y™ (W),
k=0 m=-—%k

holds along such a curve, so we can conclude that Vp(w,p) is an
entire function of p. Further since

N | kj
=0 k=0
setting L := max{kq,...,kyn}, we know that the number of

{peC|Q(w,p,c) =0} D{peC|Vp(w,p) =c}.

is at most L for generic ¢ € C. By the great Picard theorem, we
can conclude that Vp(w,p) is a polynomial in p with degree< L.



T herefore,

L oj

o, VD(W,O) :
Vp(w,p) = > 2 . p.

j=0

3.3. The volume function Vp(w,p) is polynomial = D is
convex.
(Or the convergence radius of Z;?‘;O(ajVD(w, 0)/0p?) - p? is larger
than the diameter of D = D is convex.)

Assume that the volume function Vp(w, p) is holomorphic at p =
O and

Vp(w,p) = Y y(w)p”.
k=0



Lemma 3.3.1. Fork>n—+1, y.(w) L Pr_,,.
Proof. Since Rxp(w,p) = 0pVp(w,p), in a neighborhood of x =0
we have

1

z(zm')n—l
= 3 0oyt fons W) Ol S ()

1= xp(e) = [ O3BV (@, - w)dS(w)

_ 1 k! k—n
B kgn 2(2mi)"=1 (k — n)! /sn—l lw) - (- w) A (w).

Hence, for any Kk —n > 0O,

/Sn_l Te(w) - (- w)*"dS(w) =0 (Vz € R™).

Therefore,

/sn—l Vk(w) - Rw)dS(w) =0  (VR(w) € Pg—p)-



Proof of 3.3. Let D be the convex hull of D. Suppose that
D # D. Choose a 9 (z) € CF(R™) such that

supp(v) C D, I := /asz(.:U)ul(ac)dS(ac) >0,

where v(x) is the outer unit normal vector for 9D. We choose
a coodinate x = (x1,...,zn) Of R™ as

vi(x) >0 on supp(?y).



0 Iy
D_ (w)\kji\ py(w)

1= | $@w@ds@) = [ onv@de= [ %) xp(@)da

1 ..
= S oo 08 TR0, ) (@,p) - R (w, p)dp dS(w)

1
= 5T Jon 1, O (10pRY(@,P)) - Rxp(w, P)dpdS()




1
~ 2(2mi)n-1 /Snl 1O RY)(w,p) - Rxp(w, p)dp dS(w).

Now we perform the integration by parts; move 9 from Ry (w, p)
to Rxp(w,p). Indeed, the integral end points in p are

py(w) ;i=sup{z-w|xz €D}, p(v):=inf{z -w|xec D}
On the other hand

supp(z) C D C {reR" | p_(w) <z -w<py(w)}
So, for a sufficiently small ¢ > 0, we have

suppy(z) C{z e R" [p_(w) +e<z-w<py(w) — e}

Thus we obtain the following (we use the convergence radius
of Vp(w,p) at p = 0 is larger than the diameter of D!)

_ (="
— 2(2m)n—1

/SanRwl Ry(w,p) - (8y Rxp)(w,p)dpdS(w)



(="

+1
/Sn_lwal Ry (w,p) - 827} Vp(w,p)dpdS(w)

~ 2(27i)"1
(- & k!
~ 2(27i)n1 k}n;rl (k—n—1)! /sn—l w17 (w)dS (W)
p_|_(<.u)—e k—m—1
R(w, p) - dp.
></p(w)+€ Y(w,p) - p p
Since RY(w,p) =0 (p &€ [p— + €, p+ —€]), we have
(—=1)" s k!

L= S omyn—1 2 (k—n—1)! /sm””’“(”)ds(”)

k=n—+1
o0 R . k—n—ld
< | Y(w,p) - p P

We note here that

pp(w) : = /_O; R (w,p) - p" " tdp = /R W(x)d(x - w — p)p* " tdp du

xR



= /Rnw(a:)(w ) e e P .
T herefore for kK > n+ 1 we have
is(w) [~ R =1y
_, w1vk(w)dS(w) Y(w,p) - p p
Sn —00

= [y €108(@) - (@) (W) = 0.

This is because wipr(w) € Pr_,, (k> n+1). SO v(w) L wipr(w).
Consequently, we have I = 0. Contradiction! Therefore D is
convex.



Appendix 1. Newton’s proof.

ax+by+c=0

(An ovanidI((a:—|—0.5)2—|—1.2y2)2 = (:U—I—O.5)3—I—O.3(:U—I—O.5)y2>

Assume 0 € D C R?, and let »(8)(> 0) be a continuous function
with period 27 such that 0D = {(r(0)cos0,r(0)sind) | 6 € R}.



We define the area function S(8) of D by

0
S(0) 1= /O %r(@’)QdQ’.

Then it is sufficient to prove that S(0) never be any algebraic
function of t = tan?#.

Proof. (Newton’'s proof) We assume that S(0) is an algebraic
function of ¢t = tand. Hence we have a polynomial R(s;t) of s:

J .
R(s;t) = > «aj(t)s!, R(S(arctant);t) =0 (Vt),
7=0
where a;(t)’'s are polynomials of ¢ such that o ;(t) # 0. Since 0D
has no analytic singularities, S(0) is analytic in R with respect to
6. Consider the following spiral curve:

C :={(S5(0)cos,S(0)sinh) | 0 € R}



Then C is an analytic curve in R2,
/

A
W\

/IirL
=T

\
]

SN
RN

Since

Cn{y=tz} C {(z,tx) | R(\1+t*|z|;t) = 0},

C N{y = tx} is a finite set for any given t € R. However it is
clear by the picture of C that C N{y = tz} is an infinite set.
Contradiction! ]




Appendix 2. Algebraically integrable domains in
R2.

We consider only domains of the following type:

D = {(z,y) € R? | P(z,y)? — Q(a,y) < 0},

where P(x,y) is a positive semi-definite second-order homoge-
neous polynomial, and Q(x,y) is a homogeneous polynomial with
degree < 3.

Theorem. If a connected component of D is algebraically inte-
grable, then after a suitable linear coordinate transfomation, D
IS equal to either one of

{(@® +y%)? —2(z® —y?) <0}, {z*— (2% -y?) <O}



Bernoulli lemniscate: (z2 4 y2)2 — 2(22 — y2) = 0.

Gerono (Huygens) lemniscate: z% — (22 — y2) = 0.
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