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1. Introduction

This note is a brief summary of [6, 7]. Sets with certain self-distributive

operations called quandles have been studied since the 1940s [18] in various

areas with different names. The fundamental quandle of a knot was defined

in a manner similar to the fundamental group [12, 13] of a knot, and became

an important tool in knot theory. The fundamental quandle classifies knots

up to reversed mirror.

The number of homomorphisms from the fundamental quandle to a fixed

finite quandle has an interpretation as colorings of knot diagrams by quandle

elements, and has been widely used as a knot invariant. Algebraic homology

theories for quandles were defined in [3, 11], and investigated in [14, 15, 16],

for example. A variety of knot invariants have been defined using quan-

dle colorings and cocycles, and applied to various properties of knots and

knotted surfaces (see, for example, [5] and references therein). Extensions

of quandles by cocycles have been studied [1, 2, 10].

This note is organized as follows. Preliminary material follows this sec-

tion. A summary on computational results of quandle colorings is given in

Section 3. In Section 4, a method of computing quandle cocycle invariants

from colorings of composite knots is studied. Relations to abelian extensions

of quandles are examined in Section 5.

2. Preliminaries

We briefly review some definitions and examples of quandles. More details

can be found, for example, in [1, 5, 11].
1
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A quandle X is a set with a binary operation (a, b) 7→ a ∗ b satisfying the

following conditions.

(1) For any a ∈ X, a ∗ a = a.

(2) For any b, c ∈ X, there is a unique a ∈ X such that a ∗ b = c.

(3) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

For example, a generalized Alexander quandle is defined by a pair (G, f)

where G is a group, f ∈ Aut(G), and the quandle operation is defined by

x ∗ y = f(xy−1)y. If G is abelian, this is called an Alexander (or affine)

quandle.

Let X be a quandle. The right translation Ra : X → X, by a ∈ X, is de-

fined by Ra(x) = x∗a for x ∈ X. Then Ra is a quandle automorphism of X

by Axiom (2) and (3). The subgroup of Aut(X), the quandle automorphism

group of X, generated by Ra, a ∈ X, is called the inner automorphism group

of X, and is denoted by Inn(X). A quandle is connected if Inn(X) acts tran-

sitively on X. A quandle is faithful if the mapping ϕ : X → Inn(X) defined

by ϕ(a) = Ra is an injection from X to Inn(X). A quandle X is called a

kei [18], or involutory, if (x ∗ y) ∗ y = x for all x, y ∈ X.

A coloring of an oriented knot diagram by a quandle X is a map C from

the set of arcs A of the diagram to X such that the image of the map satisfies

the relation depicted in Figure 1 at each crossing. More details can be found

in [5, 10], for example. The number of colorings of a diagram of a knot K by

a finite quandle X does not depend on the choice of a diagram, and denoted

by ColX(K).
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Figure 1. Colored crossings and cocycle weights

A function φ : X × X → A for an abelian group A is called a quandle

2-cocycle if it satisfies

φ(x, y) − φ(x, z) + φ(x ∗ y, z)− φ(x ∗ z, y ∗ z) = 0

for any x, y, z ∈ X and φ(x, x) = 0 for any x ∈ X (see [3] for a homology

theory). For a quandle 2-cocycle φ, E = X ×A becomes a quandle by

(x, a) ∗ (y, b) = (x ∗ y, a+ φ(x, y))
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for x, y ∈ X, a, b ∈ A, denoted by E(X,A, φ) or simply E(X,A), and it

is called an abelian extension of X by A. See [2] for more information on

abelian extensions of quandles.

Let X be a quandle, and φ be a 2-cocycle with coefficient group A, a finite

abelian group. For a coloring of a knot diagram by a quandle X as depicted

in Figure 1 at a positive (left) and negative (right) crossing, respectively, the

pair (xτ , yτ ) of colors assigned to a pair of nearby arcs is called the source

colors. The third arc receives the color xτ ∗ yτ .

The 2-cocycle (or cocycle, for short) invariant is an element of the group

ring Z[A] defined by Φφ(K) =
∑

C

∏
τ φ(xτ , yτ )

ǫ(τ), where the product ranges

over all crossings τ (the image is in multiplicative notation of A), the sum

ranges over all colorings of a given knot diagram, (xτ , yτ ) are source colors

at the crossing τ , and ǫ(τ) is the sign of τ as specified in Figure 1.

3. Computer calculations

Computations using GAP [20] significantly expanded the list for connected

quandles. These quandles may be found in the GAP package Rig [19]. Rig

includes all connected quandles of order less than 48 (extended this year from

36 previously). There are 790 (431 for order less than 36) such quandles. We

refer to these quandles as Rig quandles (short for Rack In GAP), and use the

notation Q(n, i) for the i-th quandle of order n in the list of Rig quandles

(see the Wiki page of Rig [19]). The following computer calculations have

been made recently.

• The package Rig [19] includes homology groups, 2-cocycles, abelian exten-

sions and cocycle invariants for some Rig quandles and some knots in the

KnotInfo table [9].

• The properties of quandles such as faithful, kei, Alexander, abelian exten-

sions, were determined for Rig quandles of order up to 35, and posted at

http://math.usf.edu/∼saito/QuandleColor/.

• The number of quandle colorings by Rig quandles for knots in the table [9]

up to 12 crossings have been computed. The output is posted at the same

site as above.

• In [6], the coloring numbers were used to give some new information on

the tunnel number and the unknotting number.

• For two quandles Q1 and Q2, and a set K of knots, we write Q1 ≈K Q2 if

ColQ1
(K) = ColQ2

(K) for all K ∈ K. Let K be the set of all 2977 knots in

the table in KnotInfo [9] up to 12 crossings. For this set K, the equivalence

classes of Rig quandles of order up to 35 under ≈K were determined [6].

For example, {Q(6, 1), Q(6, 2)} is such a class. Out of 431 Rig quandles,
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151 classes consist of more than one element, and among these, 145 classes

consist of two quandles.

4. Quandle colorings of composite knots

A quandle coloring of an oriented 1-tangle diagram is defined in a manner

similar to those for knots. We do not require that the end points receive the

same color for a quandle coloring of 1-tangle diagrams.

Definition 4.1 ([7]). Let K be a 1-tangle diagram and X be a quandle.

We say that (K,X) is end monochromatic, or K is end monochromatic with

X, if any coloring of K by X assigns the same color on the two end points.

Let K be a knot diagram with a base point b. Then we say that (K,X) is

end monochromatic, or K is end monochromatic with X, if a corresponding

1-tangle diagram is end monochromatic. This does not depend on the choice

of a base point, and if a diagram of a knot K is end monochromatic with X

for a base point b, then we say that a knot K is end monochromatic with

X.

A faithful quandle X is end monochromatic for any knot. Computer cal-

culations show that there are non-faithful quandles that are end monochro-

matic for all knots up to 12 crossings. Most are abelian extensions (abelian

extensions are not faithful).

The following result, originally stated for faithful quandles, naturally ex-

tends to end monochromatic quandles.

Proposition 4.2 ([16]). Let φ be a 2-cocycle of a finite connected quandle

X with coefficient group A. Suppose that K1 and K2 are end monochromatic

with X. Then |X|Φφ(K1#K2) = Φφ(K1)Φφ(K2).

Let X be a quandle, A be a finite abelian group, and φ be a 2-cocycle with

coefficient group A. Let Φφ(K) =
∑

g∈A agg ∈ Z[A] be the cocycle invariant

of a knot K. We write Cg(Φφ(K)) = ag. In particular, Ce(Φφ(K)) ∈ Z

denotes the coefficient of the identity element e ∈ A.

In [2] it was shown that a coloring of a knotK by a quandle X contributes

a non-identity element of the coefficient group A if and only if it extends

to a coloring by the corresponding abelian extension E. Using this and

Proposition 4.2, we obtain the following.

Proposition 4.3. Let X, A, φ be as above. Suppose that X is end monochro-

matic with K. Suppose further that for an element v ∈ A that is not the iden-

tity element e, there exists a knot Rv such that Φφ(Rv) = ree+ rvv ∈ Z[A].
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Then

Cv−1(Φφ(K)) =
1

rv|A|
( |X|ColE(Rv#K)− reColE(K) ).

Example 4.4. LetX = Q(6, 2) and φ be a generating 2-cocycle over A = Z4

such that the abelian extension of X with respect to φ is E = Q(24, 2). Since

X is faithful, any knot is end monochromatic with X.

We abbreviate the identity element. For example, 6+24u means 6e+24u

for the identity element e. The cocycle invariants of X = Q(6, 2) using this

cocycle are given in the Wiki page of Rig [19], for knots up to 10 crossings.

In particular, in order to use Proposition 4.3, we use the following invariant

values:

Φφ(31) = 6 + 24u, Φφ(85) = 30 + 24u2, Φφ(91) = 6 + 24u3.

Proposition 4.3 implies that

Cu(Φφ(K)) = ( 1/(24 · 4) ) ( 6 · ColE(91#K)− 6 · ColE(K) ),

Cu2(Φφ(K)) = ( 1/(24 · 4) ) ( 6 · ColE(85#K)− 30 · ColE(K) ),

Cu3(Φφ(K)) = ( 1/(24 · 4) ) ( 6 · ColE(31#K)− 6 · ColE(K) ).

We also have Ce(Φφ(K)) = (1/|A|)ColE(K) = (1/4)ColE(K). Therefore we

obtain

Φφ(K) =
1

16
[ 4ColE(K) + (ColE(91#K)− ColE(K))u

+ (ColE(85#K)− 5ColE(K))u2 + (ColE(31#K)− ColE(K))u3 ] .

See [7] for computational outputs, and formulas for other quandles.

5. Properties of abelian extensions

We summarize our findings on extensions of Rig quandles in this section.

Using a group cocycle, we obtain the following.

Proposition 5.1. Let X be a finite quandle, and 0 → C
ι

−→ A
pB−→ B → 0

be an exact sequence of finite abelian groups. Let φ : X × X → A be a

quandle 2-cocycle. Then E(X,A, φ) is an abelian extension of E(X,B, pBφ)

with coefficient group C.

We examined some connected abelian extensions of Rig quandles of order

up to 12. In the following, we use the notation E
n

−→ X if E = E(X,Zn.φ)

for some 2-cocycle φ such that E is connected. We write E2
m
=⇒ E1

d
=⇒ X

if there is a short exact sequence 0 → Zm → Zn → Zd → 0 such that Zn ⊂

H2
Q(X,Zn) and E1, E2 are corresponding extensions as in Proposition 5.1.
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In this case E2
n

−→ X where n = md. The notation ∅
1

−→ X indicates that

H2
Q(X,A) = 0 for any coefficient group A, and hence there is no non-trivial

abelian extension. It is noted to the left when all quandles in question are

keis.

∅
1

−→ Q(8, 1)
2

−→ Q(4, 1)

(Kei) ∅
1

−→ Q(24, 1)
2

−→ Q(12, 1)
2

−→ Q(6, 1)

∅
1

−→ Q(24, 2)
2

=⇒ Q(12, 2)
2

=⇒ Q(6, 2)

(Kei) ∅
1

−→ Q(27, 1)
3

−→ Q(9, 2) = Q(3, 1) ×Q(3, 1)

∅
1

−→ Q(27, 6)
3

−→ Q(9, 3) = Z3[t]/(t
2 + 1)

∅
1

−→ Q(27, 14)
3

−→ Q(9, 6) = Z3[t]/(t
2 + 2t+ 1)

∅
1

−→ Q(24, 8) = Q(3, 1) ×Q(8, 1)
2

−→ Q(12, 4) = Q(3, 1) ×Q(4, 1)

These computations raise the following questions.

• What is a condition on cocycles for abelian, or non-abelian extensions

to be connected?

In [1], a condition for an extension to be connected was given in terms of

elements of the inner automorphism group.

• Is there an infinite sequence of abelian extensions of connected quandles

· · · → Qn → · · · → Q1?

We note that sequences of abelian extensions of connected quandles ter-

minate as much as we were able to compute.

• Is any abelian extension of a finite kei a kei?
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