TWISTED ALEXANDER POLYNOMIALS ON CURVES IN CHARACTER
VARIETIES OF KNOT GROUPS
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ABSTRACT. For a fibered knot in th8-sphere the twisted Alexander polynomial associ-

ated to ar5 L(2, C)-character is known to be monic. Itis conjectured that for a nonfibered
knot there is a curve component of thé (2, C)-character variety containing only finitely

many characters whose twisted Alexander polynomials are monic, i.e. finiteness of such
characters detects fiberedness of knots. In this paper we discuss the existence of a certain
curve component which relates to the conjecture when knots have nonmonic Alexander
polynomials. We also discuss the similar problem of detecting the knot genus.

1. INTRODUCTION

The twisted Alexander polynomial was introduced by Lin [28] for knots inHsphere
and by Wada [37] for finitely presentable groups. It is a generalization of the Alexander
polynomial and gives a powerful tool in low dimensional topology. One of the most no-
table applications is detecting fibered knots or more generally fitBeradnifolds. To be
more precise, Friedl and Vidussi showed in [11] that the twisted Alexander polynomials
associated to finite representations determine whether knot complements and general irre-
ducible3-manifolds are fibered over the circle. Another important application is detecting
the genus of knots. More generally, Friedl and Vidussi showed that the twisted Alexan-
der polynomials associated to finite representations also determine the Thurston norms of
irreducible3-manifolds which are not closed graph manifolds [12]. For literature on the
twisted Alexander polynomial and other related topics, we refer to the survey paper by
Friedl and Vidussi [10].

In this paper we study the problems of detecting fiberedness and the ggiusf a
knot K by twisted Alexander polynomials from the viewpoint of tB& (2, C)-character
variety of a knot group. In this point of view, we consider the regular functions on the char-
acter variety induced by the coefficients of the twisted Alexander polynomials associated
to characters of a knot group. In particular, the regular function induced by the coefficients
of the highest degree terms turns out to contain much information of a knot. We call a
representation and its character monic if the highest coefficient of the associated twisted
Alexander polynomial is one (see [14] for example). Moreover, we say that a represen-
tation and its character determines the knot genus if the degree of the associated twisted
Alexander polynomial equally(K) — 2. Using these terminologies, we can say that every
SL(2,C)-representation (and its character) of a fibered knot is monic [13] and determines
the knot genus [26].

It is natural to ask whether the converse is true. More precisely, one can ask if every
SL(2,C)-character is monic for a knot, then the knot is fibered. Regarding detecting the
knot genus, a natural question also arises: for a (possibly nonfibered) knot, does there
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exist an irreducible5 L(2, C)-character which determines the knot genus? However, only

a few partial answers are known so far (see [31] for twist knots and [242-fmidge

knots). In fact, for 2-bridge knots it is shown that certain finiteness properties of a curve
component in the character variety detect fiberedness and the genus [24]. More generally,
we conjecture that for a nontrivial knot there is an irreducible component i &te, C)-
character variety which satisfies a certain finiteness condition (see Questions 3.1 and 4.1).

The purpose of the present paper is to give some evidence that the conjecture is true
for a wide class of knots with nonmonic Alexander polynomials. More generally, we give
several sufficient conditions which ensure the existence of a certain curve component in
the character variety which relates to the conjecture mentioned above (see Sections 3 and
4). For instance, in Theorem 3.3 we show that if a kRohas the Alexander polynomial
Ak (t) which is nonmonic and has a simple root, then there is a curve component of the
SL(2,C)-character variety of the knot group & which contains the character of an
irreducible representation and has only finitely many monic characters.

Our criteria are sufficiently applicable and we can show the existence of such curves for
all nonfibered prime knots with0 or fewer crossings. The results stated in this paper use
information of the Alexander polynomial, however there seems to be no a priori relation
between finiteness properties of a curve component and the Alexander polynomial.

This paper is organized as follows. In Section 2, we quickly review some basic materials
of the character variety and the twisted Alexander polynomials associatgf (i C)-
representations. Here we also recall a conjecture of Dunfield, Friedl and Jackson [6] on
the twisted Alexander polynomial of the holonomy representation for hyperbolic knots. In
Section 3, we show finiteness of monic characters in curve components of the character
varieties for a wide class of nonfibered knots. In particular, we show that our method can
also be applied to satellite knots (hence nonhyperbolic knots). In Section 4, we apply the
argument in Section 3 to the similar problem of detecting the knot genus. In Section 5, as
an example, we give explicit computations of curves in the character variety and count the
number of monic characters for a Montesinos knot with lerdgth

2. PRELIMINARIES

2.1. Character variety. In this subsection, we review some basics on character varieties
following [4]. Let G be a finitely generated group. Thariety of representationsf G

is the set ofSL(2, C)-representationsR(G) = Hom(G, SL(2,C)). Sinced is finitely
generatedR(G) can be embedded in a produ&L(2,C) x --- x SL(2,C) by mapping

each representation to the image of a generating set. In this maR{&y,is an affine
algebraic set whose defining polynomials are induced by the relations of a presentation of
G. Itis not hard to see that this structure is independent of the choice of presentations of
G up to isomorphism.

A representationp: G — SL(2,C) is said to beabelianif p(G) is an abelian sub-
group of SL(2,C). A representatiop is calledreducibleif there exists a proper invariant
subspace if©? under the action 0f(G). This is equivalent to saying thatcan be conju-
gated to a representation by upper triangular matrices. It is easy to see that every abelian
representation is reducible, but the converse does not hold. Namely there is a reducible
nonabelian representation in general. Whes not reducible, it is calledreducible We
denote the subset @t(G) consisting of irreducibléS L (2, C)-representations bi™ (G).

Given a representation € R(G), its characteris the mapy,: G — C defined by
Xp(7) = tr(p(7)) for v € G. We denote the set of all characters KyG). For a given
elementy € G, we define the map, : X(G) — C by 7,(x) = x(v). Then itis known
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that X (G) is an affine algebraic set which embed<if{ with coordinatesr.,,,..., 7 )
for somey,,...,vn € G. This affine algebraic set is called thkaracter varietyof G.
We note that the seftys,...,ynv} can be chosen to contain a generating sefofThe
projectiont: R(G) — X(G) given byt(p) = x, is surjective. We denote the Zariski
closure oft(R™(G)) by X'(G).

Let Ex = S3\int(N(K)), the exterior of a knotX in the 3-sphere. For a knot
groupG(K) = m Ek, we write R(K) = R(G(K)), R"(K) = R"(G(K)), X(K) =
X(G(K))andX'™(K) = X"™(G(K)) for simplicity.

A0

Letny: G(K) — SL(2,C) be the abelian representation givenby— <O A1

where ., denotes a meridian oK. By results of Burde [1] and de Rham [5], there is a
reducible nonabelian representation: G(K) — SL(2,C) such thaty,, = x,, if and
only if A? is a root of the Alexander polynomia x ().

Here let us recall the following results, due to Heusener, Porti aace3uPeid [19] (see
also Shors [36]), and due to Herald [17] and Heusener-Kroll [18], on the local description
of a reducible character iA" (K). We denote by (K) the curve component of (K)
consisting of abelian characters.

Proposition 2.1. [19, Theorem 1.2)f \? is a simple root ofAx (t), there is a unique
irreducible curve componeut, of X' (K') such thaty,, € XoNY (K).

The following proposition is an immediate consequence of [17, Theorem 1] or [18,
Theorem 1.1].

Proposition 2.2. If the equivariant knot signature functiang : U(1) — Z changes its
value ate?® (« € [0, 7)), then there is an irreducible componeXig of X' (K) such that
Xp.ia € XoNY(K).

The equivariant knot signature functiefy is also called the Levine-Tristram signature
function (for example, see [18, Section 2.1] for the details). We note that in this paper the
signature functiorr i is considered to be thaveraged signature functiorNamely, for
w € U(1) = S! the values i (w) is redefined to be the limit of the average of the values
ox(wy) andog(w_) wherew, andw_ are points onS! approachings from opposite
sides. It is known that (1) = 0, and the functiow g is locally constant except at zeros
of Ak (t). Itis also known that i£%* is an odd multiple root ofA ¢ (), theno - changes
its value a2,

2.2. Twisted Alexander polynomials. Following Wada [37], we define the twisted Alexan-
der polynomials. First we fix an epimorphism G(K) — (t) and a Wirtinger presenta-
tion
G(K) = <71)"'a/7n|rla' "arn—1>'

For a given representation G(K) — GL(2,C), we can extend the group homomor-
phisma®p: G(K) — GL(2,C[t*!]) to aring homomorphisrd: Z[G(K)} — M(2,C(t)).

We consider thén — 1) x n matrix M whose(i, j)-entry is a“ € Z|G(K)], where

s> denotes the Fox differential. Far< k& < n, we denote byl/;, the (n — 1) x (n —

) matrlx obtained fromM by removing thekth column, and by® (M) the matrix in
M(2(n — 1),C(t)) obtained by taking the images of entrieshdf, by ®. Then thetwisted
Alexander polynomial\ i ,(t) € C(t) associated withp: G(K) — GL(2,C) is defined
as
det ® (M)

Awpll) = 5o Py — 1)’
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which is well-defined up to multiplication by (e € C*,i € Z). In the case thap

is a nonabelian special linear representaporG(K) — SL(2,C), we haveAg ,(t) €
C[t*!] [26, Theorem 3.1] and it is well-defined up to multiplication®8y(i € Z). We note

that if p andn are mutually conjugat§ L (2, C)-representations, thelix ,(t) = Ak, (t)
holds. Ifp andn: G(K) — SL(2,C) are irreducible representations with = x,, thenp

is conjugate to) (see [4, Proposition 1.5.2]), and hente ,(t) = Ax ,(t). And if p and

n are reducible, then they are determinedYy (¢) and henc&\ k. ,(t) = Ak ,(t) (see the
proof of [26, Theorem 3.1]). Therefore, we can define the twisted Alexander polynomial
associated witly € X (K) to beAk ,(t) wherey = x, and we denote it byA i, (¢).

2.3. A conjecture of Dunfield, Friedl and Jackson. We say a nonabelian representa-
tion p: G(K) — SL(2,C) (resp. a nonabelian charactey is monicif Ax ,(t) (resp.
Ak (t)) is @a monic polynomial, that is, its coefficient of the highest degree term is
Note that we do not allow-1 as the coefficient for monicness in this paper. It is well-
known that every nonabelian representation of a fibered knot is monic [13, Theorem 3.1],
and therefore so is every nonabelian character.

It is also well-known that the degrees of twisted Alexander polynomials give genus
bounds from below [8]. In particular, in our settings we have

4g(K) — 2 > deg Ak (1),

for everyx € X(K). If the equality holds, then we say thatdetermines the genus. Itis

known that for anyy € X (K) of afibered knoty determines the genus [26, Theorem 3.2].
For a hyperbolic knof<, the holonomy representatigi: G(K) — PSL(2,C) has a

lift po: G(K) — SL(2,C), see [4, Proposition 3.1.1] for the detail. Dunfield, Friedl and

Jackson [6] presented the following conjecture, and confirmed it for all hyperbolic knots

of 15 or fewer crossings. See also [6, Conjecture 1.13].

Conjecture 2.3.[6, Conjecture 1.7Let K be a hyperbolicknotang,: G(K) — SL(2,C)
a lift of the holonomy representation. Thénis fibered if and only ify,, is monic. More-
over,y,, determines the knot genysK).

Recently, the third author confirmed the conjecture for twist knots [32], and the third
author and Tran did for a certain wider class2elbridge knots [33]. These are the first
infinite families of knots where Conjecture 2.3 is verified.

It is known that we can write the twisted Alexander polynomiat . (¢) without any

ambiguity as
4g9—2

Ap(t) =D di00F.
j=0

with C-valued functions); on X"’(K) such that), = 14g—2—1 (0 < k < 29 —1) where
g = g(K) (see [9, Theorem 1.5] and its proof). Then for a subvarigyof X' (K) we
say thaty,, is the coefficient of the highest degree termof , (¢) on Xy if ¢, = 0 for
m > n andy,, Z 0 on X,. We end this section with the following useful proposition.

Proposition 2.4. Let K be a knot of genug and x a character in a curve componeh,
of X' (K'). We write the twisted Alexander polynomis . (¢) as above:
49—2

Arcalt) = 3 4,000
j=0

Then each)y, is a regular function onXy, and ify;, # ¢ on X, for a constant: € C, then
Y, = c for finitely many points oK.
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Proof. It follows from [6, Theorem 1.5] thad, is a regular function. Thereforzﬂ,:l(c) is
a subvariety of the curv&, of codimension one. In particular, it consists of finitely many
points. (Also see [6, Corollary 1.6].) O

3. FIBERING AND MONIC CHARACTERS

In this section we present some classes of nonfibered knots for which the following
question is affirmatively solved, in particular, on a curve component.

Question 3.1. For a nonfibered knok, is there an irreducible component &f'" (K') with
finitely many monic characters?

Combined with Proposition 2.4, Conjecture 2.3 implies an affirmative answer to Ques-
tion 3.1 for hyperbolic knots since the characters of lifts of the holonomy representations
are known to be contained in unique curve component. This unique curve component of
a hyperbolic knot is called theanonical componentThe third author solved the ques-
tion affirmatively for twist knots [31], and later the first and third authors dic2firidge
knots [24] in a strong sense. More precisely, the following theorem holds from [24, Theo-
rem 4.3, Remark 2.3]. Let, ¢ X" (K) be an irreducible component. We say satisfies
Property (F') if X, contains finitely many monic characters and an abelian character.

Theorem 3.2. [24, Theorem 4.3For a nonfibered-bridge knot, there is a curve compo-
nent of X' (K) satisfying Property F').

At the present, except some special cases, we do not know if the curve component
appeared in Theorem 3.2 is the canonical one (see [24, Theorem 4.6, Remark 6.5]).
Our first theorem in this paper is the following.

Theorem 3.3. Let K’ be a knot such thah k() is nonmonic and has a simple root. Then
there is a curve component &F" ( K') satisfying Property( F').

Proof. By Proposition 2.1, there is a reducible charactg( and an irreducible curve
componentX, of X'"(K) such thatAx(\?) = 0 andx,, € X, NY(K). Since the
twisted Alexander polynomial associated wijthis given by

A (M)A (A1)
A =

k() = G = A

(see [24, Remark 3.1 (iV))Ax,,, (t) is monic if and only ifAg(t) is monic. Hence,

by the assumption, the coefficient of the highest degree term of the twisted Alexander
polynomial onX, is not the constant one and the assertion follows from Proposition 2.4.
This completes the proof. O

As an immediate corollary, i\ k (t) is irreducible overQ and nonmonic, the knak’
satisfies the assumption of Theorem 3.3. It is known that a prime Knot 10 or fewer
crossings is fibered if and only & k (¢) is monic. Then it can be checked that for all rin
bridge and nonfibered prime knots with or fewer crossings their Alexander polynomials
have a simple root, although they might have nontrivial multiple factorsr(¢). Hence,
by Theorems 3.2 and 3.3, nonfibered prime knots wAittor fewer crossings have curve
components which satisfy Prope(ty).

Theorem 3.3 can also be applied to satellite knots, and it shows that Question 3.1 also
makes sense for nonhyperbolic knots. E&be a knot embedded in a standard solid torus
V = 8! x D? ¢ S3. We assume thak  is not isotopic toS* x {0} nor is contained in
any3-ball in V. Let h be a homeomorphism fro¥i onto a closed tubular neighborhood
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of a nontrivial knotK” which maps a longitude df onto a longitude ofk. The image
K = h(K) is called asatellite knotwith companion knotX andpattern (V, K). The
winding numberof K in V is the nonnegative integer such that the homomorphism
HK — H,V = Z induced by the inclusion has the imag&. Under the notations
above, it is known that the Alexander polynomial of a satellite kiigtwith patterni,
companionk” and the winding numbet satisfies the following:

Ag(t) =Ag(t)  Ag (™).

Hence, by Theorem 3.3, for a satellite kdowith patternk” and thewinding number zero
such thatA 4 (¢) is nonmonic and has a simple root, there is a curve component satisfying
Property(F).

Recall that a knofs is calledsmall if the exterior £ contains no closed embedded
essential surface. It is known that torus knots [23ridge knots [15, 16] and Montesinos
knots with length3 [34, Corollary 4] are small. It is also known that some knots of braid
index3 or 4 are small (see [7] and [30]).

Theorem 3.4. Let K be a small knot such thak i (¢) is nonmonic. If the equivariant knot
signature functiorr k is not identically zero, then there is a curve component 8f( K)
satisfying Property F').

Proof. Suppose that i changes its value at’>. By Proposition 2.2, there is a reducible
charactery, ., and an irreducible componen, of X"™(K) such thaty, ., € Xo N

Y (K). SinceK is small, X is a curve [3, Section 2.4]. Now the similar argument as in
the proof of Theorem 3.3 can work in this setting. O

Theorem 3.5. Let K be a small knot such thak x (¢) is nonmonic. If there are a kndt’
and an epimorphism: G(K) — G(K') such that there is a componeiy of X" (K')
satisfying Property F'), then there is a curve componeXig of X' ( K) satisfying Property
(F).

Proof. It is straightforward to see that the regular mgip X (K') — X (K) induced by
the epimorphisng is injective. We seK, to be the imageé*(X). Itis a curve component
of X'™(K) containing an abelian character sinkeis small. Moreover, the composition
of an irreducible representation and an epimorphism of groups is also irreducible.

An abelian character iX, can be written ag,,, by an abelian representatign. Since
A (t) is not monic, neitherif i, (t). Hence the coefficient of the highest degree term
of Ak ,(t) on X, is not the constant one. Now the theorem follows from Proposition 2.4.

(I

The following corollary is an immediate consequence of Theorems 3.2, 3.3, 3.4 and 3.5.

Corollary 3.6. Let K be a small knot. If there are a knét’ satisfying one of the following:
(i) K'is a nonfibere®-bridge knot,
(i) Ag/(t) is nonmonic and has a simple root,
(iii) Ak (t) is nonmonic and g is not identically zero,
and an epimorphism: G(K) — G(K'), then there is a curve componekig of X' (K)
which satisfies PropertyF’).

It is well-known that if there is an epimorphisgh: G(K) — G(K'), then Ak (t)
divides Ak (t). Moreover, it is also known thah - (¢) is nonmonic for a nonfibered
2-bridge knotK”’. Hence, in the above theorem, it turns out thag (¢) is nonmonic.
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From [25, Section 8.2] (see also [22], [35, Section 9]), we see that for a gibeiige
knot K’ there exists a Montesinos knat with length3 such thatG(K’) admits an epimor-
phism toG(K'). Namely there are infinitely many small knots which satisfy the assump-
tion of Corollary 3.6.

4. DETECTING GENUS

In this section we consider the following analogous question to Question 3.1 on detect-
ing the knot genus.

Question 4.1. For a nontrivial knot K, is there a component of' (K) where all but
finitely many characters determine the knot genus?

As was mentioned in the introduction, every character of a fibered knot determines the
knot genus. Hence, Question 4.1 has an obvious positive answer for hyperbolic fibered
knots since the canonical components satisfy the condition. Moreover Conjecture 2.3 im-
plies an affirmative answer to the question for hyperbolic nonfibered knots. The first and
third authors solved the question affirmatively fabridge knots [24] in a strong sense.

Let Xy C X'™(K) be an irreducible component. We say satisfiesProperty (G) if all
but finitely many characters iX, determine the knot genus ad{}, contains an abelian
character.

Theorem 4.2. [24, Theorem 4.4For a 2-bridge knot, there is a curve component of
X" (K) which satisfies PropertyG).

As before we do not know if the curve component appeared in Theorem 4.2 is the
canonical one. Furthermore it is nontrivial whether there is a curve component which
satisfies PropertyG) even for a hyperbolic fibered knot.

Analogous arguments for Theorems 3.3, 3.4, 3.5 and Corollary 3.6 present an affirma-
tive answer to Question 4.1 for similar classes of knots.

Theorem 4.3. Let K be a knot withdeg A () = 2g(K) and Ak (t) has a simple root.
Then there is a curve componeX of X" (K') which satisfies PropertyG).

Proof. As in the proof of Theorem 3.3, by Proposition 2.1 there is a curve compdagent
of X' (K) containing a reducible charactey, such that
Aser (1) = A (M)A (A1)
Xea (t=XNE—=A"1)"
which determines the genus by the assumption. Hence the coefficient of the highest degree

term of Ag . (t) on X is not identically zero, and the theorem follows from Proposi-
tion 2.4. O

By Theorems 4.2, 4.3 and an analogous argument to Prof@€Jtye can check that all
prime knots with10 or fewer crossings, except the following sewsehridge knots, have
curve components which satisfy Propefty):

Ag,o (1) = A1g,,, (1) = (2 =t +1)°
Ag,, (1) = Aqo,,, (1) = (12 —t +1)?
Aoy, (t) = (12 —t +1)*

Aoy, (1) = (t* = 3t° + 3¢2 = 3t + 1)?
At0,- (1) = (82 = 3t +1)%
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Note that it is known that for all prime knots witt) or fewer crossingsdeg Ak (t) =
29(K).

The knots8,g, 829, 10137, 10149 and 10,43 are known to be Montesinos knots with
length3, hence they are small. On the other hand, the kh@g and10,53 are not small.
In fact, we can construct essential surfaces in the exteriors as follows: Thelkge®nd
10123 are obtained as the closure of thvbraids

3.2 2 -3 -2 -2 3 —2 2 3

. s o _ s 3 9 _o
01050105 01 7045 °, 0] “05 01050

109 .
Spheres witl8 holes separating; ando, give tangle decompositions of the knots. Con-
necting2 of such spheres hy tubes along the strands of the braids, we obtain embedded
surfaces of genug, which can be checked to be essential. This construction is based on
[29, Theorem 3.2]. One can also check that the kn6tg and10,23 are not small in the

list given in [2].

Theorem 4.4. Let K be a small knot such thaleg Ak (t) = 2¢g(K). If the equivariant
knot signature functiorx is not identically zero, then there is a curve component of
X" (K) which satisfies Propert{G).

Proof. Suppose thatx changes its value at‘>. By Proposition 2.2, there is a reducible
charactery, ., and an irreducible componend, of X""(K) such thatx, ., € Xo N

Y (K). SinceK is small, X is a curve. Now the same proof as that of Theorem 4.3
works. O

The Alexander polynomiala  (¢) of the knots3,, and10,43 have no simple root, but
we can check that their equivariant knot signature functipgsare not identically zero.
Hence, by Theorem 4.4, these two knots have curve components which satisfy Property
(@).

Theorem 4.5. Let K be a small knot withleg Ak (t) = 2¢g(K). If there are a knotK’
and an epimorphism: G(K) — G(K') such that there is a componeit, of X' (K')
satisfying Property(G), then there is a curve componehit, of X' (K) which satisfies
Property(G).

Proof. We setX|, to be the image of{|, of the injectionX (K’) — X (K) induced by
¢. ThenX, is a curve component o (K) containing an abelian charactgr, as in
the proof of Theorem 3.5. Sinekg Ak (t) = 2¢(K), the charactex,, determines the
genus. Hence the coefficient of the highest degree teuyyof (t) on X is not identically
zero, which proves the theorem by Proposition 2.4. |

The equivariant knot signature functiong of the knots8s, 10137 and104, are iden-
tically zero, but they admit the following epimorphisms2dridge knot groups (see [27,
Theorem 1.1]):

G(820) - G(31), G(10137) - G(41), G(10140) - G(?)l)

Therefore, by Theorems 4.2 and 4.5, these three knots have curve components which sat-
isfy Property(G).

More generally, we obtain the following as an immediate corollary of Theorems 4.2,
4.3,4.4 and 4.5.

Corollary 4.6. Let K be a small knot withleg A (t) = 2¢g(K). If there are a knotK”
satisfying one of the following:

(i) K’is a2-bridge knot,
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(i) deg Ak/(t) = 29(K') and Ak (t) has a simple root,
(i) deg Ag/(t) =2¢g(K') andok is not identically zero,

and an epimorphism: G(K) — G(K'), then there is a curve componekig of X' (K)
which satisfies Propert§G).

The Alexander polynomiald  (¢) of the remained knots0y9 and10,23 have no sim-
ple root and their equivariant knot signature functiens are identically zero. By [27,
Theorem 1.1] the knot grou@(1099) admits an epimorphism t6'(3;), but 1099 is not
small. MoreovelGG(10123) admits no epimorphism to the groups of knots of fewer cross-
ings [27]. Therefore we can say nothing about the existence of curve components which
satisfy PropertyG) for these knots.

5. EXAMPLE

Let K be the knoB35, which is a nonfibered alternating knot of gedusith A (¢) =
7t — 13t + 7. As in Figure 1, the kno is the (-3, —3, —3) pretzel knot which is a
Montesinos knot with lengtB, and soK is a small knot. By Theorem 3.3 there is a curve
component ofX™ (K') with finitely many monic characters, and by Theorem 4.3 there is
also one where all but finitely many characters determine the genus. Here we explicitly
give such curve components.

%
b vf
\

FIGURE 1. The knotdss

The knot K has a period, as is easy to see in Figure 1. In faé, is the inverse
image of one unknotted component of théridge link12/5 by the3-fold branched cov-
ering mapS® — S? whose branching set is the other unknotted component. First, using
the method of Hilden, Lozano and Montesinos-Amilibia [20, 21], we compute defining
equations of the curve componentsXfK) which come from the character variety of the
orbifold fundamental group of the quotient orbifold by the periodicity. By [20, Proposi-
tion 5.3] the nontrivial components of the character variety of thel2)i6 are defined by
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re(y1,y2,v) = 0, whererg(y1, y2,v) is inductively defined by
T (Y1, Y2,v) = — yl_lyth—lrm—?)(y%yla v)

1 _
+ 5(_2 + Y3 + Y1 Yatm—1(20 — Y192))Tm—2(Y1, Y2, v)

1 _
+ 5 (=201 Yot + Y1yt + 20 = 1)1 (42, 91, 0),
70(y1,Y2,v) =0, 71(y1,Y2,v) = 1, 72(y1,92,v) = v,
th=1,to=—1,t3=1, tgy = —1, t5 = 1.
Herey,,y-» are the trace functions of two standard generators ofthedge link group
andv is the trace function of the product of these generators. A computation implies
re(y1,y2,v) = (V¥ — vyrys + 47 + y3 — 3)(v° — v?y1ye + vyi + vys — v — y1ye).

By [21, Theorem 3.1] it follows from the equatiog(y:,y2,v) = 0 that X (K) contains
nontrivial curve components defined by

f(y,b,w) =0,
(b+2)(wy —b—2) —w? =0,
b+1=0,

wheref (y, b, w) is the polynomial obtained fromx 6 (y1, 2, v) by the following change
of variables:

Yy =1y2,
b:y%_2a
w = Yy1v.

By substituting—1 for b, the equations become
(w? —wy +y* = 2)(w® — w’y +wy® —y) =0,
w? —wy+z—-1=0.
Taking the resultant i, we have
(> — 2z —1D2(yz — 20" — 2222 + 5922 — 2% + 23 — 322 + 32— 1) = 0,

wherey, z are the trace functions of a meridian, and the product of it and its image by the
periodic map, respectively. We denote®@yC" the curves defined by

yP—2—-1=0,
ylz — 2yt — 20222 + 5022 — 22 + 22 — 322 + 32— 1 =0,

respectively.

Next we compute the restrictions of the regular functignto C, C’ induced by the
highest degree terms of twisted Alexander polynomials as in Proposition 2.4. Taking the
meridional elements, b, c depicted in Figurd, we haveG(K) = (a,b,c | r, s), where

r = abababébébeb,
s = bebebeacacac.
Here we writea, b, ¢ for a=*, b~ 1, ¢! respectively. Note that

Y=Tog =Tp = Tec-
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SinceC, C’ are symmetric with respect to the periodicity®f X) induced by that of¢,
2 =Tab = Tobc = Tca

on these curves. Since

& =1+ ab — ababa,
da
% = — ab + aba + ababa + abababé — abababebeh — abababébéebeb,
% = — bébcebea — bébebeaca + béebebeacad,
ds .
“° 14 be—be
BT + b¢ — bebeb,
for anSL(2, C)-representatiop,
det(At + B)
A =—— 7
&0 ) = Gttt = 1)
wherel denotes th@ x 2 identity matrix and
e —p(ababa) p(aba) + p(ababa) + p(abababe)
—p(bebcbea) — p(bebebeaca) —p(bebed) ’
B I+ B(al_)) p(ab) — p(abababebeb) — p(abababebebeb)
~ \ p(bebebcacac) I+ p(be) ’
Hence
Ya(x,) =det A
— det (7p(al;abd) ~ p(aEa)+p(gl§ab&)+p(a5ab&b6) ~ )
0 —p(bebebea) (p(cabe)+p(ab)+p(ac)+p(bc)+p(ca)+p(cb)+1))
= det(p(cabe) + p(ab) + p(ac) + p(be) + p(ca) + p(cb) + 1)
1 _ _
=5 ((tr (p(cabe) + p(ab) + p(ac) + p(be) + p(ca) + p(ch) + 1))
— tr ((p(cabe) + p(ab) + p(ac) + p(be) + p(ca) + p(cb) +1)%))

=2(tr p(ab))? + 2(tr p(bc))? + 2(tr p(ca))?
+ 4tr p(ab)tr p(be) + 4tr p(be)tr p(ca) + 4tr p(ca)tr p(ab)
— tr p(abcabe) — tr p(abab) — tr p(bebe) — tr p(caca)
— 2tr p(abac) — 2tr p(beba) — 2tr p(cach) — 3
:(2755 + 27 4 272, + AT 5 Toe + ATveTea + ATcaTap — Tabeabe
— Tabab — Tbebe — Teaca — 2Tabaz — 2Tbeba — 2Tcach — 3)(Xp)-
Here by trace identities we have
Tab = Toe = Tea = T,
Tabab = Tbebe = Tcaca = z® — 2,
Tabae = Toeba = Tcach — @ -z,
Tabeabe = —¢° + 317 —2
onC, C’, where we set = y2 — 2. Consequently, we obtain
gy = 23 + 622 + 62 +5
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onC,C".

It is easy to check thap, is the constant function with valus on C'. In particular,
there is no monic character {f and every character i@’ determines the knot genus. A
straightforward computation implies that the number of monic charactef$ is 6 and
that all but2 characters i’ determine the genus.
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