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Abstract. We introduce non-acyclic PGLn(C)-torsion of a 3-manifold with toroidal boundary
as an extension of J. Porti’s PGL2(C)-torsion, and present an explicit formula of the PGLn(C)-
torsion of a mapping torus for a surface with punctures, by using the higher Teichmüler theory
due to V. Fock and A. Goncharov. Our formula gives a concrete rational function which repre-
sents the torsion function and comes from a concrete cluster transformation associated with the
mapping class.

1. Introduction

In the important work [P] J. Porti introduced non-acyclic PGL2(C)-torsion of a 3-manifold
with toroidal boundary, and began to study the torsion as a function on the moduli space of
PGL2(C)-representations of the fundamental group. In particular, in the case of a mapping
torus for the once-punctured torus, he gave a concrete way to compute the torsion function, by
using trace functions.

In this paper we introduce non-acyclic PGLn(C)-torsion of a 3-manifold with toroidal bound-
ary, and present an explicit formula of the PGLn(C)-torsion of a mapping torus for a general
surface with punctures, by using the higher Teichmüler theory due to V. Fock and A. Gon-
charov [FG]. See Theorems 4.1 and 4.2 for the precise statement of our main theorems. Our
formulas, with methods developed in [TY, NTY], give concrete rational functions which rep-
resent the functions induced by twisted Alexander polynomials and the non-acyclic torsion on
components of the PGLn(C)-character variety. The rational functions come from a concrete
cluster transformation [FZ1, FZ2] associated with the mapping class. Moreover, we show that
for any pseudo-Anosov mapping class of a surface, the conjugacy class of a holonomy repre-
sentation of the mapping torus is contained in the components.

Other attempts to define non-acyclic PGLn(C)-torsion and to give formulas in terms of quan-
tities closely related to cluster variables should be remarked. In [MFP3] P. Menal-Ferrer and
J. Porti defines non-acyclic PGLn(C)-torsion of a 3-manifold by another method, and shows
an explicit relationship between its asymptotic behavior on n and the volume of the manifold,
extending the result of Müller for closed manifolds [Mü]. In [DG] T. Dimofte and S. Garoufa-
lidis defines a series of invariants in terms of the shapes together with the gluing equations of
an ideal triangulation of a 3-manifold, and conjectures that each invariant of the series agree
with each term of the asymptotic expansion of the Kashaev invariant of the manifold. In par-
ticular, its first one of the series should conjecturelly give non-acyclic PGL2(C)-torsion, and
they verify this experimentally for a large class of 3-manifolds. In [GGZ, GTZ] S. Garoufa-
lidis, M. Goerner, D. P. Thurston and C. K. Zickert study moduli spaces of higher dimensional
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representations for a general 3-manifold in terms of analogous coordinates to Fock and Gon-
charov’s associated to an ideal triangulation of the manifold itself. It is interesting to obtain
an explicit formula of the PGLn(C)-torsion for a general 3-manifold, with a combination of the
above results and our method.

This paper is organized as follows. In Section 2, following Fock and Goncharov [FG], we
review cluster algebras associated to an ideal triangulation of a punctured surface and then show
that the characters of geometric representations of mapping tori are described by the cluster
variables. Section 3 is devoted to introduce and study non-acyclic Reidemeister torsion for
higher dimensional representations. In Section 4 we prove the main theorems, and demonstrate
our theory with concrete examples.

Acknowledgment. The authors would like to thank H. Fuji, K. Nagao, Y. Yamaguchi and
M. Yamazaki for valuable conversations. The authors also wishes to express their thanks to the
anonymous referee for several useful comments in revising the manuscript.

2. Character varieties and cluster algebras

2.1. Character varieties. We begin with reviewing some of the standard facts on character
varieties. See Lubotzky and Magid [LM] for more details.

Let S be a compact connected oriented surface with m boundary circles. The group PGLn(C)
acts on the affine algebraic set Hom(π1S , PGLn(C)) by conjugation. We denote by XS ,n the
algebro-geometric quotient of the action, which is called the PGLn(C)-character variety of π1S .
For a representation ρ : π1S → PGLn(C) we write χρ for its image by the quotient map and call
it the character of ρ. We fix representatives γ̃1, . . . , γ̃m ∈ π1S of the boundary circles of S . A
framed representation is a pair of a representation ρ : π1S → PGLn(C) and Borel subgroups
B1, . . . , Bm of PGLn(C) such that ρ(γ̃i) ∈ Bi for all i. The set X̃S ,n of framed representations is
a closed subset of the affine algebraic set Hom(π1S , PGLn(C)) × Bm, where B is the flag va-
riety of PGLn(C) parameterizing Borel subgroups. The PGLn(C) acts on X̃S ,n by conjugation.
We denote by XS ,n the algebro-geometric quotient of the action, and for a framed representa-
tion (ρ, B1, . . . , Bm) we write χ(ρ,B1,...,Bm) for its image by the quotient map. Forgetting framings
(B1, . . . , Bm) gives a regular map X̃S ,n → Hom(π1S , PGLn(C)). We denoted by π : XS ,n → XS ,n

the induced map on the quotients.
The tangent space TχρXS ,n is identified with a subspace of the 1st twisted group cohomology

H1
Ad ◦ρ(π1S ; pgln(C)) by the monomorphism given by

dχρt

dt

∣∣∣∣∣
t=0
7→

[
γ 7→ dρt(γ)ρt(γ−1)

dt

∣∣∣∣∣∣
t=0

]
,

where ρ0 = ρ and γ ∈ π1S [W]. It is easily seen that the map T(ρ,B1,...,Bm)X̃S ,n →
Tρ Hom(π1, PGLn(C)) is an epimorphism, and so is (dπ)χ(ρ,B1 ,...,Bm) : Tχ(ρ,B1 ,...,Bm)XS ,n → TχρXS ,n.

We denote by ΓS the mapping class group of S which is defined to be the group of isotopy
classes of orientation preserving homeomorphisms of S , where these isotopies are understood
to fix ∂S pointwise. For φ ∈ ΓS we write Mφ for the mapping torus S × [0, 1]/(x, 1) ∼ (φ(x), 0)
of φ. A mapping class φ ∈ ΓS induces automorphisms φ∗ on XS ,n and XS ,n by pullback of
representations. For a representation ρ : π1Mφ → PGLn(C), χρ|π1S is contained in the fixed point
set Xφ∗

S ,n of φ∗ : XS ,n → XS ,n.
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2.2. Cluster algebras associated to an ideal triangulation. We review cluster algebras for
S , following [FG]. Here, in particular, we only consider y-variables. See [FZ1, FZ2] for more
details on cluster algebras. In the following we assume that ∂S is non-empty and that if the
genus of S is 0, then the number m of the boundary circles is greater than 3.

Let Q be a quiver with the vertex set I = {1, 2, . . . , l} and without loops and oriented 2-cycles.
For i, j ∈ I we set

ϵi j := ♯{oriented edges from i to j} − ♯{oriented edges from j to i}.
Note that Q is uniquely determined by the skew-symmetric matrix ϵi j. For k ∈ I the mutation
µkQ at k ∈ I is defined by the following matrix ϵ′i j:

ϵ′i j =

−ϵi j if k ∈ {i, j},
ϵi j +

|ϵik |ϵk j+ϵik |ϵk j |
2 if k < {i, j}.

A complex torus
XQ := (C∗)I

is associated to Q. Let (y1, . . . , yl) be the standard coordinates on the torus. For k ∈ I a rational
map (µk)∗ : XQ → XµkQ associated to the mutation µkQ is defined by the following:

the ith coordinate of (µk)∗(y1, . . . , yl) =


y−1

i if i = k,
yi(1 + y−1

k )−ϵik if i , k and ϵik ≥ 0,
yi(1 + yk)−ϵik if i , k and ϵik ≤ 0.

Shrinking each component of ∂S , we get a closed surface S with marked points. A triangu-
lation of S with vertices at the marked points is called an ideal triangulation of S . In this paper
we only consider an ideal triangulation without self-folded edges. Such a triangulation exists
under the above assumption on S .

Let T be an ideal triangulation of S and let n be a positive integer. We identify each triangle
of T with the triangle

x + y + z = n, x, y, z > 0

and consider its triangulation given by the lines x = p, y = p, z = p where 0 ≤ p ≤ n is
an integer. The subtriangulation Tn of T is called the n-triangulation of T . The quiver QT,n

associated to Tn is defined as:

QT,n := T (1)
n \ T (1),

where T (1) and T (1)
n are the 1-skeletons of T and Tn respectively. (See Figure 1.) The vertex set

IT,n of QT,n consists of vertices of Tn except the marked points of S . The orientation of each
edge of QT,n is provided by that of S as follows. Take a triangle ∆ of T , which is oriented as a
subspace of S . Then each edge of QT,n contained in ∆ is oriented so that the direction is parallel
to one of the boundary edge of ∆. For simplicity of notation, we set XT,n := XQT,n . Writing e
and f for the number of edges and faces of T respectively, we have

|IT,n| = (n − 1)e +
(n − 1)(n − 2)

2
f ,

χ(S ) = −e + f ,
2e = 3 f .
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These imply the formula
dimXT,n = |IT,n| = −(n2 − 1)χ(S ).

In the following we set
l = −(n2 − 1)χ(S ).

Figure 1. The 3-triangulation T3 and the quiver QT,3

Fock and Goncharov [FG, Section 9] constructed a regular map νT : XT,n → XS ,n and a
rational map φT : XS ,n → XT,n such that φT ◦ νT = id. In particular, νT is an embedding, and
[FG, Theorem 9.1] implies that the images for all the triangulations cover XS ,n. The regular
map νT : XT,n → XS ,n is explicitly constructed in [FG, Section 9.10], and the rational map
φT : XS ,n → XT,n is in [FG, Section 9.3]. For (y1, . . . , yl) ∈ XT,n we set

χ(y1,...,yl) := π ◦ νT ((y1, . . . , yl)).

Remark 2.1. Fock and Goncharov associated cluster algebras also to an ideal triangulation with
self-folded edges. See [FG, Section 10.7] for the treatment of the case.

2.3. The mapping class group actions on cluster variables. Here we define the action
φ∗ : XT,n → XT,n for each φ ∈ ΓS . The definition plays important role to relate the moduli
space for Mφ to cluster algebras for the fiber surface. In fact the fixed point set Xφ

∗

T,n parameter-
izing Xφ

∗

S ,n makes sense.
A mapping class φ ∈ ΓS naturally induces a bijection φ∗ : IT,n → Iφ(T ),n. It defines an isomor-

phism σ : Xφ(T ),n → XT,n by

σ(yφ∗(1), . . . , yφ∗(l)) = (y1, . . . , yl).

The isomorphismσ is called the labeling change of φ. This is essential for obtaining the genuine
action φ∗ : XT,n → XT,n defined later.

Proposition 2.2. For φ ∈ ΓS the following diagram commutes:

Xφ(T ),n
σ−−−−−→ XT,n

νφ(T )

y νT

y
XS ,n

φ∗−−−−−→ XS ,n.
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Proof. We first briefly overview the flow of the construction of the map νT : XT,n → XS ,n. Let
Γ be the 1-skeleton of a dual complex of T . Replacing edges and vertices of Γ by rectangles
and hexagons respectively, we obtain a decomposition of S . The orientation of S naturally
induces that of each edge of the decomposition. We denote by ∆ the set of oriented edges of
the decomposition. It follows from [FG, Lemma 9.6] that XS ,n can be regarded as a quotient
of PGLn(C)∆. For (y1, . . . , yl) ∈ XT,n a representative of νT (y1, . . . , yl) in PGLn(C)∆ is explicitly
given as in [FG, Theorem 9.2].

Let e ∈ ∆. If e is an edge of a rectangle, then let v1, . . . , vq be the vertices of QT,n on the
two triangles sharing the edge corresponding with the rectangle. If e is an edge of a hexagon,
then let v1, . . . , vq be the vertices of QT,n on the triangle corresponding with the hexagon. It
follows from the construction [FG, Theorem 9.2] of νT : XT,n → XS ,n that for (y1, . . . , yl) ∈ XT,n,
νT (y1, . . . , yl) is presented by an element of PGLn(C)∆ whose image of e is determined only by
the coordinates (yv1 , . . . , yvq) in (y1, . . . , yl), and that νφ(T )(σ−1(y1, . . . , yl)) is represented by one
whose image of φ(e) is similarly determined by (yφ(v1), . . . , yφ(vq)) in σ−1(y1, . . . , yl), which are
equal to (yv1 , . . . , yvq) in (y1, . . . , yl). Therefore

φ∗ ◦ νφ(T ) ◦ σ−1(y1, . . . , yl) = νT (y1, . . . , yl)

for any (y1, . . . , yl) ∈ XT,n, and the lemma follows. □

Let T ′ be an ideal triangulation of S obtained from T by a flip f at an edge e. We identify
each of two triangles sharing e as a face with the triangle

x + y + z = n, x, y, z > 0

so that the edge on the line x = 0 represents e. Let v0
1, . . . , v

0
n−2 be the vertices of QT,n on the line

x = 0, and let vi
1, . . . , v

i
n−i−2 and wi

1, . . . ,w
i
n−i−2 be these on the line x = i contained in the interior

of the two triangles for 1 ≤ i ≤ n−2. Then the following composition of mutations change QT,n

into QT ′,n [FG, Proposition 10.1]:
µn−2 ◦ · · · ◦ µ0,

where

µ0 := µv0
1
◦ · · · ◦ µv0

n−1
,

µi := (µvi
1
◦ · · · ◦ µvi

n−i−1
) ◦ (µwi

1
◦ · · · ◦ µwi

n−i−1
), for 1 ≤ i ≤ n − 2.

A rational map f∗ : XT,n → XT ′,n is defined as

f∗ := (µn−2)∗ ◦ · · · ◦ (µ0)∗.

The following commutative diagram is proved in [FG, Sections 10.5 and 10.6]:

XT,n
f∗ //

νT ""E
EE

EE
EE

E
XT ′,n

νT ′||yy
yy
yy
yy

XS ,n

Definition 2.3. We take a sequence f1, . . . , fq of flips changing T into φ(T ) and define a rational
map φ : XT,n → XT,n as

φ∗ = σ ◦ ( fq)∗ ◦ · · · ◦ ( f1)∗,
where σ is the labeling change of φ.
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The following is now a direct consequence of Proposition 2.2.

Corollary 2.4. For φ ∈ ΓS the following diagram commutes:

XT,n
φ∗−−−−−→ XT,n

νT

y νT

y
XS ,n

φ∗−−−−−→ XS ,n.

Note that it follows from the above corollary that φ∗ : XT,n → XT,n does not depend on the
choice of a sequence of flips.

2.4. The character of a holonomy representation. We show that the characters of geometric
representations of mapping tori are described by cluster variables.

It is well-known that for φ ∈ ΓS the mapping torus Mφ has a hyperbolic structure if and only
if φ is pseudo-Anosov [Th].

Theorem 2.5. Let φ ∈ ΓS be pseudo-Anosov and ρ : π1Mφ → PGL2(C) a holonomy represen-
tation of Mφ. Then there exists yi ∈ C∗ for i = 1, . . . , l such that χρ|π1S = χ(y1,...,yl).

Proof. Since for any representative γ̃ ∈ π1S of a boundary circle of S a Borel subgroup con-
taining ρ(γ̃) is uniquely determined, π−1(χρ|π1S ) consists of one point χ(ρ|π1S ,B1,...,Bm). It suffices
to show that the rational map φT : XS ,2 → XT,2 is defined on the point, since, if so, then
φT (χ(ρ|π1S ,B1,...,Bm)) ∈ XT,2 satisfies the desired condition.

Let e be an edge of T and let Γ be the 1-skeleton of a dual complex of T . Write x, y, z, t for the
vertices of two triangles of T sharing e so that xtz and xzy are the triangles compatible with the
orientations coming from that of S . There are natural 4 (unoriented) loops γx, γy, γz, γt in Γ start-
ing at a point on the dual edge of e and going around the boundary of the dual cells of the vertices
x, y, z, t respectively. Take representatives γ̃x, γ̃y, γ̃z, γ̃t ∈ π1S of γx, γy, γz, γt with any orienta-
tions respectively, and let λx, λy, λz, λt ∈ CP1 be the fixed point of the Möbius transformations
ρ(γ̃x), ρ(γ̃y), ρ(γ̃z), ρ(γ̃t) respectively. Then, if defined, the coordinate ye of φT (χ(ρ|π1S ,B1,...,Bm))
corresponding to the vertex on e is given by

ye =
(λx − λt)(λy − λz)
(λz − λt)(λx − λy)

.

See [FG, Sections 9.3 and 9.5] for the definition of the coordinate functions. Since γ̃x, γ̃y, γ̃z, γ̃t

are distinct nontrivial elements of the free group π1S and since ρ : π1Mφ → PGLn(C) is faithful,
ρ(γ̃x), ρ(γ̃y), ρ(γ̃z), ρ(γ̃t) are non-commutative with each other, and so λx, λy, λz, λt are all distinct
elements. Therefore the value ye is nonzero for each e, which implies that φT : XS ,2 → XT,2 is
defined on χ(ρ|π1S ,B1,...,Bm). □

Corollary 2.6. For any pseudo-Anosov mapping class φ ∈ ΓS the fixed point set Xφ
∗

T,n is
nonempty.

Proof. Let ιn : XT,2 → XT,n be the map defined as follows. For (y1, . . . , yl) ∈ XT,2, each co-
ordinate of ιn(y1, . . . , yl) corresponding to a vertex of QT,n on an edge of T is defined to be yi

corresponding to the unique vertex of QT,2 on the same edge, and the other coordinates are all
defined to be 1. The commutativity of the following diagram is straightforward by the definition
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of φ∗:

XT,2
φ∗−−−−−→ XT,2

ιn

y ιn

y
XT,n

φ∗−−−−−→ XT,n.

It follows from this commutativity, Corollary 2.4 and Theorem 2.5 that for (y1, . . . , yl) ∈ XT,2 in
Theorem 2.5, ιn(y1, . . . , yl) ∈ Xφ

∗

T,n, which proves the corollary. □

3. Torsion functions

3.1. Reidemeister torsion. First we review basics of Reidemeister torsion. See Milnor [Mi1]
and Turaev [Tu] for more details.

Let C∗ = (Cn
∂n−→ Cn−1 → · · · → C0) be a finite dimensional chain complex over a commuta-

tive field F, and let c = {ci} and h = {hi} be bases of C∗ and H∗(C∗) respectively. Choose bases bi

of Im ∂i+1 for each i = 0, 1, . . . n, and take a basis bihibi−1 of Ci for each i as follows. Picking a
lift of hi in Ker ∂i and combining it with bi, we first obtain a basis bihi of Ci. Then picking a lift
of bi−1 in Ci and combining it with bihi, we obtain a basis bihibi−1 of Ci. The algebraic torsion
τ(C∗, c, h) is defined as:

τ(C∗, c, h) :=
n∏

i=0

[bihibi−1/ci](−1)i+1 ∈ F×,

where [d′/d] is the determinant of the base change matrix from d to d′ for bases d and d′. If C∗
is acyclic, then we just write τ(C∗, c). It can be easily checked that τ(C∗, c, h) does not depend
on the choices of bi and bihibi−1.

The algebraic torsion τ has the following multiplicative property. Let

0→ C′∗ → C∗ → C′′∗ → 0

be a short exact sequence of finite dimensional chain complexes over F and let c =
{ci}, c′ = {c′i}, c′′ = {c′′i } and h = {hi}, h′ = {h′i}, h′′ = {h′′i } be bases of C∗,C′∗,C

′′
∗ and

H∗(C∗),H∗(C′∗),H∗(C
′′
∗ ). Picking a lift of c′′i in Ci and combining it with the image of c′i in

Ci, we obtain a basis c′ic
′′
i of Ci. We denote by H∗ the corresponding long exact sequence in

homology, and by d the basis ofH∗ obtained by combining h, h′, h′′.

Lemma 3.1. ([Mi1, Theorem 3. 1]) If [c′ic
′′
i /ci] = 1 for all i, then

τ(C∗, c, h) = τ(C′∗, c
′, h′)τ(C′′∗ , c

′′, h′′)τ(H∗, d).

In the following when we write C∗(Ỹ , Z̃) for a CW-pair (Y,Z), Ỹ , Z̃ stand for the universal
cover of Y and the pullback of Z by the universal covering map Ỹ → Y respectively. For a n-
dimensional representation ρ : π1Y → GL(V) over a commutative field F we define the twisted
homology group and the cohomology group associated to ρ as follows:

Hρ
i (Y, Z; V) := Hi(C∗(Ỹ , Z̃) ⊗Z[π1Y] V),

Hi
ρ(Y, Z; V) := Hi(HomZ[π1Y](C∗(Ỹ , Z̃),V)).

If Z is empty, then we write Hρ
i (Y; V) and Hi

ρ(Y; V) respectively.
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For a basis h of Hρ
∗ (Y; V) the Reidemeister torsion τρ(Y; h) associated to ρ and h is defined as

follows: We choose a lift ẽ in Ỹ for each cell e ⊂ Y . Then

τρ(Y; h) := τ(C∗(Ỹ) ⊗Z[π1Y] V, ⟨ẽ ⊗ 1⟩e, h) ∈ F×/(−1)n det ρ(π1Y).

If Hρ
∗ (Y; V) = 0, then we drop h in the notation τρ(Y; h). It can be easily checked that τρ(Y; h)

does not depend on the choice of ẽ and is invariant under conjugation of representations. It is
known that Reidemeister torsion is a simple homotopy invariant.

Let M be a compact connected orientable 3-manifold with empty or toroidal boundary and
let ψ : π1M → ⟨t⟩ be a homomorphism. For a representation ρ : π1Y → GLn(F) satisfying
Hψ⊗ρ
∗ (Y; F(t)n) = 0, where ψ⊗ρ : π1M → GLn(F(t)) is given by ψ⊗ρ(γ) = ψ(γ)ρ(γ) for γ ∈ π1M,

the Reidemeister torsion τψ⊗ρ(M) is known by Kirk and Livingston [KL], and Kitano [K] to
be essentially equal to the twisted Alexander polynomial associated to ψ and ρ. For twisted
Alexander polynomials we refer the reader to [FV].

3.2. Non-acyclic Reidemeister torsion for higher dimensional representations. We intro-
duce non-acyclic Reidemeister torsion of a 3-manifold for higher dimensional representations
as a natural generalization of Porti’s torsion for a 2-dimensional representation [P].

For a compact orientable manifold Y and a representation ρ : π1Y → PGLn(C) the Killing
form of pgln(C) induces a non-degenerate intersection pairing:

(3.1) HAd ◦ρ
i (Y; pgln(C)) × HAd ◦ρ

3−i (Y, ∂Y; pgln(C))→ C.
Let M be a compact connected orientable 3-manifold whose boundary consists of m tori

Ti and let γi ⊂ Ti be a simple closed curve for each i. For a representation ρ : π1M →
PGLn(C) a homomorphism pgln(C)π1Ti → HAd ◦ρ

1 (M; pgln(C)), where pgln(C)π1Ti := {v ∈
pgln(C) ; Ad ◦ρ(π1Ti)v = v}, is defined to map v to [γ̃i ⊗ v] for v ∈ pgln(C)π1Ti , where γ̃i

is a lift of γi in M̃. Similarly, a homomorphism pgln(C)π1Ti → HAd ◦ρ
2 (M; pgln(C)) is de-

fined to map v to [T̃i ⊗ v] for v ∈ pgln(C)π1Ti , where T̃i is a lift of Ti in M̃. We denote by
ψ1 : ⊕m

i=1 pgln(C)π1Ti → HAd ◦ρ
1 (M; pgln(C)) and ψ2 : ⊕m

i=1 pgln(C)π1Ti → HAd ◦ρ
2 (M; pgln(C)) the

direct sums of the homomorphisms for i respectively.

Definition 3.2. A representation ρ : π1M → PGLn(C) is called (γ1, . . . , γm)-regular if:

(i) HAd ◦ρ
0 (M; pgln(C)) = 0,

(ii) dim pgln(C)π1Ti = n − 1 for each i,
(iii) ψ1 : ⊕m

i=1 pgln(C)π1Ti → HAd ◦ρ
1 (M; pgln(C)) is surjective.

Remark 3.3. The above definition is equivalent to one for representations π1M → S L2(C) by
Porti [P, Définition 3.21]. (See also [P, Proposition 3.22].)

It is easily seen that if a representation ρ : π1M → PGLn(C) is (γ1, . . . , γm)-regular, then so is
a conjugation of ρ.

The following theorem strongly depends on the works of Menal-Ferrer and Porti [MFP1,
MFP2].

Theorem 3.4. Suppose that M is a hyperbolic 3-manifold. Let ρ : π1M → PGL2(C) be a
holonomy representation and ιn : PGL2(C) → PGLn(C) is the representation induced by an ir-
reducible representation S L2(C)→ S Ln(C). Then for any γi ⊂ Ti which is not null-homologous
the composition ιn ◦ ρ : π1M → PGLn(C) is (γ1, . . . , γm)-regular.
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Proof. Since Ad ◦ιn ◦ ρ is non-commutative,

H0
Ad ◦ιn◦ρ(M; pgln(C)) = pgln(C)π1 M = 0.

Now it follows from Poincaré duality and the duality induced by the intersection pairing (3.1)
that HAd ◦ιn◦ρ

0 (M; pgln(C)) = 0, which proves the condition (i).
Since ρ|π1Ti : π1Ti → is a parabolic representation for each i, it follows from [MFP1, Lemma

2.1] that dim pgln(C)π1Ti = n − 1 for each i, which proves the condition (ii).
We denote by XM,n and Xγi,n the PGLn(C)-character varieties of the fundamental groups of M

and γi respectively. It follows from [MFP1, Theorem 1.1] that regular functions XM,n → C in-
duced by symmetric polynomials of eigenvalues for ιn ◦ρ(γi) for all i except for the determinant
give biholomorphic local coordinates of XM,n as a m(n−1)-dimensional complex manifold. It is
easy to check that Xγi,n has a similar biholomorphic local coordinates as a (n − 1)-dimensional
complex manifold. Hence the homomorphism Tχιn◦ρXM,n → ⊕iTχιn◦ρXγi,n is an isomorphism,
which implies that so is the homomorphism H1

Ad ◦ιn◦ρ(M; pgln(C)) → ⊕iH1
Ad ◦ιn◦ρ(γi; pgln(C)) un-

der the identifications Tχιn◦ρXM,n = H1
Ad ◦ιn◦ρ(M; pgln(C)) and Tχιn◦ρXγi,n = H1

Ad ◦ιn◦ρ(γi; pgln(C))
for each i. (See also [MFP2, Theorem 0.3].) Now it follows from Poincaré duality and the dual-
ity induced by the intersection pairing (3.1) that the homomorphism ⊕iH

Ad ◦ιn◦ρ
1 (γi; pgln(C)) →

HAd ◦ιn◦ρ
1 (M; pgln(C)) is an isomorphism. Since

dim pgln(C)π1Ti = dim HAd ◦ιn◦ρ
1 (γi; pgln(C)) = n − 1,

the homomorphism pgln(C)π1Ti → HAd ◦ιn◦ρ
1 (γi; pgln(C)) mapping v to [γ̃i ⊗ v] for v ∈ pgln(C)π1Ti

is an isomorphism for each i. Therefore ψ1 : ⊕m
i=1 pgln(C)π1Ti → HAd ◦ρ

1 (M; pgln(C)), which is a
composition of the above homomorphisms, is also an isomorphism, which proves the condition
(iii). □

Lemma 3.5. If a representation ρ : π1T 2 → PGLn(C) satisfies that dim pgln(C)π1T 2
= n−1, then

(i) dim HAd ◦ρ
0 (T 2; pgln(C)) = dim HAd ◦ρ

2 (T 2; pgln(C)) = n − 1,

(ii) dim HAd ◦ρ
1 (T 2; pgln(C)) = 2(n − 1).

Proof. Since HAd ◦ρ
2 (T 2; pgln(C)) is isomorphic to pgln(C)π1T 2

,

dim HAd ◦ρ
2 (T 2; pgln(C)) = dim pgln(C)π1T 2

= n − 1.

It follows from the duality induced by the intersection pairing (3.1) that

dim HAd ◦ρ
0 (T 2; pgln(C)) = dim HAd ◦ρ

2 (T 2; pgln(C)) = n − 1.

Since
2∑

i=0

(−1)i dim HAd ◦ρ
i (T 2; pgln(C)) = (n2 − 1)χ(M) = 0,

we have

dim HAd ◦ρ
1 (T 2; pgln(C)) = dim HAd ◦ρ

0 (T 2; pgln(C)) + dim HAd ◦ρ
2 (T 2; pgln(C)) = 2(n − 1).

□
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Lemma 3.6. If a representation ρ : π1M → PGLn(C) is (γ1, . . . , γm)-regular for γ1, . . . , γm, then

dim HAd ◦ρ
1 (M; pgln(C)) = dim HAd ◦ρ

2 (M; pgln(C)) = m(n − 1).

Proof. Since ψ1 : ⊕m
i=1 pgln(C)Ad ◦ρ(π1Ti) → HAd ◦ρ

1 (M; pgln(C)) is surjective, so is the homo-
morphism HAd ◦ρ

1 (∂M; pgln(C)) → HAd ◦ρ
1 (M; pgln(C)). It follows from the duality induced

by the intersection pairing (3.1) that the dual homomorphism HAd ◦ρ
2 (M, ∂M; pgln(C)) →

HAd ◦ρ
1 (∂M; pgln(C)) is injective. Now the homology long exact sequence for the pair (M, ∂M)

gives the exact sequence

0→ HAd ◦ρ
2 (M, ∂M; pgln(C))→ HAd ◦ρ

1 (∂M; pgln(C))→ HAd ◦ρ
1 (M; pgln(C))→ 0.

Hence by Lemma 3.5 (ii) we obtain

dim HAd ◦ρ
1 (M; pgln(C)) =

1
2

dim HAd ◦ρ
1 (∂M; pgln(C))

=
1
2

m∑
i=1

dim HAd ◦ρ
1 (Ti; pgln(C)) = m(n − 1).

Since
3∑

i=0

(−1)i dim HAd ◦ρ
i (M; pgln(C)) = (n2 − 1)χ(M) = 0,

we have
dim HAd ◦ρ

2 (M; pgln(C)) = dim HAd ◦ρ
1 (T 2; pgln(C)) = m(n − 1).

□

Lemma 3.7. If a representation ρ : π1M → PGLn(C) is (γ1, . . . , γl)-regular for γ1, . . . , γl, then
ψ1 : ⊕m

i=1 pgln(C)π1Ti → HAd ◦ρ
1 (M; pgln(C)) and ψ2 : ⊕m

i=1 pgln(C)π1Ti → HAd ◦ρ
2 (M; pgln(C)) are

isomorphisms.

Proof. By Lemma 3.6

dim HAd ◦ρ
1 (M; pgln(C)) = dim HAd ◦ρ

2 (M; pgln(C)) = dim⊕m
i=1pgln(C)π1Ti = m(n − 1).

Since ψ1 : ⊕m
i=1 pgln(C)π1Ti → HAd ◦ρ

1 (M; pgln(C)) is surjective, it is an isomorphism. Since
HAd ◦ρ

0 (M; pgln(C)) = 0, it follows from the duality induced by the intersection pairing (3.1)
that HAd ◦ρ

3 (M, ∂M; pgln(C)) = 0. Now the homology long exact sequence for the pair (M, ∂M)
implies that the homomorphism H2(∂M; pgln(C)) → HAd ◦ρ

2 (M; pgln(C)) is injective. Hence
ψ2 : ⊕m

i=1 pgln(C)π1Ti → HAd ◦ρ
2 (M; pgln(C)) is also injective, and so it is an isomorphism. □

Definition 3.8. For a (γ1, . . . , γm)-regular representation ρ : π1M → PGLn(C) we define the
non-acyclic Reidemeister torsion T(γ1,...,γm),ρ(M) associated to (γ1, . . . , γm) and ρ as follows. We
choose a basis bi of pgln(C)π1Ti for each i. Then

T(γ1,...,γm),ρ(M) = τAd ◦ρ(M; h1 ∪ h2) ∈ C×/ ± 1,

where

h1 := ⟨ψ1(b1), . . . , ψ1(bm)⟩,
h2 := ⟨ψ2(b1), . . . , ψ2(bm)⟩.
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It can be checked as follows that T(γ1,...,γm),ρ(M) does not depend on the choice of bi. Let b′i be
another basis of pgln(C)π1Ti for each i, and set

h′1 := ⟨ψ1(b′1), . . . , ψ1(b′m)⟩,
h′2 := ⟨ψ2(b′1), . . . , ψ2(b′m)⟩.

Then by the definition of Reidemeister torsion we have

τAd ◦ρ(M; h′1 ∪ h′2) =
[h′1/h1]
[h′2/h2]

τAd ◦ρ(M; h1 ∪ h2).

and an easy computation implies

[h′1/h1] = [h′2/h2] =
m∏

i=1

[b′i/bi],

which shows the independence.

3.3. Non-acyclic Reidemeister torsion for fibered 3-manifolds. We show a formula com-
puting non-acyclic Reidemeister torsion of fibered 3-manifolds from the monodromy maps.
The formula generalizes a homological version of [D, Main Theorem] for fibered knots and
2-dimensional representations.

Theorem 3.9. Let γ1, . . . , γm be the boundary components of S and let φ ∈ ΓS . For a
(γ1, . . . , γm)-regular representation ρ : π1Mφ → PGLn(C) satisfying HAd ◦ρ

0 (S ; pgln(C)) = 0,

T(γ1,...,γm),ρ(Mφ) = lim
t→1

det(tφ∗ − id)
(t − 1)m(n−1) ,

where we consider φ∗ : HAd ◦ρ
1 (S ; pgln(C))→ HAd ◦ρ

1 (S ; pgln(C)) in the formula.

Proof. We denote by ψ′1 : pgln(C)π1Ti → HAd ◦ρ
1 (S ; pgln(C)) the factor of ψ1 : pgln(C)π1Ti →

HAd ◦ρ
1 (Mφ; pgln(C)). It follows from the duality induced by the intersection pairing (3.1) that

HAd ◦ρ
2 (S , ∂S ; pgln(C)) = HAd ◦ρ

0 (S ; pgln(C)) = 0. Now the homology long exact sequence
for the pair (S , ∂S ) implies that the homomorphism HAd ◦ρ

1 (∂S ; pgln(C)) → HAd ◦ρ
1 (S ; pgln(C))

is injective, and so is ψ′1. Choose a basis bi of pgln(C)π1Ti for each i and take a basis
h = ⟨ψ′1(b1), . . . , ψ′1(bm)⟩ ∪ b of HAd ◦ρ

1 (S ; pgln(C)), by adding subbasis b.
Take a representative of φ and a triangulation of S such that the representative is simplicial,

and consider the following exact sequence:

0→ CAd ◦ρ
∗ (S̃ ) ⊗ pgln(C)

id×1−φ∗×0−−−−−−−→ CAd ◦ρ
∗ (S̃ × [0, 1]) ⊗ pgln(C)→ CAd ◦ρ

∗ (M̃φ) ⊗ pgln(C)→ 0.

By Lemma 3.1
τρ(S × [0, 1]; h) = τρ(S ; h)T(γ1,...,γm),ρ(Mφ)τ(H∗, d),

where

H∗ := (0→ HAd ◦ρ
2 (Mφ)→ HAd ◦ρ

1 (S )
I−φ∗−−−→ HAd ◦ρ

1 (S )→ HAd ◦ρ
1 (Mφ)→ 0),

d := h1 ∪ h ∪ h ∪ h2.

Since τρ(S × [0, 1]; h) = τρ(S ; h), we have

T(γ1,...,γm),ρ(Mφ) = τ(H∗, d)−1.
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Considering the following commutative diagram of exact sequences

0 −−−−−→ HAd ◦ρ
2 (∂Mφ) −−−−−→ ⊕iH

Ad ◦ρ
1 (γi)

0−−−−−→ ⊕iH
Ad ◦ρ
1 (γi) −−−−−→ HAd ◦ρ

1 (∂Mφ)y y y y
0 −−−−−→ HAd ◦ρ

2 (Mφ) −−−−−→ HAd ◦ρ
1 (S )

id−φ∗−−−−−→ HAd ◦ρ
1 (S ) −−−−−→ HAd ◦ρ

1 (Mφ) −−−−−→ 0,

where we omit to write the coefficient pgln(C), we see that the homomorphism
HAd ◦ρ

1 (S ; pgln(C)) → HAd ◦ρ
1 (Mφ; pgln(C)) maps ⟨ψ′1(b1), . . . , ψ′1(bm)⟩ to h1 and that the homo-

morphism HAd ◦ρ
2 (Mφ; pgln(C))→ HAd ◦ρ

1 (S ; pgln(C)) maps h2 to ⟨ψ′1(b1), . . . , ψ′1(bm)⟩. Therefore

τ(H∗, d)−1 = det((id − φ∗) : Cokerψ′1 → Cokerψ′1) = ± lim
t→1

det(tφ∗ − id)
(t − 1)m(n−1) ,

which proves the theorem. □

For a later use, we recall a well-known formula of ‘twisted Alexander polynomials’ for
fibered 3-manifolds. See for instance [Mi2].

Lemma 3.10. Let φ ∈ ΓS and let ψ : π1Mφ → ⟨t⟩ be the homomorphism induced by the fibration.
For a representation ρ : π1Mφ → GLn(V) over F,

τψ⊗ρ(Mφ) =
det(tφ1 − id)
det(tφ0 − id)

,

where φ0 : Hρ
0(S ; V) → Hρ

0(S ; V), φ1 : Hρ
1(S ; V) → Hρ

1(S ; V) are the homomorphisms induced
by φ.

The following is a direct corollary of Theorem 3.9 and Lemma 3.10.

Corollary 3.11. Let γ1, . . . , γm be the boundary components of S , let φ ∈ ΓS and let ψ : π1Mφ →
⟨t⟩ be the homomorphism induced by the fibration. For a (γ1, . . . , γm)-regular representation
ρ : π1Mφ → PGLn(C) satisfying HAd ◦ρ

0 (S ; pgln(C)) = 0,

T(γ1,...,γm),ρ(Mφ) = lim
t→1

τψ⊗Ad ◦ρ(Mφ)
(t − 1)m(n−1) ,

where we consider φ∗ : HAd ◦ρ
1 (S ; pgln(C))→ HAd ◦ρ

1 (S ; pgln(C)) in the formula.

4. Main theorems

4.1. Proof. In this section we show the main theorems on torsion invariants and cluster alge-
bras for surfaces.

Recall that Fock and Goncharov constructed a regular map νT : XT,n → XS ,n for an ideal
triangulation T of S , and that TχρXS ,n is identified with a subspace of H1

Ad ◦ρ(π1S ; pgln(C)) for a
representation ρ : π1S → PGLn(C). Thus νT induces a map T(y1,...,yl)XT,n → H1

Ad ◦ρ(π1S ; pgln(C)).

Lemma 4.1. Let (y1, . . . , yl) ∈ XT,n and ρ : π1S → PGLn(C) a representation such that
χ(y1,...,yl) = χρ. If H0

Ad ◦ρ(π1S ; pgln(C)) = 0, then the map T(y1,...,yl)XT,n → H1
Ad ◦ρ(π1S ; pgln(C))

is an isomorphism.
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Proof. Since TχρXS ,n embeds in H1
Ad ◦ρ(π1S ; pgln(C)), we have

l = dim XS ,n ≤ TχρXS ,n ≤ H1
Ad ◦ρ(π1S ; pgln(C)) = l,

and so the inequalities are all equalities. Moreover, since for χ(ρ,B1,...,Bm) ∈ XS ,n,
(dπ)χ(ρ,B1 ,...,Bm) : Tχ(ρ,B1 ,...,Bm)XS ,n → TχρXS ,n is an epimorphism, we have

l = TχρXS ,n ≤ T(y1,...,yl)XT,n = l,

and the inequality is an equality, which proves the lemma. □

Now we prove the following main theorems:

Theorem 4.2. Let φ ∈ ΓS . For a representation ρ : π1Mφ → PGLn(C) satisfying
HAd ◦ρ

0 (S ; pgln(C)) = 0 and (y0
1, . . . , y

0
l ) ∈ Xφ

∗

T,n, if χρ|π1S = χ(y0
1,...,y

0
l ), then

τψ⊗Ad ◦ρ(Mφ) = det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)∣∣∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

.

Proof. In the following the coefficients of all the twisted homology groups and all the twisted
cohomology groups are understood to be pgln(C).

It follows from Lemma 4.1 and Corollary 2.4 that the homomorphism φ∗ : H1
Ad ◦ρ(π1S ) →

H1
Ad ◦ρ(π1S ) is presented by the matrix

(
∂φ∗(y j)
∂yi

)
. Since H1

Ad ◦ρ(π1S ) is isomorphic to H1
Ad ◦ρ(S )

and since H1
Ad ◦ρ(S ) is isomorphic by Poincaré duality to the dual of HAd ◦ρ

1 (S , ∂S ), the homo-

morphism φ∗ : HAd ◦ρ
1 (S , ∂S ) → HAd ◦ρ

1 (S , ∂S ) is presented by the transpose of
(
∂φ∗(y j)
∂yi

)
. Thus by

Lemma 3.10 we only need to show that the homomorphisms φ∗ : HAd ◦ρ
1 (S ) → HAd ◦ρ

1 (S ) and
φ∗ : HAd ◦ρ

1 (S , ∂S )→ HAd ◦ρ
1 (S , ∂S ) are equivalent to each other.

It follows from the duality induced by the intersection pairing (3.1) that HAd ◦ρ
2 (S , ∂S ) =

HAd ◦ρ
0 (S ) = 0. Hence the homology long exact sequence for the pair (M, ∂M) gives the follow-

ing commutative diagram of exact sequences:

0 −−−−−→ HAd ◦ρ
1 (∂S ) −−−−−→ HAd ◦ρ

1 (S ) −−−−−→ HAd ◦ρ
1 (S , ∂S ) −−−−−→ HAd ◦ρ

0 (∂S ) −−−−−→ 0∥∥∥∥ φ∗

y φ∗

y ∥∥∥∥
0 −−−−−→ HAd ◦ρ

1 (∂S ) −−−−−→ HAd ◦ρ
1 (S ) −−−−−→ HAd ◦ρ

1 (S , ∂S ) −−−−−→ HAd ◦ρ
0 (∂S ) −−−−−→ 0,

where it follows again from the duality induced by the intersection pairing (3.1) that HAd ◦ρ
0 (∂S )

is isomorphic to the dual of HAd ◦ρ
1 (∂S ). Now it is a simple matter to check that φ∗ : HAd ◦ρ

1 (S )→
HAd ◦ρ

1 (S ) and φ∗ : HAd ◦ρ
1 (S , ∂S )→ HAd ◦ρ

1 (S , ∂S ) are equivalent, which completes the proof. □

The proof of the following theorem is now straightforward from Corollary 3.11 and Theorem
4.2.

Theorem 4.3. Let γ1, . . . , γm be the boundary components of S , and let φ ∈ ΓS . For a
(γ1, . . . , γm)-regular representation ρ : π1Mφ → PGLn(C) satisfying HAd ◦ρ

0 (S ; pgln(C)) = 0 and
(y0

1, . . . , y
0
l ) ∈ Xφ

∗

T,n, if χρ|π1S = χ(y0
1,...,y

0
l ), then

T(γ1,...,γm),ρ(Mφ) = lim
t→1

det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

(t − 1)m(n−1) .
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Remark 4.4. It follows from Theorems 2.5 and 3.4 that the assumptions of the above theorems
are satisfied for a pseudo-Anosov φ ∈ ΓS and a holonomy representation of Mφ.

The advantage of our main theorems is that cluster variables naturally describe torsion invari-
ants as functions on the moduli spaces of representations in a combinatorial way. In fact, the
rational function induced by the coefficients of the polynomial

det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)
or that by

lim
t→1

det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)
(t − 1)m(n−1)

in the theorems can be algorithmically computed from the ideal triangulation T and a sequence
of flips representing φ, and now regarded as torsion functions on the moduli spaces.

Remark 4.5. In [NTY] the cluster variables in XT,2 are interpreted as the shape parameters of
ideal tetrahedra of Mφ, and the volumes are also explicitly computed from the cluster variables.
This is one advantage with the cluster variables to parametrize representations. For example,
this is very useful for identifying the complete holonomy representation.

The following question concerning the condition on the cluster variables that ensures
(γ1, . . . , γm)-regularity naturally arises from Theorem 4.3:

Question 4.6. Let γ1, . . . , γm be the boundary components of S , and let φ ∈ ΓS . For a represen-
tation ρ : π1Mφ → PGLn(C) and (y0

1, . . . , y
0
l ) ∈ Xφ

∗

T,n, if χρ|π1S = χ(y0
1,...,y

0
l ), and if

lim
t→1

det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

(t − 1)m(n−1) .

is nonzero, then is ρ a (γ1, . . . , γm)-regular representation satisfying HAd ◦ρ
0 (S ; pgln(C)) = 0?

4.2. Examples. Finally, we demonstrate our theory for φ = LR (the figure eight knot comple-
ment) and for φ = LLR in the case of n = 3.

Let S be a one-holed torus, and we identify S with R2/Z2 so that the marked point corre-
sponds to the integral points of R2. The mapping class group ΓS = S L2(Z) is generated by the
matrices

L =
(
1 0
1 1

)
, R =

(
1 1
0 1

)
.

We set φ = LR, and then the mapping torus Mφ is known to be homeomorphic to the figure eight
knot complement. We consider an ideal triangulation T defined by the lines x = 0, x = y, y = 0
with respect to the standard coordinates (x, y) of R2. Then the quiver QT,3 and the coordinates
(y1, y2, y3, y4, y5, y6, y7, y8) ∈ XT,3 is given as in Figure 2.
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Figure 2. One-holed torus S with the quiver QT,3

A computation implies that L∗,R∗ : XT,3 → XT,3 are described as follows:

L∗(y1) =
(1 + y1)(1 + y2 + y2y4 + y1y2y4)y7

1 + y2

L∗(y2) =
(1 + y2)y5(1 + y1 + y1y8 + y1y2y8)

1 + y1

L∗(y3) =
y2

1(1 + y2)y3y8

(1 + y1)(1 + y1 + y1y8 + y1y2y8)

L∗(y4) =
(1 + y2 + y2y4 + y1y2y4)y8

1 + y1 + y1y8 + y1y2y8

L∗(y5) =
1 + y1

y1(1 + y2)y8

L∗(y6) =
(1 + y1)y2

2y4y6

(1 + y2)(1 + y2 + y2y4 + y1y2y4)

L∗(y7) =
1 + y2

(1 + y1)y2y4

L∗(y8) =
y4(1 + y1 + y1y8 + y1y2y8)

1 + y2 + y2y4 + y1y2y4



16 T. KITAYAMA AND Y. TERASHIMA

R∗(y1) =
y1(1 + y3)(1 + y6 + y6y8 + y3y6y8)

1 + y6

R∗(y2) =
y2(1 + y6)(1 + y3 + y3y4 + y3y4y6)

1 + y3

R∗(y3) =
y2

3y4y5(1 + y6)
(1 + y3)(1 + y3 + y3y4 + y3y4y6)

R∗(y4) =
y4(1 + y6 + y6y8 + y3y6y8)

1 + y3 + y3y4 + y3y4y6

R∗(y5) =
1 + y3

y3y4(1 + y6)

R∗(y6) =
(1 + y3)y2

6y7y8

(1 + y6)(1 + y6 + y6y8 + y3y6y8)

R∗(y7) =
1 + y6

(1 + y3)y6y8

R∗(y8) =
(1 + y3 + y3y4 + y3y4y6)y8

1 + y6 + y6y8 + y3y6y8

Combining them, we compute φ∗ = R∗ ◦ L∗ : XT,3 → XT,3 as follows:

φ∗(y1) =(y7(1 + 2y1 + y2
1 + y1y8 + y2

1y8 + y1y2y8 + y2
1y2y8 + y2

1y3y8 + y2
1y2y3y8)(1 + 2y2 + y2

2

+ 2y2y4 + 2y1y2y4 + 2y2
2y4 + 2y1y2

2y4 + y2
2y2

4 + 2y1y2
2y2

4 + y2
1y2

2y2
4 + y2

2y4y6 + y1y2
2y4y6

+ y2
2y2

4y6 + 2y1y2
2y2

4y6 + y2
1y2

2y2
4y6 + y1y2

2y2
4y6y8 + y2

1y2
2y2

4y6y8 + y2
1y2

2y3y2
4y6y8))

/((1 + 2y2 + y2
2 + y2y4 + y1y2y4 + y2

2y4 + y1y2
2y4 + y2

2y4y6 + y1y2
2y4y6)(1 + y1 + y1y8

+ y1y2y8))

φ∗(y2) =(y5(1 + 2y2 + y2
2 + y2y4 + y1y2y4 + y2

2y4 + y1y2
2y4 + y2

2y4y6 + y1y2
2y4y6)(1 + 2y1 + y2

1

+ 2y1y8 + 2y2
1y8 + 2y1y2y8 + 2y2

1y2y8 + y2
1y3y8 + y2

1y2y3y8 + y2
1y2

8 + 2y2
1y2y2

8 + y2
1y2

2y2
8

+ y2
1y3y2

8 + 2y2
1y2y3y2

8 + y2
1y2

2y3y2
8 + y2

1y2y3y4y2
8 + y2

1y2
2y3y4y2

8 + y2
1y2

2y3y4y6y2
8))

/((1 + y2 + y2y4 + y1y2y4)(1 + 2y1 + y2
1 + y1y8 + y2

1y8 + y1y2y8 + y2
1y2y8 + y2

1y3y8

+ y2
1y2y3y8))

φ∗(y3) =(y3
1y2

3(1 + 2y2 + y2
2 + y2y4 + y1y2y4 + y2

2y4 + y1y2
2y4 + y2

2y4y6 + y1y2
2y4y6)y2

8)

/((1 + 2y1 + y2
1 + y1y8 + y2

1y8 + y1y2y8 + y2
1y2y8 + y2

1y3y8 + y2
1y2y3y8)(1 + 2y1 + y2

1

+ 2y1y8 + 2y2
1y8 + 2y1y2y8 + 2y2

1y2y8 + y2
1y3y8 + y2

1y2y3y8 + y2
1y2

8 + 2y2
1y2y2

8 + y2
1y2

2y2
8

+ y2
1y3y2

8 + 2y2
1y2y3y2

8 + y2
1y2

2y3y2
8 + y2

1y2y3y4y2
8 + y2

1y2
2y3y4y2

8 + y2
1y2

2y3y4y6y2
8))
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φ∗(y4) =(y8(1 + y1 + y1y8 + y1y2y8)(1 + 2y2 + y2
2 + 2y2y4 + 2y1y2y4 + 2y2

2y4 + 2y1y2
2y4 + y2

2y2
4

+ 2y1y2
2y2

4 + y2
1y2

2y2
4 + y2

2y4y6 + y1y2
2y4y6 + y2

2y2
4y6 + 2y1y2

2y2
4y6 + y2

1y2
2y2

4y6 + y1y2
2y2

4y6y8

+ y2
1y2

2y2
4y6y8 + y2

1y2
2y3y2

4y6y8))

/((1 + y2 + y2y4 + y1y2y4)(1 + 2y1 + y2
1 + 2y1y8 + 2y2

1y8 + 2y1y2y8 + 2y2
1y2y8 + y2

1y3y8

+ y2
1y2y3y8 + y2

1y2
8 + 2y2

1y2y2
8 + y2

1y2
2y2

8 + y2
1y3y2

8 + 2y2
1y2y3y2

8 + y2
1y2

2y3y2
8 + y2

1y2y3y4y2
8

+ y2
1y2

2y3y4y2
8 + y2

1y2
2y3y4y6y2

8))

φ∗(y5) =((1 + y1 + y1y8 + y1y2y8)(1 + 2y1 + y2
1 + y1y8 + y2

1y8 + y1y2y8 + y2
1y2y8 + y2

1y3y8

+ y2
1y2y3y8))

/(y2
1y3(1 + 2y2 + y2

2 + y2y4 + y1y2y4 + y2
2y4 + y1y2

2y4 + y2
2y4y6 + y1y2

2y4y6)y2
8)

φ∗(y6) =(y3
2y2

4y2
6(1 + 2y1 + y2

1 + y1y8 + y2
1y8 + y1y2y8 + y2

1y2y8 + y2
1y3y8 + y2

1y2y3y8))

/((1 + 2y2 + y2
2 + y2y4 + y1y2y4 + y2

2y4 + y1y2
2y4 + y2

2y4y6 + y1y2
2y4y6)(1 + 2y2 + y2

2

+ 2y2y4 + 2y1y2y4 + 2y2
2y4 + 2y1y2

2y4 + y2
2y2

4 + 2y1y2
2y2

4 + y2
1y2

2y2
4 + y2

2y4y6 + y1y2
2y4y6

+ y2
2y2

4y6 + 2y1y2
2y2

4y6 + y2
1y2

2y2
4y6 + y1y2

2y2
4y6y8 + y2

1y2
2y2

4y6y8 + y2
1y2

2y3y2
4y6y8))

φ∗(y7) =((1 + y2 + y2y4 + y1y2y4)(1 + 2y2 + y2
2 + y2y4 + y1y2y4 + y2

2y4 + y1y2
2y4 + y2

2y4y6

+ y1y2
2y4y6))

/(y2
2y2

4y6(1 + 2y1 + y2
1 + y1y8 + y2

1y8 + y1y2y8 + y2
1y2y8 + y2

1y3y8 + y2
1y2y3y8))

φ∗(y8) =(y4(1 + y2 + y2y4 + y1y2y4)(1 + 2y1 + y2
1 + 2y1y8 + 2y2

1y8 + 2y1y2y8 + 2y2
1y2y8 + y2

1y3y8

+ y2
1y2y3y8 + y2

1y2
8 + 2y2

1y2y2
8 + y2

1y2
2y2

8 + y2
1y3y2

8 + 2y2
1y2y3y2

8 + y2
1y2

2y3y2
8 + y2

1y2y3y4y2
8

+ y2
1y2

2y3y4y2
8 + y2

1y2
2y3y4y6y2

8))

/((1 + y1 + y1y8 + y1y2y8)(1 + 2y2 + y2
2 + 2y2y4 + 2y1y2y4 + 2y2

2y4 + 2y1y2
2y4 + y2

2y2
4

+ 2y1y2
2y2

4 + y2
1y2

2y2
4 + y2

2y4y6 + y1y2
2y4y6 + y2

2y2
4y6 + 2y1y2

2y2
4y6 + y2

1y2
2y2

4y6 + y1y2
2y2

4y6y8

+ y2
1y2

2y2
4y6y8 + y2

1y2
2y3y2

4y6y8))

The space of solutions of the equations φ∗(yi) = yi for all i parametrizes Xφ
∗

S ,3 and Xφ∗

S ,3. Here
we emphasize that the parametrization makes sense by using the labeling change σ and by
Proposition 2.2 proved in the paper.

A solution is given by

y0
1 = y0

2 =
−1 −

√
−3

2
y0

3 = y0
4 = y0

6 = y0
8 = 1

y0
5 = y0

7 =
−1 +

√
−3

2
.

This solution can be found, for example, by using the arguments in the proofs of Theorem
2.5 and Corollary 2.6. First we find an element

(
1, −1+

√
−3

2 , −1−
√
−3

2

)
∈ Xφ

∗

T,2 corresponding to the
character of a holonomy representation of the hyperbolic manifold Mφ as in [NTY, Section 5.1].
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Then the above element of Xφ
∗

T,3 is the image of the map XT,2 → XT,3 in the proof of Corollary
2.6. In fact, it corresponds to the character of the composition of a holonomy representation and
the homomorphism PGL2(C)→ PGL3(C) induced by an irreducible representation PGL2(C)→
S L3(C).

By Theorem 4.2 we obtain the twisted Alexander polynomial associated to the solution as:

det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)∣∣∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

= (t − 1)2(t2 − 5t + 1)(t4 − 9t3 + 44t − 9t + 1).

By Theorem 4.3 we also obtain the non-acyclic torsion associated to the solution as:

lim
t→1

det
(
t
(
∂φ∗(y j)
∂yi

)
− I

)∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

(t − 1)2 = lim
t→1

(t2 − 5t + 1)(t4 − 9t3 + 44t − 9t + 1)

= −84.

Next, we set φ′ = LLR. Similarly, we can first compute φ′∗ = R∗ ◦ L∗ ◦ L∗ : XT,3 → XT,3 and
the equations φ′∗(yi) = yi for all i defining Xφ

′∗

T,3. Then the following solution of the equations
corresponding to the character of a holonomy representation of Mφ′∗ is found as follows:

y0
1 = y0

2 =
−3 −

√
−7

2

y0
3 = y0

6 =
5 +
√
−7

8
y0

4 = y0
8 = 1

y0
5 = y0

7 =
−1 +

√
−7

4
.

Again by Theorems 4.2 and 4.3, we obtain the twisted Alexander polynomial and the non-
acyclic torsion associated to the solution as:

det
(
t
(
∂φ′∗(y j)
∂yi

)
− I

)∣∣∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

=(t − 1)2(t6 + 8i
√

7t5 − 22t5 − 80i
√

7t4 + 227t4 + 208i
√

7t3

− 1420t3 − 80i
√

7t2 + 227t2 + 8i
√

7t − 22t + 1),

lim
t→1

det
(
t
(
∂φ′∗(y j)
∂yi

)
− I

)∣∣∣∣
(y1,...,yl)=(y0

1,...,y
0
l )

(t − 1)2 = lim
t→1

(t6 + 8i
√

7t5 − 22t5 − 80i
√

7t4 + 227t4 + 208i
√

7t3

− 1420t3 − 80i
√

7t2 + 227t2 + 8i
√

7t − 22t + 1)

= − 1008 + 64
√
−7.

In the above computations on torsion invariants we specify solutions as (y1, . . . , yl) =
(y0

1, . . . , y
0
l ) for simplicity of the expressions, but note that without any specification of solu-

tions our formulas give the torsion functions with coefficients in (y1, . . . , y8) ∈ XT,3.
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