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Abstract. We establish homotopy ribbon concordance obstructions coming from the Blanchfield

form and Levine-Tristram signatures. Then, as an application of twisted Alexander polynomials,
we show that for every knot K with nontrivial Alexander polynomial, there exists an infinite

family of knots that are all concordant to K and have the same Blanchfield form as K, such that

no pair of knots in that family is homotopy ribbon concordant.

1. Introduction

We study homotopy ribbon concordance of knots, extending the work [FP19] by the first and
fifth authors on the classical Alexander polynomial to the Blanchfield form and to Levine-Tristram
signatures. Then we present an application of twisted Alexander polynomials to homotopy ribbon
concordance. As described in [FP19], the classical Alexander polynomial is useful to show that
there exists an infinite family of concordant knots that are not homotopy ribbon concordant to each
other. In this paper we show that there exists such an infinite family of knots even with isomorphic
Seifert forms, and so also isomorphic Blanchfield forms, using twisted Alexander polynomials.

Let J and K be oriented knots in S3, and let πJ and πK be the knot groups of J and K,
respectively. A locally flat oriented annulus C properly embedded in S3 × [0, 1], is called a
homotopy ribbon concordance from J to K if the following conditions are satisfied, where we write
πC = π1(S3 × [0, 1] \ C):

(1) ∂C = −J × {0} ∪K × {1};
(2) the induced homomorphism ιJ : πJ → πC is surjective;
(3) the induced homomorphism ιK : πK → πC is injective.

If there exists a homotopy ribbon concordance from J to K, then we say that J is homotopy
ribbon concordant to K, and write J ≥top K. In particular, in this case J and K are topologically
concordant.

The notion of a homotopy ribbon concordance is a topological analogue of the notion of a
(smooth) ribbon concordance, defined by Gordon [Go81] as a smooth, oriented annulus C properly
embedded in S3 × [0, 1] satisfying condition (1), such that after a small isotopy, the canonical
projection of C to [0, 1] is a Morse function without local minima. A ribbon concordance from
J to K satisfies conditions (1), (2) and (3), and thus is a homotopy ribbon concordance from J
to K [Go81, Lemma 3.1]. For further classical work on ribbon concordances we refer the reader
to [Gi84, Miy90, Miy98, Si92]. Recently, a number of articles [JMZ19, LZ19, MZ19, Sa19, Z19]
have related the Heegaard Floer and the Khovanov homology theories to ribbon concordances of
knots. Those relationships rely on smooth techniques and do not generalize to homotopy ribbon
concordances of knots.

On the other hand, we prove that the following statement, proven first by Gilmer [Gi84] for
ribbon concordances using smooth methods, does in fact hold for homotopy ribbon concordances.
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We denote the complement of an open tubular neighborhood of K in S3 by XK . Let us write
H1(XK ;Z[t±1]) for the Alexander module of K, and BlK for the Blanchfield pairing of K, which is
a sesquilinear Hermitian pairing on H1(XK ;Z[t±1]) with values in Q(t)/Z[t±1]. For a submodule
G ⊂ H1(XK ;Z[t±1]), let G⊥ := {a ∈ H1(XK ;Z[t±1]) | ∀ b ∈ G : BlK(a, b) = 0}.

Theorem 1.1. If J ≥top K, then there exists a submodule G ⊂ H1(XJ ;Z[t±1]) such that G ⊂ G⊥
and the pairing on G⊥/G induced by BlJ is isometric to BlK .

This theorem extends the result [FP19, Theorem 1.1] that for J ≥top K, the Alexander polynomial
of K divides that of J , i.e. ∆K | ∆J . Gilmer showed that any ribbon concordance obstruction that
is determined by the isometry class of the Blanchfield pairing (which contains the same information
as the S-equivalence class of the Seifert form [T73]) is subsumed by the obstruction given in
Theorem 1.1. However, that obstruction is not easily testable. So we derive homotopy ribbon
obstructions coming from the homology of the double branched cover, and from Levine-Tristram
signatures, in Propositions 3.2 and 3.3 respectively.

Then we move on to an application of twisted invariants. The following theorem shows the
subtlety of the homotopy ribbon concordance relation, even for smoothly concordant knots with
isomorphic Seifert forms.

Theorem 1.2. Let K be an oriented knot in S3 with nontrivial Alexander polynomial ∆K , and
let V be a Seifert form of K. Then there exists an infinite family {Ki}∞i=1 of oriented knots in S3

satisfying the following.

(i) For every i, Ki has a Seifert form isomorphic to V .
(ii) For every i, Ki is ribbon concordant to K.
(iii) For every i 6= j, Ki is not homotopy ribbon concordant to Kj.

Of course, the second item implies that Ki is concordant to Kj for every i, j. The third item
implies [Go81, Lemma 3.1] that Ki is not ribbon concordant to Kj . We prove Theorem 1.2
by applying twisted Alexander polynomials [Lin01, W94]. In fact, we establish an obstruction
to homotopy ribbon concordance in terms of these invariants. Suppose that J ≥top K with a
homotopy ribbon concordance C. Let α : πC → GL(n,R) be an n-dimensional representation over
a Noetherian UFD R. We write ∆α◦ιJ

J (t) and ∆α◦ιK
K (t) for the twisted Alexander polynomials of J

and K associated to the induced representations α ◦ ιJ and α ◦ ιK respectively. The invariants are
elements in R[t±1], and well-defined up to multiplication by a unit in R[t±1]. We write f | g for
f, g ∈ R[t±1] if g = fh for some h ∈ R[t±1]. In particular, 0 | g ⇔ 0 = g.

The following theorem generalizes the result [FP19, Theorem 1.1] on the classical Alexander
polynomial to the case of twisted Alexander polynomials.

Theorem 1.3. For a homotopy ribbon concordance C from J to K and a representation α : πC →
GL(n,R), the following holds:

∆α◦ιK
K | ∆α◦ιJ

J .

Let us briefly sketch the proof of Theorem 1.2 assuming Theorem 1.3. The infinite family
{Ki}∞i=1 of knots in the statement of the theorem is produced by a satellite construction. Let K be
an oriented knot with nontrivial Alexander polynomial and let V be a Seifert form associated to a
Seifert surface F for K. We pick a simple closed curve A in S3, unknotted in S3 and disjoint from F ,
and think of K as a knot in the solid torus exterior of A. Then, fixing a prime p, we consider
the satellite knots Kq of T (p, q)]− T (p, q) with pattern K for primes q 6= p, where T (p, q) is the
(p, q)-torus knot. By the construction we can check that the family of knots {Kq}q 6=p, with q prime,
satisfies conditions (i) and (ii) of Theorem 1.2. Also, for appropriate A and p we can see condition
(iii) as follows. Suppose that Kq ≥top Kq′ for q, q′ 6= p with a homotopy ribbon concordance C.
The non-triviality of the Alexander polynomial of K enables us to find a metabelian representation

α : πC → GL(n,Z) factoring through a p-group such that if ∆
α◦ιKq
Kq

(t) | ∆
α◦ιK

q′

Kq′
(t), then q = q′.
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The condition that the representation α factors through a p-group is important in showing that
both of these twisted polynomials are nonzero. Thus (iii) follows from Theorem 1.3.

Let us conclude the introduction with some open questions highlighting the differences between
ribbon concordance and homotopy ribbon concordance. The set of ribbon concordances is closed
under composition. We do not know whether this holds for homotopy ribbon concordances, too.

Question 1.4. Is the homotopy ribbon concordance relation transitive, i.e. does I ≥top J and
J ≥top K for oriented knots I, J , K imply I ≥top K?

The transitivity of the surjectivity condition (2) is easily verified, but the same cannot be said
for the injectivity condition (3).

Let us emphasize that Theorems 1.1 and 1.3 actually hold without condition (3). So, one might
be tempted to simply strike condition (3) from the definition of homotopy ribbon concordances;
Theorems 1.2 and 1.3 would still hold. However, there is some indication that this would be a less
natural definition than the one we have given. Let K1, K2 be two knots with trivial Alexander
polynomial. For such knots, there exist discs embedded properly and locally flat in D4 with
∂Di = Ki and π1(D4 \ Di) ∼= Z [FQ90, Theorem 11.7B]. Tubing together D1 and D2 yields a
topological concordance from K1 to K2 satisfying conditions (1) and (2), but (if K2 is nontrivial)
not (3). So then without (3), ≥top has no hope of being a partial order. This observation also
implies that, to answer the following question positively, one must indeed make use of condition (3).

Question 1.5. Does J ≥top K imply g(J) ≥ g(K)?

The analogous statement for ribbon concordance was established by Zemke using knot Floer
homology [Z19].

One may easily show using embedded Morse theory (see e.g. [BP16]) that for smoothly concordant
knots K,J , there exists a third knot L that is ribbon concordant to both K and J . Whether the
analogous statement holds for homotopy ribbon concordance is less clear.

Question 1.6. Given two topologically concordant knots K,J , does there exist a third knot L such
that L ≥top K and L ≥top J?

This paper is organized as follows. Section 2 provides a brief review of twisted Alexander
polynomials of knots. Section 3 contains the proof of Theorem 1.1 and Propositions 3.2 and 3.3. In
Section 4 we generalize the results in [FP19] to the case of twisted Alexander modules, and prove
Theorem 1.3. In Section 5 we describe a satellite construction producing such an infinite family of
knots as in Theorem 1.2, and a satellite formula of twisted Alexander polynomials. In Section 6 we
introduce certain nonzero twisted Alexander polynomials associated to metabelian representations,
which are useful for applications of Theorem 1.3. Section 7 fleshes out the details of the proof of
Theorem 1.2 that was sketched above. Appendix A discusses the base ring change properties of
Blanchfield pairings that are needed in Section 3.

Acknowledgments. The authors thank Maciej Borodzik for inspiring ideas regarding applications
of the Blanchfield obstruction. Some of the work on this article was undertaken at the MPIM
Bonn during the workshop on 4-manifolds in September 2019, and some motivation came from the
workshop on low-dimensional topology in Regensburg one month later. TK was supported by JSPS
KAKENHI Grant Numbers JP18K13404, JP18KK0380. LL was supported by the Emmy Noether
Programme of the DFG. MN gratefully acknowledges support by the SNSF Grant 181199.

2. Twisted Alexander polynomials

We begin with the definition of twisted Alexander polynomials of knots [Lin01, W94]. We also
refer the reader to the survey papers [DFL15, FV11] for more details on the invariants. In this
section, let R be a Noetherian UFD with (possibly trivial) involution · : R→ R, and Q(R) is its
quotient field.
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2.1. Twisted homology and cohomology groups. Let X be a path connected space having

universal cover X̃ and let Y be a subspace of X. Let Ỹ be the pullback of Y by the covering

map X̃ → X. Note that π1(X) acts on X̃ on the left via deck transformations. The singular

chain complex C∗(X̃, Ỹ ) of (X̃, Ỹ ) is a left Zπ1(X)-module. We write C∗(X̃, Ỹ ) when we think of

C∗(X̃, Ỹ ) as a right Zπ1(X)-module, using the involution of Zπ1(X) reversing elements of π1(X).
Let α : π1(X) → GLn(R) be a representation. For each nonnegative integer i we define the

i-th twisted homology group Hα
i (X,Y ;Rn) and the i-th twisted cohomology group Hi

α(X,Y ;Rn) of
(X,Y ) associated to α as:

Hα
i (X,Y ;Rn) = Hi(C∗(X̃, Ỹ )⊗Zπ1(X) R

n),

Hi
α(X,Y ;Rn) = Hi(HomZπ1(X)(C∗(X̃, Ỹ ), Rn)).

When Y is empty, we write Hα
i (X;Rn) and Hi

α(X;Rn) respectively.
If (X,Y ) is a CW-pair, then the cellular twisted homology and cohomology groups are similarly

defined for the cellular chain complex of (X̃, Ỹ ), and isomorphic to the singular twisted homology
and cohomology groups respectively.

The 0-th twisted homology and cohomology groups are computed as follows (see for instance
[HS71, Proposition 3.1]):

Hα
0 (X;Rn) = Rn/{α(γ)v − v | γ ∈ π1(X), v ∈ Rn},

H0
α(X;Rn) = {v ∈ Rn | α(γ)v = v for all γ ∈ π1(X)}.

2.2. Twisted Alexander polynomials of knots. Let K be an oriented knot in S3. Recall
that we denote the complement of an open tubular neighborhood of K in S3 by XK , and set
πK = π1(XK). Let φK : πK → Z be the abelianization map sending a meridional element to 1.

Let α : πK → GL(n,R) be a representation. We write α ⊗ φK : πK → GL(n,R[t±1]) for the
tensor representation given by

α⊗ φK(γ) = α(γ)tφK(γ)

for γ ∈ πK . We call Hα⊗φK
1 (XK ;R[t±1]n) the twisted Alexander module of K associated to α, which

is a finitely generated R[t±1]-module. We define the twisted Alexander polynomial ∆α
K(t) ∈ R[t±1]

of K associated to α to be its order. Namely, for an exact sequence

R[t±1]l
r−→ R[t±1]m → Hα⊗φK

1 (XK ;R[t±1]n)→ 0

with l ≥ m, ∆α
K(t) is the greatest common divisor of the m-minors of a representation matrix of r,

and is well-defined up to multiplication by a unit in R[t±1]. In the following we write f
.
= g for

f, g ∈ R[t±1] if f = ug for some unit u ∈ R[t±1].

Remark 2.1.

(1) The twisted Alexander polynomial of K associated to the trivial representation πK →
GL(1,Z) coincides with the classical Alexander polynomial ∆K(t) of K.

(2) The twisted Alexander polynomial ∆α
K(t) is invariant under conjugation of representations α.

3. The Blanchfield pairing

3.1. Proof of the Blanchfield homotopy ribbon obstruction. Recall that for a knot K, XK

denotes the complement of an open tubular neighborhood of K in S3, and the Alexander module of
K is H1(XK ;Z[t±1]), where t acts as a generator of the deck transformation group of the infinite
cyclic covering of XK . The Blanchfield pairing BlK of K is a non-singular sesquilinear Hermitian
form

BlK : H1(XK ;Z[t±1])×H1(XK ;Z[t±1])→ Q(t)/Z[t±1],
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which may be defined by setting its adjoint x 7→ BlK(−, x) to be the composition

(3.1) H1(XK ;Z[t±1]) −−−−→ H1(XK , ∂XK ;Z[t±1])
PD−1

−−−−→ H2(XK ;Z[t±1])

β−1
K−−−−→ H1(XK ;Q(t)/Z[t±1])

κ−−−−→ HomZ[t±1](H1(XK ;Z[t±1]),Q(t)/Z[t±1]),

where the first map is the natural one, PD denotes the Poincaré duality map, βK denotes the
Bockstein connecting homomorphism in cohomology induced by the short exact sequence 0 →
Z[t±1]→ Q(t)→ Q(t)/Z[t±1]→ 0, and κ is the so-called Kronecker evaluation (see e.g. [FP17] for

details regarding this definition). The involution · on Z[t±1] is given by p(t) = p(t−1), and for a
Z[t±1]-module M , M denotes the module given by the same abelian group as M , and p(t) acting

as p(t). We write Hom( · , · ) as Hom( · , · ).
Let us now recall Theorem 1.1 from the introduction, and prove it.

Theorem 1.1. If J ≥top K, then there exists a submodule G ⊂ H1(XJ ;Z[t±1]) such that G ⊂ G⊥
and the pairing on G⊥/G induced by BlJ is isometric to BlK .

Proof. Let C be a homotopy ribbon concordance from J to K and let XC be its exterior, i.e. the
complement of an open tubular neighborhood of C in S3 × [0, 1]. See [FNOP19] for a thorough
treatment of tubular neighborhoods of submanifolds of a topological 4-manifold. The boundary
∂XC is homeomorphic to the gluing of X−J and XK along their boundary tori, gluing meridian to
meridian and longitude to longitude.

The composition j : XJ → XC of orientation reversal and inclusion induces a surjection
j∗ : H1(XJ ;Z[t±1]) → H1(XC ;Z[t±1]), while the inclusion k : XK → XC induces an injection
k∗ : H1(XK ;Z[t±1])→ H1(XC ;Z[t±1]). This was shown in [FP19]; we will generalize it to twisted
homology in Section 4.

The surjectivity of j∗ implies that the kernel of the homomorphism induced by the inclusion
∂XC → XC is a metabolizer of Bl∂XC

∼= BlJ ⊕BlK (see [FLNP17] for additivity of the Blanchfield
form and [F04, Prop. 8.2] for the proof that the kernel is a metabolizer). The remainder of the
proof is an algebraic argument that we outsource to the following lemma, applied with e = j∗,
m = k∗, λE = BlJ , λM = BlK , and R = Z[t±1]. �

For a commutative ring R, we write Q(R) for the total quotient ring of R, i.e. the localization of
R with respect to the multiplicative set of elements of R that are not zero divisors. An element a
of an R-module is called torsion if it is annihilated by some r ∈ R that is not a zero divisor, and
an R-module is called torsion if all its elements are torsion.

Lemma 3.1. Let R be a commutative ring with an involution. Let M,E be finitely generated
R-torsion modules with sesquilinear, Hermitian and non-singular pairings λM : M ×M → Q(R)/R
and λE : E × E → Q(R)/R. Let N be an R-module with an epimorphism e : E → N and a
monomorphism m : M → N , such that the kernel of (e + m) : E ⊕M → N is a metabolizer for
λE ⊕ λM . Let G be the kernel of e. Then the pairing induced by λE on G⊥/G is isometric to λM .

Proof. Let S = e−1(Im(m)) ⊂ E and define g : S → M as m−1 ◦ e. Let us check that g respects
the pairings. Let a1, a2 ∈ S be given. Then for i ∈ {1, 2}, we have e(ai) = m(g(ai)), so
ai − g(ai) ∈ Ker(e+m). Since Ker(e+m) is a metabolizer for λE ⊕ λM , we have

−λE(a1, a2) + λM (−g(a1),−g(a2)) = 0 ⇒ λE(a1, a2) = λM (g(a1), g(a2))

as claimed. Next, g is clearly surjective and has kernel G = Ker e, so it induces an isometry
S/G→M . Let us now prove that S = G⊥.

To show S ⊂ G⊥, let a ∈ S. If b ∈ G, then

λE(a, b) = −
(
λE(a,−b) + λM (−g(a), 0)

)
,

which equals zero since a− g(a) and b are both contained in the metabolizer Ker(e+m).
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To show G⊥ ⊂ S, let c ∈ G⊥ be given. Consider the homomorphism S/G → Q(R)/R given
by [a] 7→ λE(a, c). The pairing induced on S/G by λE is non-singular since it is isometric to λM .
So its adjoint map is an isomorphism, whence there exists [c′] ∈ S/G such that for all [a] ∈ S/G,
we have λE(a, c) = λE(a, c′). Thus for all a ∈ S, we have λE(a, c − c′) = 0. If a ∈ E and
b ∈ M with e(a) + m(b) = 0 are given, then a ∈ S, and so −λE(a, c − c′) + λM (b, 0) = 0. Thus
c− c′ ∈ Ker(e+m)⊥ = Ker(e+m), and thus c− c′ ∈ Ker(e+m) ∩ E = G ⊂ S. Since c′ is also
in S, it follows that c ∈ S. �

3.2. Homotopy ribbon obstructions from the double branched covering and signatures.
Let us write [K] for the S-equivalence class of a knot K, i.e. [K] = [K ′] if and only if BlK and BlK′

are isometric. Write

[J ] ≥S [K]

if the conclusion of the previous theorem holds, i.e. if there exists a submodule G ⊂ H1(XJ ;Z[t±1])
such that G ⊂ G⊥ and the pairing on G⊥/G induced by BlJ is isometric to BlK . This relation was
introduced by Gilmer [Gi84], who showed that if J is ribbon concordant to K, then [J ] ≥S [K].
Theorem 1.1 strengthens this statement, and may now be formulated as

J ≥top K ⇒ [J ] ≥S [K].

Gilmer provides an equivalent characterization of the relation ≥S in terms of Seifert matrices,
which constitutes his main technical tool. Among other results, he shows that the relation ≥S is a
partial order. In this text, we will rely on the definition of ≥S via the Blanchfield pairing, instead
of Seifert matrices.

There seems to be no known algorithm to decide whether [J ] ≥S [K] holds for given knots J
and K. On the level of modules (forgetting about the Blanchfield pairing), the relation [J ] ≥S [K]
implies that the Alexander module of K is a quotient of a submodule of the Alexander module
of J . But even this condition seems difficult to check for general given knots J and K.

Switching to PID coefficients at least gives testable obstructions beyond divisibility of the
Alexander polynomials. In particular, in this way one obtains homotopy ribbon obstructions from
the homology of the double branched covering, and from Levine-Tristram signatures. Let us state
these obstructions now. Denote the double branched cover of S3 along K by ΣK,2.

Proposition 3.2. If J , K are knots with [J ] ≥S [K], then H1(ΣK,2;Z) is isomorphic to a subgroup
of H1(ΣJ,2;Z). In fact, there exist abelian groups W,G and two short exact sequences

(3.2)

0

G

0 H1(ΣK,2;Z) H1(ΣJ,2;Z) W 0

G

0

The proof will be given in Section 3.3. Recall that for a knot K, the order of H1(ΣK,2;Z) is
detK. Consequently, if p is an odd prime not dividing det J/detK, then the p-primary parts of
H1(XJ ;Z) and H1(XK ;Z) are isomorphic.

Let us denote the Levine-Tristram signature and nullity, of a knot K at eπix ∈ S1 for x ∈ R,
by σx(K) and ηx(K) respectively. We write degx(K) for the multiplicity of the root eπix of ∆K ,
which equals 0 if eπix is not a root of ∆K . In this notation, the classical knot signature corresponds
to σ1.
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Proposition 3.3. If J , K are knots with [J ] ≥S [K], then for all x ∈ R,

degx(J)− degx(K) ≥ ηx(J)− ηx(K) ≥ |σx(J)− σx(K)|.

The proof will be given in Section 3.4. Note that in the particular case, where eπix is not a root
of the quotient ∆J/∆K , one obtains that σx(J) = σx(K).

The proofs of Propositions 3.2 and 3.3 follow a similar path for the start of their proofs. The
homology of the double branched covering and the Levine-Tristram signatures are determined by the
Blanchfield pairings BlR with certain PIDs R as coefficient module. As discussed in Appendix A, Bl
determines BlR, and [J ] ≥S [K] implies the condition for BlR analogous to Theorem 1.1, which in
turn (using that R is a PID) implies (3.2) in Proposition 3.2 and the inequalities in Proposition 3.3.
Before delving into those proofs in full detail in Sections 3.3 and 3.4, let us give an example
application.

Example 3.4. Let K be the knot 12n582 from the knot table [LM20]. This knot is a ribbon knot with
Alexander polynomial (t−1 − 1 + t)2 and non-constant signature profile: deg1/3(K) = 2, η1/3(K) =

1, σ1/3(K) = 1. As an example application of the Blanchfield obstructions, let us prove that if J is
a prime knot with crossing number 12 or less such that J ≥top K, then J ∈ {K,K ′}, where K ′ is
the knot 1099 in the knot table.

First off, J needs to be topologically slice. This leaves (up to symmetry, i.e. counting mirror
images and reverses only once) 159 knots from the table. Among those, there are 134 knots with
deg1/3 = 0 (i.e. ∆(eπi/3) 6= 0) and 10 knots with deg1/3 = 2, η1/3 = 2, σ1/3 = 0. These are ruled
out by the first inequality in Proposition 3.3, whereas −K is ruled out by the second inequality,
since deg1/3(−K) = 2, η1/3(−K) = 1, σ1/3(−K) = −1. There remain 15 knots. Among them, 13

have double branched covering with first homology group isomorphic to Z/9,Z/81 or Z/9⊕ Z/25.
So they are ruled out by Proposition 3.2, since the first homology group of the double branched
covering of K is Z/3⊕ Z/3, which does not inject into a cyclic group (note that here we are not
using the vertical exact sequence in (3.2)).

The two remaining knots are K itself and K ′ (the latter being amphicheiral). We have
H1(K ′;Z) ∼= Z/9 ⊕ Z/9 and deg1/3(K ′) = 4, η1/3(K ′) = 2, σ1/3(K ′) = 0, so Propositions 3.2

and 3.3 do not obstruct K ′ ≥top K. One may check that K ′ is not ribbon concordant to K,
e.g. using Khovanov homology [LZ19]. However, we do not know the answer to the following.

Question 3.5. Does [1099] ≥S [12n582] hold? If so, is 1099 homotopy ribbon concordant to 12n582?

Remark 3.6. In light of the obstructions for homotopy ribbon concordances coming from the
Blanchfield pairing (Theorem 1.1) and from twisted Alexander polynomials (Theorem 1.3), one
might hope for an obstruction coming from twisted Blanchfield pairings. We have not pursued this
any further in order to avoid overly complicating this text, and because it was not necessary to
obtain the application in Theorem 1.2.

Remark 3.7. The obstruction given in Proposition 3.3 could be strengthened a bit by considering
the full isometry type of the Blanchfield pairing over R, which is not completely captured by
nullities, signatures and the Alexander polynomial. Likewise, taking the linking pairing of the
double branched cover into account, and not just its homology, would strengthen Proposition 3.2.

3.3. The Blanchfield pairing with PID coefficients. This subsection is devoted to the proof
of Proposition 3.2. Let us jump directly into it, and prove the crucial Lemma 3.8 afterwards.

Proof of Proposition 3.2. First we appeal to two technical results dealing with change of base
ring for the Blanchfield form, whose proofs we have relegated to Appendix A. The Z[t±1]-algebra
R := Z[t±1]/(t+1) has only (t+1)-torsion, and is thus admissible in the terminology of Appendix A.

So, by Proposition A.1, for all knots L, there is a Blanchfield pairing BlRL defined on H1(XL;R),
which is determined by BlL. Moreover, by Proposition A.2, [J ] ≥S [K] implies that there exists an
R-submodule G ⊂ H1(XJ ;R) such that G ⊂ G⊥, and G⊥/G is isomorphic to H1(XK ;R).



8 S. FRIEDL, T. KITAYAMA, L. LEWARK, M. NAGEL, AND M. POWELL

Note that R→ Z, t 7→ −1 is an isomorphism of Z[t±1]-algebras (with trivial involution), where t
acts on Z by −1. In particular, as a ring Z[t±1]/(t+ 1) is a PID. By Lemma 3.8 (iii) below, there
are two short exact sequences

0 H1(XK ;R) H1(XJ ;R) W 0,

0 G W G 0.

Note that for all knots L, H1(Σ2,L;Z) and H1(XL;R) are isomorphic abelian groups. Indeed, since
H1(XL;R) ∼= H1(XL;Z[t±1])⊗Z[t±1] R ∼= H1(XL;Z[t±1])/(t+ 1) by a straightforward application

of the universal coefficient theorem (noting Tor
Z[t±1]
1 (Z, R) = 0), both modules are presented by

the matrix (tV − V T )|t=−1 = −V − V T , where V is a Seifert matrix for L. Thus, we have indeed
constructed the two short exact sequences (3.2). �

As a side remark, note that under the identification of H1(XL;R) with H1(Σ2,L;Z), the pair-

ing BlRL corresponds to the usual linking pairing on Σ2,L times 2 for all knots L.
Also, note that one could prove the conclusion of Proposition 3.2 under the stronger hypothesis

that J ≥top K instead of [J ] ≥S [K], namely by using that Theorem 1.1 holds not just for Z[t±1],
but for all Z[t±1]-algebras R without t − 1 and Ξ-torsion (cf. Appendix A), with the analogous

proof. This proof would not require the relationship between Bl and BlR, but would result in a
weaker version of Proposition 3.2.

Now, let us come to Lemma 3.8. Let us consider modules and pairings over a general PID R
(PIDs are understood to be commutative in this text). The order ordM of a finitely generated
torsion module M over R is defined as follows: pick a decomposition of M as sum of cyclic modules
R/(a1)⊕ . . .⊕R/(an). Then ordM := a1 · . . . ·an ∈ R. The order is well-defined up to multiplication
with units in R; we use the symbol

.
= to denote that two elements of R are equal up to multiplication

with a unit. Note that if R has an involution · , then ordM = ordM . This definition of order
agrees with the more general definition in Section 2.2 of orders of modules over rings that need not
be PIDs.

Lemma 3.8. Let R be a PID with an involution · .
(i) Every finitely generated R-torsion module M is (non-canonically) isomorphic to Hom(M,Q(R)/R).

Let A be a finitely generated R-torsion module and let λ : A × A → Q(R)/R be a sesquilinear
Hermitian non-singular pairing.

(ii) For M a submodule of A, we have ordM · ordM⊥
.
= ordA and M = (M⊥)⊥.

(iii) For a submodule G ⊂ A such that G ⊂ G⊥, there is an R-module W fitting into the
following two (non-natural) short exact sequences as follows.

0

G

0 G⊥/G A W 0.

G

0

Proof. (i) Cyclic torsion modules are (non-canonically) isomorphic to R/(a) for some a ∈ R\{0}, and
an isomorphism R/(a)→ Hom(R/(a), Q(R)/R) is given by 1 7→ (1 7→ 1/a). This suffices, since M
decomposes as a sum of cyclic torsion modules, and Hom(N ⊕N ′, Q(R)/R) ∼= Hom(N,Q(R)/R)⊕
Hom(N ′, Q(R)/R).
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(ii) There is a short exact sequence

(3.3) 0 M⊥ A Hom(M,Q(R)/R) 0,

where the second map is the inclusion, and the third map is the composition of the adjoint
map A → Hom(A,Q(R)/R) of λ (which is an isomorphism) and the map Hom(A,Q(R)/R) →
Hom(M,Q(R)/R), which is surjective since Q(R)/R is an injective R-module, and so the con-
travariant functor Hom(−, Q(R)/R) is exact. The orders of modules in a short exact sequence are
multiplicative, so ordM⊥ · ord Hom(M,Q(R)/R)

.
= ordA, which implies ordM⊥ · ordM

.
= ordA

using (i). In the same way, we obtain ord(M⊥)⊥ ·ordM⊥
.
= ordA. Thus we get ordM

.
= ord(M⊥)⊥.

The inclusion M ⊂ (M⊥)⊥ follows directly from the definition of ⊥, and since M and (M⊥)⊥ have
the same order, they are equal.

(iii) Let us write ι for inclusions of submodules of A into A, and ψ : A→ Hom(A,Q(R)/R) for
the adjoint of λ. Let β the composition of the maps

G⊥ A Hom(A,Q(R)/R) Hom(G⊥, Q(R)/R).ι ψ ι∗

The kernel of β is (G⊥)⊥ = G. So β induces an injection

β̃ : G⊥/G→ Hom(G⊥, Q(R)/R).

Fix an isomorphism α : Hom(G⊥, Q(R)/R)→ G⊥. We get the following commutative diagram, in
which the two rows and the first column are exact; this induces the dashed maps, such that the
second column is also exact.

0 0

0 G⊥/G G⊥ G⊥/ Imαβ̃ 0

0 G⊥/G A A/ Im ιαβ̃ 0

A/G⊥ A/G⊥

0 0

α◦β̃

id ι

ι◦α◦β̃

id

The second row and second column of this diagram form the desired diagram, using that A ∼= A

and setting W = A/ Im ιαβ̃. It just remains to check that A/G⊥ ∼= G and G⊥/ Imαβ̃ ∼= G.

An isomorphism A/G⊥ ∼= Hom(G,Q(R)/R) is given by considering the short exact sequence (3.3),
and Hom(G,Q(R)/R) is isomorphic to G by (i).

In the following commutative diagram, the rows are exact (the surjectivity of the second map in
the top row follows from the injectivity of the module Q(R)/R as in the proof of (ii) above), and
the first two vertical maps are isomorphisms.

0 G⊥/G Hom(G⊥, Q(R)/R) Hom(G,Q(R)/R) 0

0 G⊥/G G⊥ G⊥/ Imαβ̃ 0

β̃

id α

α◦β̃

This induces the desired isomorphism G ∼= Hom(G,Q(R)/R)→ G⊥/ Imαβ̃, drawn dashed. �
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As an illustration of how the previous lemma can be used, we give a new proof of the following
corollary, by applying the lemma to R = Q[t±1]. The corollary was originally shown by Gilmer
using Seifert matrices.

Corollary 3.9 ([Gi84]). If J and K are knots with [J ] ≥S [K] and ∆J
.
= ∆K , then BlJ and BlK

are isometric.

Proof. By definition of ≥S , there exists a submodule G ⊂ H1(XJ ;Z[t±1]) such that G ⊂ G⊥ and

the pairing induced by BlJ on G⊥/G is isometric to BlK . Let G̃ = G ⊗ Q. By Proposition A.2,

G̃⊥/G̃ is isomorphic to H1(XK ;Q[t±1]), so

ord G̃ ·∆K
.
= ord G̃⊥.

Moreover, by Lemma 3.8 (ii), we have

ord G̃ · ord G̃⊥
.
= ∆J .

Since ∆K
.
= ∆J by assumption, those two equations imply that ord G̃

.
= 1, which means that

G̃ is trivial. This is equivalent to G being Z-torsion. However, H1(XJ ;Z[t±1]) is Z-torsion free,
and thus its submodule G is as well. Hence G is trivial, and the pairing induced by BlJ on
G⊥/G ∼= H1(XJ ;Z[t±1]), to which BlK is isometric, is just BlJ itself. �

3.4. Dévissage of linking pairings over a PID. This subsection is devoted to the proof of
Proposition 3.3. As will be explained in detail later, degx, σx and ηx can be read from the

Blanchfield pairing BlR[t
±1] with R[t±1] coefficients, which is in turn determined by Bl, as discussed

in Appendix A. Since R[t±1] is a PID, the results of Lemma 3.8 apply. But this is not enough; to
prove Proposition 3.3, we need a clearer understanding of linking pairings over R[t±1]. Localizing
this ring will simplify things. Let us work in a more general setting. Let R be a discrete valuation
ring, or DVR for short (i.e. a commutative PID with a unique non-zero maximal ideal), equipped
with an involution · , satisfying the two following conditions:

There is a generator τ ∈ R of the unique maximal ideal of R with τ = τ .(3.4)

There is a unit s ∈ R such that s+ s = 1.(3.5)

Note that up to multiplication with units, τ is the unique irreducible element of R. It follows
that every element in R can be written as rτ ` for some ` ∈ N0 and r ∈ R a unit. If a is an element
of an R-torsion module (such as Q(R)/R), then write νa for the minimal k ≥ 0 such that τka = 0.
Note that νa = 0⇔ a = 0. The following lemma lays some technical groundwork for pairings over
such rings R, and shows in particular that they are diagonalizable.

Lemma 3.10. Let R be a DVR with involution satisfying (3.4) and (3.5). Let A be a finitely
generated R-torsion module and let λ : A×A→ Q(R)/R be a sesquilinear Hermitian non-singular
pairing.

(i) If B ⊂ A is a submodule such that B ∩B⊥ = 0, then (A, λ) is isometric to the orthogonal
sum of B and B⊥.

(ii) If a ∈ A and νa = νλ(a, a), then (A, λ) is isometric to the orthogonal sum of 〈a〉 and 〈a〉⊥.
(iii) For all a ∈ A, there exists b ∈ A such that νλ(a, b) = νa.
(iv) There exists a ∈ A with maximal νa such that νλ(a, a) = νa.
(v) (A, λ) is isometric to an orthogonal sum 〈e1〉 ⊕ · · · ⊕ 〈en〉 of cyclic modules. For any such

e1, . . . , en, we have νλ(ei, ei) = νei for all i ∈ {1, . . . , n}.
(vi) Let a ∈ A with νa = 1, and let ã ∈ A be an element with maximal νã such that a = τ−1+νãã.

Then there exists b ∈ A such that νb = νã = νλ(ã, b) = νλ(b, b).
(vii) Let a ∈ A and assume that νλ(a, b) < νa for all b ∈ A with νb = νa. Then there exists

c ∈ A with νc > νa such that ν(a+ τc) < νa.
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Proof. (i) The sum of the inclusion maps gives a map B ⊕B⊥ → A that clearly preserves pairings.
It just remains to see that this map is bijective. Injectivity follows from B ∩B⊥ = {0}. Surjectivity
follows since ordB ⊕B⊥ .

= ordA by Lemma 3.8 (ii), using that R is a PID.

(ii) By (i), we just have to check that 〈a〉 ∩ 〈a〉⊥ = {0}. Take an element ra ∈ 〈a〉 with r ∈ R. If
ra ∈ 〈a〉⊥, then λ(ra, a) = 0, and so rλ(a, a) = 0. Hence r ∈ (τνλ(a,a)) = (τνa), and thus ra = 0.

(iii) If a = 0, take b = 0. If a 6= 0, let ã = τ−1+νaa. Since λ is non-singular, there exists b ∈ A
such that λ(ã, b) 6= 0. It follows that νλ(ã, b) = 1 and νλ(a, b) = νa as desired.

(iv) Pick any b ∈ A of maximal νb = k. If νλ(b, b) = k, just take a = b. Else, by (iii) we may
pick c ∈ A such that νλ(b, c) = k, i.e. λ(b, c) = rτ−k for r ∈ R a unit. Note this implies νc = k.
Again, if νλ(c, c) = k, just set a = c. Else we have νλ(b, b) < k and νλ(c, c) < k. Pick s ∈ R such
that s+ s = 1 and set a = b+ sr−1c. This element a satisfies νλ(a, a) = k, as one computes:

τk−1λ(b + sr−1c, b + sr−1c) = τk−1(λ(b, sr−1c) + λ(sr−1c, b)) = τk−1(sτ−k + sτ−k) = τ−1.

(v) Note that ordA
.
= τ j for some j ≥ 0. The proof goes by induction over j. For j = 0, A is

trivial and the statement holds. If A is nontrivial, by (iv), there exist a non-trivial a ∈ A with
maximal νa and νλ(a, a) = νa. By (ii), A is isometric to 〈a〉 ⊕ 〈a〉⊥, and by induction 〈a〉⊥ is
isometric to an orthogonal sum of cyclic modules.

For the second statement, note that τνeiλ(ei, ei) = 0, so νλ(ei, ei) ≤ νei. Moreover, λ is
non-singular, so there exists some a ∈ A such that λ(τνei−1ei, a) 6= 0. Because of the orthogonality
of the sum, we have a = aiei + b with ai ∈ R \ {0} and b ∈ 〈e1, . . . , ei−1, ei+1, . . . , en〉. Then
λ(τνei−1ei, a) = aiτ

νei−1λ(ei, ei) 6= 0, and so νλ(ei, ei) ≥ νei.
(vi) Using (v), we may identify (A, λ) with the orthogonal sum over cyclic modules with generators

e1, . . . , en, so we write elements of A as vectors with respect to that generator set. In this notation,
the i-th coordinate of a is riτ

−1+νei for ri ∈ R a unit or 0. Since νa = 1, a 6= 0, and by maximality
of νã, there exists i such that ri 6= 0 and νei = νã. This implies that the i-th coordinate of ã is ri.
Set b to be ei. Then νb = νã and by the second part of (v), νλ(ei, ei) = νei, so λ(ã, b) = λ(riei, ei),
where νλ(riei, ei) = νei. Likewise νλ(b, b) = νλ(ei, ei) = νei.

(vii) Choose e1, . . . , en as in (vi). Let the i-th coordinate of a be riτ
ki with ri ∈ R a unit or 0,

and ki ≥ 0. Reorder the ei such that there exists j ∈ {1, . . . , n} with ν(riτ
kiei) = ν(a) for i ≤ j

and ν(riτ
kiei) < ν(a) for i > j. If ki = 0 for some i ∈ {1, . . . , j}, then ν(a) = ν(ei) = νλ(ei, a),

contradicting the assumption that no such b = ei exists. So ki ≥ 1 for all i ∈ {1, . . . , j}. Set

c = −
j∑
i=1

riτ
ki−1ei.

Then, clearly, νc = 1 + νa and ν(a+ τc) < νa. �

Let A be a finitely generated R-torsion module and let λ : A×A→ Q(R)/R be a sesquilinear
Hermitian non-singular pairing. By a technique known as dévissage (see e.g. [Ra98, Ch. 38]), the
isometry type of λ can be understood by considering the isometry type of sesquilinear Hermitian
non-singular pairings over the field F := R/(τ). Let us make this precise now.

Let Ak = {a ∈ A | τka = 0} for k ≥ 0 and Ak = {0} for k < 0. Let

Φk(A) = Ak/(Ak−1 + τAk+1).

Note that λ induces a sesquilinear Hermitian form Φk(λ) : Φk(A)× Φk(A)→ (τ−kR)/(τ−k+1R),
and (τ−kR)/(τ−k+1R) is canonically identified with the field F = R/(τ) by multiplication with τk.
Non-singularity of the form Φk(A) follows from Lemma 3.10 (vii).

Write T(R) for the set of isometry classes of sesquilinear Hermitian non-singular pairings
A × A → Q(R)/R on finitely generated R-torsion modules A, and M(F) for the set of isometry
classes of sesquilinear Hermitian non-singular pairings V × V → F on finite dimensional vector
fields V over the field R/(τ). The orthogonal sum of pairings, which we denote by ⊕, makes both
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T(R) and M(F) into commutative monoids. We may now see the Φi for i ≥ 1 as a family of monoid
homomorphisms T(R)→M(F) (abusing notation, let Φk(λ) denote both the concrete form induced
by λ, as well as the isometry type of that form).

The monoid M(F) enjoys some special properties, due to condition (3.5) (see [Bo59, §4], where
(3.5) is called Condition (T)). Firstly, M(F) is cancellative, i.e. [λ]+[µ1] = [λ]+[µ2]⇒ [µ1] = [µ2] for
all [λ], [µ1], [µ2] ∈M(F) (this is the sesquilinear version of Witt’s cancellation theorem). Secondly,
metabolic forms are fully characterized by their dimension, and so every metabolic form is a multiple
of the isometry class H ∈M(F) of the hyperbolic plane, which is the pairing on F2 sending (e1, e1),
(e2, e2) to 0 and (e1, e2), (e2, e1) to 1.

The following lemma forms the core of the proof of Proposition 3.3.

Lemma 3.11. Let R be a DVR with involution satisfying (3.4) and (3.5), and let A be a finitely
generated R-torsion module with a sesquilinear Hermitian non-singular pairing λ. Let G ⊂ A be
a submodule such that G ⊂ G⊥, and let λ′ be the pairing induced on G⊥/G by λ. Then there are
T1, T2, . . . ∈M(F) and h1, h2, . . . ∈ N such that T1 is trivial and for all n ≥ 1, we have hn ≥ hn+2

and

Tn ⊕ hn ·H ⊕
∞⊕
i=0

Φn+2i(λ
′) = hn+1 ·H ⊕

∞⊕
i=0

Φn+2i(λ).

Proof. Throughout this proof, let us write λ ≥M λ′ if Tn and hn as above exist. It is straightforward
to check that the relation ≥M on M(F) is transitive.

Now, λ ≥M λ′ holds for trivial G. The main part of the proof is to show the statement for
ordG

.
= τ . Having established that, let ordG

.
= τ j with j ≥ 2, and proceed by induction over

j as follows. Pick g ∈ G with νg = 1. Let µ be the pairing induced on 〈g〉⊥/〈g〉 by λ. Note
that the pairing induced on (G/〈g〉)⊥/(G/〈g〉) by µ is isometric to λ′. Since ord〈g〉 = τ and
ordG/〈g〉 = τ j−1, we may apply the induction hypothesis twice, and get λ ≥M µ ≥M λ′.

So let us now deal with the case that ordG
.
= τ , i.e. G = 〈g〉 with g ∈ Φ1(A) \ {0}. Let g̃ ∈ A

have maximal νg̃ =: k such that g = τk−1g̃. We will distinguish two cases, depending on whether

(3.6) νλ(g̃, g̃) = k

holds. If it does, set B = 〈g̃〉. Otherwise, we have νλ(g̃, g̃) < k and pick b ∈ A as in Lemma 3.10(vi),
i.e.

(3.7) νb = νλ(g̃, b) = νλ(b, b) = k

and set B = 〈g̃, b〉 ⊆ A. Let us check that B ∩ B⊥ = {0}. In case (3.6) holds, this is true
by Lemma 3.10 (i). If (3.6) does not hold, let a ∈ B ∩ B⊥ be given. Since a ∈ B, we have
a = rτ `g̃ + sτmb for some units r, s ∈ R and `,m ≥ 0. We want to show a = 0. For that, it is
sufficient that ` ≥ k and m ≥ k, since both g̃ and b are annihilated by τk. We have λ(a, b) = 0,
since a ∈ B⊥ and b ∈ B, and thus

rτ `λ(g̃, b) + sτmλ(b, b) = 0.

If both summands are zero, then ` ≥ k and m ≥ k using (3.7), and so we are done. Otherwise, the
two summands must have the same ν, and so k− ` = k−m, implying that ` = m. Now λ(a, g̃) = 0
implies that

rτ `λ(g̃, g̃) + sτmλ(b, g̃) = 0.

If the second summand is zero, then ` ≥ k, and we are done. Otherwise, the two summands must
have the same ν, i.e. νλ(g̃, g̃)− ` = k − `, implying νλ(g̃, g̃) = k contradicting the assumption that
(3.6) does not hold. We have thus shown B ∩B⊥ = {0}.

By Lemma 3.10 (i), it follows that A is isometric to B⊕B⊥. Since 〈g〉 ⊂ B, we have B⊥ ⊂ 〈g〉⊥.
Thus 〈g〉⊥/〈g〉 is isometric to C ⊕ B⊥ where C = (B ∩ 〈g〉⊥)/〈g〉 with the pairing induced by λ.
Hence it suffices to show λ|B×B ≥M λ|C×C .
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If (3.6) holds, then B is cyclically generated by g̃ with νg̃ = k, where k ≥ 2 follows. So,
Φn(B) is trivial for n 6= k, and Φk(λB×B) is isometric to the pairing on F sending (e1, e1) 7→
τkλ(g̃, g̃) ∈ R/(τ) = F. Observe that C is also cyclic, generated by a = [τ g̃], with νa = k − 2 and
λ(a, a) = τ2λ(g̃, g̃). So Φn(C) is trivial for all n ≥ k− 2; and Φk−2(λC×C) = Φk(λB×B) if k > 2 (if
k = 2, then C is trivial). To demonstrate λ|B×B ≥M λ|C×C , one may take hn = 0 for all n, Tn = 0
for all n 6= k, and Tk = Φk(λB×B).

If (3.6) does not hold, recall that B = 〈g̃, b〉. So Φn(B) is trivial for n 6= k and Φk(B) is
two-dimensional, with basis [g̃], [b]. The pairing Φk(λB×B) is metabolic, since ([g̃], [g̃]) is sent to
0. So Φk(λB×B) = H. One calculates that 〈g〉⊥ ∩ B = 〈g̃, τb〉, so Φn(C) is trivial for n ≥ k − 1;
and Φk−1(λC×C) = H if k > 1 (if k = 1, then C is trivial). To demonstrate λ|B×B ≥M λ|C×C , one
may take Tn = 0 for all n, hn = 1 if n ≤ k and n ≡ k (mod 2), and hn = 0 otherwise. �

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. If eπix is not the root of the Alexander polynomial of any knot, then σx is
a topological concordance invariant. For such x, the stated inequalities thus simply read 0 ≥ 0 ≥ 0.

So from now on, we may assume that eπix is the root of some Alexander polynomial. In fact, it
will be sufficient to assume eπix 6∈ R (equivalently, that x 6∈ Z). Let ζ(t) = t−1 − 2 cosx+ t. Since
R[t±1]/(ζ) is isomorphic to C (via the isomorphism sending t to eπix), it follows that (ζ) ⊂ R[t±1]
is a maximal ideal. Consider the localization R[t±1](ζ) of R[t±1]. Note that R[t±1](ζ) is a DVR
satisfying conditions (3.4) and (3.5).

Since R[t±1]/(ζ) is isomorphic to C, M(R[t±1]/(ζ)) is isomorphic to the monoid N2 via the
signature. Indeed, send [µ] ∈M(R[t±1]/(ζ)) to (µ1, µ−1) ∈ N2, where µ1 and µ−1 are the dimensions
of maximal subspaces on which µ is positive definite and negative definite, respectively. Let us
write σ(µ) = µ1 − µ−1.

For a knot L, let us abbreviate Ψi(L) := Φi(Bl
R[t±1](ζ)
L ). Denote the difference between the

signature and the averaged signature at eπix by dx(L):

dx(L) = σx(L)− 1
2 lim
ε→0

σx+ε(L) + σx−ε(L).

Note that dx(J)− dx(K) = σx(J)− σx(K), since σx±ε(J) = σx±ε(K) for almost all ε. One may
read degx(L), ηx(L), and dx(L) from Ψi(L) (see [Lev89], where the first and second equations are
implicit, and the third equation is given in Theorem 2.3):

degx(L) =

∞∑
i=1

i · dim Ψi(L), ηx(L) =

∞∑
i=1

dim Ψi(L), dx(L) = −
∞∑
i=1

σ(Ψ2i(L)).

For the two knots J,K with [J ] ≥S [K], Proposition A.1 yields a submodule G̃ ⊂ H1(XJ ;R[t±1](ζ))

such that the pairing induced on G̃⊥/G̃ by Bl
R[t±1](ζ)
J is isometric to Bl

R[t±1](ζ)
K . By Lemma 3.11, this

implies that for all n ≥ 1, there are Tn ∈M(F) and hn ∈ N such that T1 is trivial and hn ≥ hn+2,
and

Tn ⊕ hn ·H ⊕
∞⊕
i=0

Ψn+2i(K) = hn+1 ·H ⊕
∞⊕
i=0

Ψn+2i(J).

This implies for all n ≥ 1

Tn ⊕ Tn+1 ⊕ (hn − hn+2) ·H ⊕
∞⊕
i=0

Ψn+i(K) =

∞⊕
i=0

Ψn+i(J).
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It follows that

|σx(J)− σx(K)| = |dx(J)− dx(K)| =
∣∣∣ ∞∑
i=1

σ(Ψ2i(J))− σ(Ψ2i(K))
∣∣∣ = |σ(T2)|

≤ dim(T2) ≤ dim(T2 + (h1 − h3) ·H) =

∞∑
i=1

dim Ψi(J)− dim Ψi(K) = ηx(J)− ηx(K)

and
∞⊕
n=2

(
Tn ⊕ Tn+1 ⊕ (hn − hn+2) ·H ⊕

∞⊕
i=0

Ψn+i(K)
)

=

∞⊕
n=2

∞⊕
i=0

Ψn+i(J)

⇒ (h2 + h3) ·H ⊕ T2 ⊕
∞⊕
i=3

2Ti ⊕
∞⊕
i=1

(i− 1)Ψi(K) =

∞⊕
i=1

(i− 1)Ψi(J)

⇒
∞∑
i=1

(i− 1) dim Ψi(K) ≤
∞∑
i=1

(i− 1) dim Ψi(J)

⇒ ηx(J)− ηx(K) ≤ degx(J)− degx(K). �

4. Injections and surjections of twisted Alexander modules

We provide an obstruction for the homotopy ribbon concordance in terms of twisted Alexander
modules, which generalizes the results in [FP19] on the classical Alexander module.

Let J and K be oriented knots in S3 with J ≥top K, and let C be a homotopy ribbon concordance
from J to K. As in the proof of Theorem 1.1, we denote the complement of an open tubular
neighborhood of C in S3 × [0, 1] by XC , and set πC = π1(XC). We think of XJ and XK naturally
as subspaces of ∂XC . We write ιJ : πJ → πC and ιK : πK → πC for the induced epimorphism and
the induced monomorphism respectively. Let φC : πC → Z be the abelianization map satisfying
φJ = φC ◦ ιJ and φK = φC ◦ ιK .

From here on out, let R be a Noetherian UFD with (possibly trivial) involution · : R→ R, and
Q(R) is its quotient field.

4.1. Surjections of twisted Alexander modules. First we prove the following proposition,
which generalizes [FP19, Proposition 3.1].

Proposition 4.1. Let C be a homotopy ribbon concordance from J to K and α : πC → GL(n,R)
a representation. Then the induced homomorphism

Hα◦ιJ⊗φJ
1 (XJ ;R[t±1]n)→ Hα⊗φC

1 (XC ;R[t±1]n)

is surjective.

Proof. Consider the long exact sequence of pairs, and apply Lemma 4.3. �

The proof is parallel to the second proof of [FP19, Proposition 3.1]. We need the following
lemma.

Lemma 4.2. For a homotopy ribbon concordance C from J to K, the following hold:

H0(XC , XJ ;ZπC) = H1(XC , XJ ;ZπC) = 0.

Proof. We consider the homology long exact sequence for (XC , XJ):

H1(XC ;ZπC)→ H1(XC , XJ ;ZπC)→
H0(XJ ;ZπC)→ H0(XC ;ZπC)→ H0(XC , XJ ;ZπC)→ 0.

Since ιJ is surjective, the induced homomorphism H0(XJ ;ZπC)→ H0(XC ;ZπC) is an isomorphism.

Also, we have H1(XC ;ZπC) = H1(X̃C ;Z) = 0, which proves the lemma. �



HOMOTOPY RIBBON CONCORDANCE 15

Proposition 4.1 follows from the following lemma.

Lemma 4.3. For a homotopy ribbon concordance C from J to K and a representation α : πC →
GL(n,R), the following holds:

H
α⊗(±φC)
1 (XC , XJ ;R[t±1]n) = 0.

Proof. We consider the universal coefficient spectral sequence for homology groups [Ro09, Theorem
10.90]:

E2
p,q = TorZπCp (Hq(XC , XJ ;ZπC), R[t±1]n)⇒ H

α⊗(±φC)
p+q (XC , XJ ;R[t±1]n),

where the Tor group on the left hand side uses α⊗ (±φC). It follows from Lemma 4.2 that

TorZπC1 (H0(XC , XJ ;ZπC), R[t±1]n) = H1(XC , XJ ;ZπC)⊗ZπC R[t±1]n = 0.

Thus all the terms on the line p+ q = 1 of E2 page of the spectral sequence vanish, and the desired
equation holds. �

4.2. Injections of twisted Alexander modules. Next we prove the following proposition, which
generalizes [FP19, Proposition 3.4].

Proposition 4.4. Let C be a homotopy ribbon concordance from J to K and let α : πC → GL(n,R)
be a representation. If ∆α◦ιJ

J 6= 0, then the induced homomorphism

Hα◦ιK⊗φK
1 (XK ;R[t±1]n)→ Hα⊗φC

1 (XC ;R[t±1]n)

is injective.

We collect ingredients of the proof as the following three lemmas. The proof of the first one is
straightforward.

Lemma 4.5. For a homotopy ribbon concordance C from J to K and a representation α : πC →
GL(n,R), the following hold:

H
α⊗(±φC)
0 (XC , XJ ;R[t±1]n) = H

α⊗(±φJ )
0 (XC , XK ;R[t±1]n) = 0.

For a representation α : πC → GL(n,R), we write α† : πC → GL(n,R) for its dual given by

α(γ) = α(γ−1)
T

for γ ∈ πC , where α(γ−1) is the matrix obtained by replacing each entry a in the matrix α(γ−1)
by ā. Note that (α†)† = α.

Lemma 4.6.

(i) There exists a convergent spectral sequence

Ep,q2 = ExtR[t±1]
q (Hα⊗φC

p (XC , XK ;R[t±1]n), R[t±1])⇒ H
α†⊗(−φC)
4−p−q (XC , XJ ;R[t±1]n).

(ii) There exists a convergent spectral sequence

Ep,q2 = ExtR[t±1]
q (Hα†⊗(−φC)

p (XC , XJ ;R[t±1]n), R[t±1])⇒ Hα⊗φC
4−p−q(XC , XK ;R[t±1]n).

Proof. Since the proof of (i) is similar to that of (ii), we only prove (ii). By Poincaré-Lefschetz
duality we have an isomorphism

Hα⊗φC
4−i (XC , XK ;R[t±1]n) ∼= Hi

α⊗φC (XC , XJ ;R[t±1]n)

(See for instance [FNOP19, Theorem A.15] for the case of twisted coefficients.) Also, we have an
isomorphism

HomZπC (C∗(X̃C , X̃J), R[t±1]n) ∼= HomR[t±1](C∗(X̃C , X̃J)⊗ZπC R[t±1]n, R[t±1]),
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where the tensor product on the right hand side uses α† ⊗ (−φC), given by

f 7→
(
(c⊗ v) 7→ f(c)T v̄

)
for f ∈ HomZπC (C∗(X̃C , X̃J), R[t±1]n), c ∈ C∗(X̃C , X̃J) and v ∈ R[t±1]n. Now the lemma follows
from the universal coefficient spectral sequence for cohomology groups [Lev77, Theorem 2.3]. �

Lemma 4.7. Let C be a homotopy ribbon concordance from J to K and let α : πC → GL(n,R) be
a representation. If ∆α◦ιJ

J 6= 0, then the following hold:

(i) Hα⊗φC
1 (XC , XK ;R[t±1]n) is a torsion module.

(ii) H
α†⊗(−φC)
2 (XC , XJ ;R[t±1]n) is a torsion module.

(iii) H
α†⊗(−φC)
3 (XC , XJ ;R[t±1]n) = 0.

Proof. We first prove (i). We consider the homology long exact sequence for (XC , XK):

Hα⊗φC
1 (XC ;R[t±1]n)→ Hα⊗φC

1 (XC , XK ;R[t±1]n)→ Hα◦ιK⊗φK
0 (XK ;R[t±1]n).

It is easy to check that Hα◦ιK⊗φK
0 (XK ;R[t±1]n) is a torsion module. Since ∆α◦ιJ

J 6= 0, the module

Hα◦ιJ⊗φJ
1 (XJ ;R[t±1]n) is torsion, and it follows from Proposition 4.1 that Hα⊗φC

1 (XC ;R[t±1]n) is
also a torsion module. Therefore (i) follows.

Next we prove (iii). It follows from Lemma 4.5 and (i) that

Ext
R[t±1]
1 (Hα⊗φC

0 (XC , XK ;R[t±1]n), R[t±1]) = 0,

HomR[t±1](H
α⊗φC
1 (XC , XK ;R[t±1]n), R[t±1]) = 0.

Thus all the terms on the line p+ q = 1 of E2 page of the spectral sequence of Lemma 4.6 (i) vanish.
Therefore (iii) follows.

Finally we prove (ii). Let (X,Y ) be a finite CW-pair homotopy equivalent to (XC , XJ ), and we
identify π1(X) with πC . By (iii) and Lemmas 4.3 and 4.5, we have

rankR[t±1]H
α†⊗(−φC)
2 (XC , XJ ;R[t±1]n)

=

3∑
i=0

(−1)i rankR[t±1]H
α†⊗(−φC)
i (XC , XJ ;R[t±1]n)

=

3∑
i=0

(−1)i rankR[t±1]H
α†⊗(−φC)
i (X,Y ;R[t±1]n)

=

3∑
i=0

(−1)i rankR[t±1] Ci(X̃, Ỹ )⊗ZπC R[t±1]n

=n

3∑
i=0

(−1)i rankZ Ci(X,Y )

=nχ(X,Y ) = nχ(XC , XJ) = n (χ(XC)− χ(XJ)) = 0,

where we consider the cellular chain complexes C∗(X,Y ) and C∗(X̃, Ỹ ). Therefore (ii) follows,
which completes the proof. �

We are now in a position to prove Proposition 4.4.
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Proof of Proposition 4.4. It follows from Lemmas 4.3, 4.5 and 4.7(ii) that

Ext
R[t±1]
2 (H

α†⊗(−φC)
0 (XC , XJ ;R[t±1]), R[t±1]n) = 0,

Ext
R[t±1]
1 (H

α†⊗(−φC)
1 (XC , XJ ;R[t±1]), R[t±1]n) = 0,

HomR[t±1](H
α†⊗(−φC)
2 (XC , XJ ;R[t±1]), R[t±1]n) = 0.

Thus all the terms on the line p+ q = 2 of E2 page of the spectral sequence of Lemma 4.6(ii) vanish.

Therefore Hα⊗φC
2 (XC , XK ;R[t±1]n) = 0, and the proposition follows. �

Remark 4.8. In the proofs of Propositions 4.1 and 4.4 we did not use the injectivity of ιK .

4.3. Divisibility of twisted Alexander polynomials. Now Theorem 1.3 is a corollary of Propo-
sitions 4.1 and 4.4. For the readers’ convenience we recall the statement.

Theorem 1.3. For a homotopy ribbon concordance C from J to K and a representation α : πC →
GL(n,R), the following holds:

∆α◦ιK
K | ∆α◦ιJ

J .

Proof. We may suppose that ∆α◦ιJ
J 6= 0, since g | 0 for every g ∈ R[t±1], so if ∆α◦ιJ

J = 0 then

the theorem trivially holds. Let ∆α
C(t) be the order of Hα⊗φC

1 (XC ;R[t±1]n). Since orders are
multiplicative for a short exact sequence of finitely generated R[t±1]-modules, it follows from
Propositions 4.1 and 4.4 that

∆α
C | ∆α◦ιJ

J and ∆α◦ιK
K | ∆α

C ,

which proves the theorem. �

Remark 4.9. In order to use the results of this section as a homotopy ribbon concordance obstruction,
one needs to find a representation α : π1(XC)→ GL(n,R) for a putative concordance C, by defining
representations π1(XK) → GL(n,R) and π1(XJ) → GL(n,R) that extend over any homotopy
concordance exterior. Of course, we can use representations that extend over any topological
concordance exterior: while abelian representations recover the classical obstructions [FP19], we
will illustrate the use of metabelian representations in Section 7, making use of the assumption
that the Alexander modules of K and J coincide.

5. A satellite construction

We describe a satellite construction of knots, which produce an example of an infinite family of
knots as in Theorem 1.2.

5.1. Satellite knots. Let J and K be oriented knots in S3, and let A be a simple closed curve in
XK unknotted in S3. We think of K also as a simple closed curve in XA. Let φ : ∂XA → ∂XJ be
a diffeomorphism sending a longitude of A to a meridian of J , and a meridian of A to a longitude
of J . We identify XA ∪φ XJ with S3, and denote the image of K by S = S(K,J,A). The knot S
inherits an orientation from K. We call S the satellite knot with companion J , orbit K and axis A.
In other words, S is the satellite knot of J with pattern K in the solid torus XA.

Let νA be an open tubular neighborhood of A in XK . The abelianization map πJ → Z gives rise
to a degree one map XJ → νA that is a diffeomorphism on the boundary. It defines a map

XS = (XK \ νA) ∪φ XJ → (XK \ νA) ∪φ νA = XK .

Let ρS : πS → πK be the induced epimorphism. Note that A determines an element [A] ∈ πK up
to conjugation.

For a nonnegative integer m, we write π
(m)
K for the m-th derived subgroup of πK , defined

inductively by

π
(0)
K = πK and π

(m+1)
K = [π

(m)
K , π

(m)
K ].

The following lemma was proved in [Coc04, Theorem 8.1].
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Lemma 5.1. Let S = S(K,J,A) be the satellite knot with companion J , orbit K and axis A. If

[A] ∈ π(m)
K , then ρS induces an isomorphism

πS/π
(m+1)
S → πK/π

(m+1)
K .

The following lemmas are immediate consequences of the construction. We record them for use
in the proof of Theorem 1.2.

Lemma 5.2. Let V be a Seifert form of K associated to a Seifert surface F , and let S = S(K,J,A)
be the satellite knot with companion J , orbit K and axis A. If A is disjoint from F , then S has a
Seifert form isomorphic to V .

Proof. Since A is disjoint from F , we have the image F ′ of F by the inclusion map XA → XS . We
see at once that F ′ is a Seifert surface of S, and its Seifert form is isomorphic to V , which proves
the lemma. �

Lemma 5.3. Let S = S(K,J,A) be the satellite knot with companion J , orbit K and axis A.

(i) If J is a ribbon knot, then S is ribbon concordant to K.
(ii) If J is a homotopy ribbon knot, then S is homotopy ribbon concordant to K.

Proof. First we prove (i). A ribbon concordance from J to the unknot can be encoded as a sequence
of n saddle moves from J to the unlink with n+1 components. If A bounds a disc in S3 intersecting
K in w points, then one may find a sequence of wn saddle moves from S to the disjoint union
of K with a wn-component unlink. To find them, for each saddle move on J , perform w parallel
copies of it on S. This converts S to a disjoint union of K and a wn-component unlink. Cap off
the unlink with wn discs to complete the construction of a ribbon concordance from S to K. This
completes the proof of (i).

Now we prove (ii). Since J is a homotopy ribbon knot, J is homotopy ribbon concordant
to the unknot U , via a homotopy ribbon concordance C. So the exterior XC has boundary
XJ ∪ S1 × S1 × I ∪ −XU . Recall that XS(K,J,A) = XK∪A ∪∂νA XJ and that, trivially, XK =
XK∪A ∪∂νA XU . Glue to form:

Y := XK∪A × I ∪∂νA×I XC

along the S1 × S1 × I part of the boundary of XC . Note that ∂Y = XS ∪ −XK and Y is a
Z–homology cobordism with π1(Y ) normally generated by a meridian of K or of S. Therefore
Y ∪S1×D2× I is an 4-dimensional h-cobordism from S3 to itself. The 5-dimensional h-cobordism
theorem [FQ90, Theorem 7.1A] may be applied to deduce that Y ∪ S1 ×D2 × I ∼= S3 × I, and
therefore Y is a concordance exterior. The image of S1 × 0× I under this homeomorphism gives
rise to a concordance from S(K,J,A) to K. The fact that XC is a homotopy ribbon concordance
exterior easily implies that Y is too. This completes the proof of (ii) and of the lemma. �

5.2. A formula for twisted Alexander polynomials. The following proposition is proved by
reinterpreting twisted Alexander polynomials as Reidemeister torsion (see [KL99, Ki96]) and using
a surgery formula for Reidemeister torsion. For a proof of a more general statement we refer the
reader to [CF10, Lemma 7.1].

Proposition 5.4. Let S = S(K,J,A) be the satellite knot with companion J , orbit K and axis A,
and let α : πK → GL(n,Z) be a representation. Suppose that A is null-homologous in XK . Then
the following holds:

(5.1) ∆α◦ρS
S (t)

.
= ∆α

K(t)

n∏
i=1

∆J(zi),

where z1, . . . , zn are the eigenvalues of α([A]).
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Recall that the resultant of two polynomials

f(t) = c

m∏
i=1

(t− αi) , g(t) = d

n∏
j=1

(t− βj)

in C[t], where c, d, α1, . . . , αm, β1, . . . , βn ∈ C, is given by

Res(f, g) = cndm
∏

1≤i≤m, 1≤j≤n

(αi − βj) .

Remark 5.5. In Proposition 5.4, taking a representative ∆J ∈ Z[t], we can rewrite (5.1) as

∆α◦ρS
S (t)

.
=

1

cn
Res(∆J , fα([A]))∆

α
K(t),

where c is the leading coefficient of ∆J(t) and fα([A])(t) is the characteristic polynomial of α([A]).

6. Metabelian Alexander polynomials

We introduce twisted Alexander polynomials associated to certain metabelian representations,
which are useful for applications of Theorem 1.3. An important property of these invariants is
that they are always non-zero. (See [HKL10] for a similar construction of twisted Alexander
polynomials.)

6.1. Metabelian representations. Let K be an oriented knot in S3 and let r be a positive integer.
Let XK,r and XK,∞ be the r-fold cyclic cover and the infinite cyclic cover of XK respectively,
and let ΣK,r be the r-fold cyclic branched cover of S3 along K. We set HK = H1(XK,∞;Z).
The abelianization map φK : πK → Z defines an action of Z on XK,∞, and we write t for the
automorphism on HK corresponding to 1 ∈ Z. Then HK has the structure of a Z[t±1]-module.

Let p be a prime, and let Fp be the field of order p. We identify

πK/π
(2)
K = π

(1)
K /π

(2)
K o πK/π

(1)
K = HK o Z.

We set Γr,pK to be the quotient group

Γr,pK :=
(
HK ⊗Z[t±1] Fp[t±1]/(tr − 1)

)
o Z/rZ,

and we write

αr,pK : πK/π
(2)
K → GL(|Γr,pK |,Z)

for the composition of the quotient map and the regular representation Γr,pK → GL(|Γr,pK |,Z), fixing
a basis of the free abelian group ZΓr,pK . We define a representation

αr,pK : πK → GL(|Γr,pK |,Z)

to be the pullback of αr,pK to πK , and set

∆r,p
K (t) = ∆

αr,pK
K (t) ∈ Z[t±1].

Since it is invariant under conjugation of αr,pK as in Remark 2.1 (2), it does not depend on the
choice of a basis of ZΓr,pK .

It is straightforward to see that the composition XK,∞ → ΣK,r of the projection XK,∞ → XK,r

and the inclusion map XK,r → ΣK,r induces an isomorphism

HK ⊗Z[t±1] Fp[t±1]/(tr − 1) ∼= H1(ΣK,r;Fp).

Note that αr,pK |KerφK factors through this p-group.
The following theorem is proved in [Liv02, Theorem 1.2]. This shows that if ∆K 6= 1, then there

exist some r and p such that αr,pK |KerφK is nontrivial.

Theorem 6.1. The 3-manifold ΣK,r is a homology 3-sphere for every r if and only if ∆K(t) = 1.
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Remark 6.2. Livingston [Liv02, Theorem 1.2] also showed that ΣK,r is a homology 3-sphere for
every prime power r if and only if every nontrivial irreducible factor of ∆K(t) is a cyclotomic
polynomial Φn(t) for some n divisible by three distinct primes.

The following lemma will be useful in Section 7.

Lemma 6.3. Let J and K be oriented knots in S3 with an isomorphism ψ : πJ/π
(2)
J → πK/π

(2)
K .

Then for any positive integer r and any prime number p,

∆
ψ∗αr,pK
J (t)

.
= ∆r,p

J (t),

where ψ∗αr,pK is the composition

ψ∗αr,pK : πJ → πJ/π
(2)
J

ψ−→ πK/π
(2)
K

αr,pK−−−→ GL(|Γr,pK |,Z).

Proof. The groups Γr,pJ and Γr,pK are quotients of πJ/π
(2)
J and πK/π

(2)
K respectively, and ψ induces an

isomorphism Γr,pJ → Γr,pK . Since the actions of πJ/π
(2)
J on Γr,pJ and πK/π

(2)
K on Γr,pK are compatible

with ψ and the induced isomorphism, αr,pK ◦ ψ and αr,pJ are conjugate, and so are ψ∗αr,pK and αr,pJ .
Therefore the lemma follows from Remark 2.1 (2). �

6.2. Non-vanishing of metabelian Alexander polynomials. The following theorem is signif-
icant in applying Theorem 1.3.

Theorem 6.4. For any positive integer r and any prime number p, ∆r,p
K 6= 0.

For the proof we need the following theorem by the first and fifth authors [FP12, Theorem 3.1].

Theorem 6.5. Let π be a group, p a prime and f : M → N a morphism of projective right
Zπ-modules such that the homomorphism

M ⊗Zπ Fp → N ⊗Zπ Fp
induced by f is injective. Let φ : π → H be an epimorphism onto a torsion-free abelian group and
let α : π → GL(n,Q) be a representation over a field Q of characteristic 0. If α|Kerφ factors through
a p-group, then the homomorphism

M ⊗Zπ Q(H)n → N ⊗Zπ Q(H)n

induced by f is also injective, where Q(H) is the quotient field of the group ring of H over Q.

Remark 6.6. The original result [FP12, Theorem 3.1] concerns projective left Zπ-modules. But we
can think of them also as right Zπ-modules, using the involution of Zπ reversing elements of π,
and the results of tensor products from the left are naturally identified with those from the right.
Thus we adapt the statement to the case of projective right Zπ-modules.

Proof of Theorem 6.4. The proof is similar to that of [FP12, Proposition 4.1].
Let µ be a meridian in XK . Since the induced homomorphism H∗(µ;Fp) → H∗(XK ;Fp) is

an isomorphism, we have H∗(XK , µ;Fp) = 0. We first prove that H
αr,pK ⊗φK
∗ (XK , µ;Q(t)n) = 0,

following a standard argument of chain homotopy lifting (see for instance [COT03, Proposition
2.10]).

We pick a CW complex structure of XK containing µ as a subcomplex, and set C∗ and C̃∗ to be

the cellular chain complexes C∗(XK , µ)⊗Z Fp and C∗(X̃K , µ̃) respectively, where µ̃ is the pullback

of µ in the universal cover X̃K of XK . Let hi : Ci → Ci+1 be a chain contraction for C∗, so that

∂hi+hi−1∂ is the identity map on Ci. Since the natural map C̃∗ → C∗ is surjective and all modules

in C∗ and C̃∗ are free, there exists a lift h̃i : C̃i → C̃i+1 of hi for each i. We write fi : C̃i → C̃i for

the chain map ∂h̃i + h̃i−1∂.
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Since the chain map Ci → Ci induced by fi is the identity map and αr,pK |KerφK factors through
the p-group

HK ⊗Z[t±1] Fp[t±1]/(tr − 1),

it follows from Theorem 6.5 that the chain map

C̃i ⊗ZπK Q(t)n → C̃i ⊗ZπK Q(t)n

induced by fi is injective, and is therefore an isomorphism. Thus h̃i induces a chain homotopy

between the zero map and the chain isomorphism. Therefore H
αr,pK ⊗φK
∗ (XK , µ;Q(t)n) = 0.

By a direct computation we have H
(αr,pK ⊗φK)◦ι
∗ (µ;Q(t)n) = 0, where ι : π1(µ) → πK is the

induced homomorphism. Now it follows from the homology long exact sequence for (XK , µ) that

H
αr,p⊗φK
∗ (XK ;Q(t)n) = 0. Hence H

αr,p⊗φK
1 (XK ;Z[t±1]n) is a torsion module, which completes

the proof. �

7. Proof of Theorem 1.2

Now we prove Theorem 1.2. For the readers’ convenience we recall the statement.

Theorem 1.2. Let K be an oriented knot in S3 with nontrivial Alexander polynomial ∆K , and
let V be a Seifert form of K. Then there exists an infinite family {Ki}∞i=1 of oriented knots in S3

satisfying the following.

(i) For every i, Ki has a Seifert form isomorphic to V .
(ii) For every i, Ki is ribbon concordant to K.
(iii) For every i 6= j, Ki is not homotopy ribbon concordant to Kj.

Proof. Let K be an oriented knot in S3 with ∆K(t) 6= 1, and let V be the Seifert form associated
with a Seifert surface F . Since ∆K(t) 6= 1, it follows from Theorem 6.1 that there exists a positive
integer r such that ΣK,r is not a homology 3-sphere. Let p be a prime factor of |H1(ΣK,r;Z)|
and let A be a simple closed curve in XK unknotted in S3, disjoint from F and determining
[A] ∈ KerφK with nontrivial αr,pK ([A]).

Use the satellite construction in Section 5.1 to define a family of oriented knots Kq in S3 for
primes q 6= p by

Kq = S = S(K,T (p, q)]− T (p, q), A),

where T (p, q) is the (p, q)-torus knot. In the following we show that the family {Kq}q 6=p of knots
satisfies the conditions (i), (ii) and (iii) as in the statement.

Since A is disjoint from F , it follows from Lemma 5.2 that for every q, Kq has a Seifert form
isomorphic to V . Also, since T (p, q)]− T (p, q) is a ribbon knot, it follows from Lemma 5.3 that
for every q, Kq is ribbon concordant to K. It remains to prove that for all primes q, q′ 6= p, if
Kq ≥top Kq′ then q = q′.

First we compute ∆r,p
Kq

(t) for a prime q 6= p. Since A is null-homologous, it follows from

Lemma 5.1 that ρS : πKq → πK induces an isomorphism ρS : πKq/π
(2)
Kq
→ πK/π

(2)
K . By Lemma 6.3

we have

(7.1) ∆r,p
Kq

.
= ∆

ρ∗Sα
r,p
K

Kq

.
= ∆

αr,pK ◦ρS
Kq

.

It follows from Proposition 5.4 and Remark 5.5 that

(7.2) ∆
αr,pK ◦ρS
Kq

.
= Res(∆T (p,q)]−T (p,q), fαr,pK ([A]))∆

r,p
K .

Here we have

(7.3) ∆T (p,q)]−T (p,q)(t)
.
= ∆T (p,q)(t)∆−T (p,q)(t)

.
= ∆T (p,q)(t)

2,
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(7.4) ∆T (p,q)(t)
.
= Φpq(t) =

(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
,

where Φn(t) denotes the n-th cyclotomic polynomial, defined as

Φn(t) =
∏

1≤k≤n, (k,n)=1

(
t− e 2iπk

n

)
.

Using (7.1), (7.2), (7.3) and (7.4), conclude that

(7.5) ∆r,p
Kq

.
= Res(Φ2

pq, fαr,pK ([A]))∆
r,p
K

.
= Res(fαr,pK ([A]),Φpq)

2∆r,p
K .

Now we show that Res(Φ2
pq, fαr,pK ([A]))

2 = qmq for a positive integer mq > 0. Note that αr,pK ([A])

is a nontrivial permutation matrix, and since αr,pK |KerφK factors through the p–group

HK ⊗Z[t±1] Fp[t±1]/(tr − 1),

the order of αr,pK ([A]) is a nontrivial p–power. Hence fαr,pK ([A]) is a product of tp
k − 1 =

∏k
i=1 Φpi for

some positive integers k. Thus Res(fαr,pK ([A]),Φpq) is a nontrivial q–power, since Res(Φp,Φpq) = q

and Res(Φpi ,Φpq) = 1 for i > 1, which follows from the following theorem: for positive integers m
and n with m < n,

Res(Φm,Φn) =

{
qφ(m) if m | n and n

m is a power of a prime q,

1 otherwise,

where φ(n) is Euler’s totient function [A70, D40, Leh30], which is equal to deg Φn. We conclude
that (7.5) implies that there exists a positive integer mq such that

(7.6) ∆r,p
Kq

(t)
.
= qmq∆r,p

K (t).

Now for arbitrary primes q, q′ 6= p suppose that Kq ≥top Kq′ with a homotopy ribbon concor-
dance C. Since the Seifert forms of Kq and Kq′ are isometric, the Alexander polynomials ∆Kq and
∆Kq′ are equal. By Corollary 3.9, the Blanchfield pairings are isometric. This implies that the
submodule G in the statement of Theorem 1.1 is trivial. But G is the kernel of the inclusion induced
map j∗ : H1(XKq ;Z[t±1])→ H1(XC ;Z[t±1]), so j∗ is injective. Then Proposition 4.1, applied with
the abelianization representation α : πC → GL(1,Z) = Z (or [FP19, Proposition 3.1]), implies that
j∗ is surjective. On the other hand, the proof of Theorem 1.1 implies that the inclusion induced
monomorphism H1(XKq′ ;Z[t±1])→ H1(XC ;Z[t±1]) identifies H1(XKq′ ;Z[t±1]) with

j∗(G
⊥/G) = j∗(H1(XKq ;Z[t±1])) = H1(XC ;Z[t±1]).

Therefore, the inclusion induced maps

(7.7) H1(XKq ;Z[t±1])
∼=−→ H1(XC ;Z[t±1])

∼=←− H1(XKq′ ;Z[t±1]).

are isomorphisms. Now, for T ∈ {Kq,Kq′ , C}, we have a short exact sequence

1→ H1(XT ;Z[t±1]) ∼= π
(1)
T /π

(2)
T → πT /π

(2)
T → Z→ 0

that splits, so πT /π
(2)
T
∼= H1(XT ;Z[t±1]) o Z.

It follows that ιKq : πKq → πC and ιKq′ : πKq′ → πC induce isomorphisms ιKq : πKq/π
(2)
Kq
→

πC/π
(2)
C and ιKq′ : πKq′/π

(2)
Kq′
→ πC/π

(2)
C respectively. We write

αr,pC : πC → GL(|Γr,pKq |,Z)

for the pullback of αr,pKq ◦ ι
−1
Kq

to πC .

Note that αr,pC determines a representation αr,pC ◦ ιKq′ : πKq′ → GL(|Γr,pKq |,Z) by composition

with the inclusion map. The identification of Alexander modules in (7.7) induces an isomorphism
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Γr,pKq
∼=−→ Γr,pKq′ , under which we may compare αr,pC ◦ ιKq′ and αr,pKq′ . These representations of πKq′

may well differ, but the induced twisted Alexander polynomials agree up to units, by Lemma 6.3:

(7.8) ∆
αr,pC ◦ιKq′
Kq′

.
= ∆

(ι−1
Kq
◦ιK

q′
)∗αr,pKq

Kq′

.
= ∆r,p

Kq′
.

Now we have all the tools we require to complete the proof that Kq ≥top Kq′ implies q = q′. It
follows from Theorem 1.3 that

(7.9) ∆
αr,pC ◦ιKq′
Kq′

| ∆
αr,pC ◦ιKq
Kq

.
= ∆r,p

Kq
.

Combining (7.8) and (7.9), we obtain

∆r,p
Kq′
| ∆r,p

Kq
.

It then follows from (7.6) that

q′mq′∆r,p
K | qmq∆r,p

K .

Since mq,mq′ > 0, and since ∆r,p
K (t) 6= 0 by Theorem 6.4, we have q = q′.

Therefore, the family {Kq}q 6=p of knots satisfies all the conditions (i), (ii) and (iii), and the proof
of Theorem 1.2 is complete. �

Appendix A. Base changes for Blanchfield pairings

The goal of this appendix is to prove Propositions A.1 and A.2, which give a sufficient condition
on a Z[t±1]-algebra R for a Blanchfield pairing BlR to be definable in the same way as Bl is defined

over Z[t±1], such that the analogue of Theorem 1.1 holds for BlR. Of course, a twisted Blanchfield
pairing may be defined in a much more general situation than the one considered in this appendix
(see e.g. [P16]). The focus here is to choose R such that BlRK is determined by BlK , and [J ] ≥S [K]

implies the conclusion of Theorem 1.1 for BlRJ and BlRK .
Let us first establish some notation and definitions. Let Ξ ⊂ Z[t±1] be the multiplicative set

{p(t) ∈ Z[t±1] | |p(1)| = 1}. Let us call an element a of a Z[t±1]-module Ξ-torsion if q · a = 0 for
some q ∈ Ξ, and let us call a Z[t±1]-module Ξ-torsion if all of its elements are Ξ-torsion. Let us
call a Z[t±1]-module M Ξ-divisible if for all a ∈ M and q ∈ Ξ, there exists b ∈ M with q · b = a.
Examples of Ξ-divisible modules are given by Ξ−1Z[t±1] and Ξ−1Z[t±1]/Z[t±1].

An admissible Z[t±1]-algebra is defined to be a commutative unital Z[t±1]-algebra R with an
involution, which we also denote by · , satisfying p · r = p · r for all p ∈ Z[t±1], r ∈ R, such that R
has no (t− 1)-torsion and no Ξ-torsion. For a Z[t±1]-module M , we write Ξ−1M = M ⊗Ξ−1Z[t±1]
for the localization of M with respect to Ξ (in this appendix, all tensor products are understood to
be over Z[t±1]). Since Z[t±1] itself and R are Ξ-torsion free, we have natural inclusions of modules
(by sending 1 to 1)

Z[t±1] ⊂ Ξ−1Z[t±1] ⊂ Q(t), R ⊂ Ξ−1R ⊂ Q(R),

where we recall that Q(R) is the localization of R with respect to the multiplicative set of elements
of R that are not zero divisors. The homomorphisms ι : Z[t±1]→ R and Ξ−1Z[t±1]→ Ξ−1R (both
given by sending 1 to 1) induce a homomorphism ι′ : Ξ−1Z[t±1]/Z[t±1]→ Ξ−1R/R.

Proposition A.1. Let R be an admissible Z[t±1]-algebra and K a knot. The four maps

H1(XK ;R) H1(XK , ∂XK ;R) PD−1

H2(XK ;R) H1(XK ;Q/R) HomR(H1(XK ;R), Q(R)/R)
β−1

κ

defined analogously to (3.1) are isomorphisms, and their composition is the adjoint of a sesquilinear,
Hermitian and non-singular pairing

BlRK : H1(XK ;R)×H1(XK ;R)→ Q(R)/R.
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That pairing is determined by BlK , satisfying

BlRK(a⊗ r, b⊗ s) = r · s · ι′(BlK(a, b))

for all a, b ∈ H1(XK ;Z[t±1]) and r, s ∈ R (here, we use that BlK(a, b) ∈ Ξ−1Z[t±1] ⊂ Q(t)).

Proposition A.2. Let J and K be knots, and let G ⊂ H1(XJ ;Z[t±1]) be a submodule such that
the pairing on G⊥/G induced by BlJ is isometric to BlK .

(i) The pairing on (G⊥ ⊗R)/(G⊗R) induced by BlRJ is isometric to BlRK .
(ii) G⊥ ⊗R = (G⊗R)⊥R .

Note that in particular, if BlK is metabolic, then so is BlRK . Proposition A.1 might not come as
a surprise to the experts, but we thought it beneficial to include a detailed proof. This proof is
spread over two lemmas. The first lemma contains the proofs that the four maps in Proposition A.1
are isomorphisms, and shows that BlR may be defined equivalently with target modules either
Ξ−1R/R or Q(R)/R.

Lemma A.3. Let R be an admissible Z[t±1]-algebra and let K be a knot.

(i) The natural maps H1(XK ;Z[t±1]) ⊗ R → H1(XK ;R) and H1(XK , ∂XK ;Z[t±1]) ⊗ R →
H1(XK , ∂XK ;R) are isomorphisms.

(ii) H1(XK ;R) and H1(XK , ∂XK ;R) are Ξ-torsion modules (in particular, R-torsion modules),
and multiplication by (1− t) acts invertibly on them.

(iii) The inclusion induced homomorphism H1(XK ;R)→ H1(XK , ∂XK ;R) is an isomorphism.
(iv) For Ω = Q(R) or Ω = Ξ−1R, there exists a unique isomorphism

δ : H2(XK ;R)→ HomR(H1(XK ;R),Ω/R),

such that δ ◦ β = κ, where β : H1(XK ; Ω/R) → H2(XK ;R) is the Bockstein connect-
ing homomorphism, and κ : H1(XK ; Ω/R) → HomR(H1(XK ;R),Ω/R) is the Kronecker
evaluation.

(v) For Ω = Q(R), H1(XK ; Ω) is trivial, and δ = κ ◦ β−1.
(vi) The following diagram commutes.

H2(XK ;R) HomR(H1(XK ;R),Ξ−1R/R)

H2(XK ;R) H1(XK ;Q(R)/R) HomR(H1(XK ;R), Q(R)/R).

id

δ

β−1
κ

Here, the second vertical map is induced by the inclusion Ξ−1R/R→ Q(R)/R.

Proof. (i) The universal coefficient spectral sequence for homology groups [Ro09, Theorem 10.90]
yields a short exact sequence

0 H1(XK ;Z[t±1])⊗R H1(XK ;R) Tor
Z[t±1]
1 (H0(XK ;Z[t±1]), R) 0.

Since H0(XK ;Z[t±1]) ∼= Z[t±1]/(t − 1), the Tor-term above is isomorphic to the (t − 1)-torsion
submodule of R, which is trivial by assumption. So the map H1(XK ;Z[t±1])⊗ R → H1(XK ;R)
is an isomorphism. For homology rel. ∂XK , a similar but simpler argument can be made, since
H0(XK , ∂XK ;Z[t±1]) is trivial.

(ii) Consider ∆K ∈ Ξ. Note that ∆K annihilates H1(XK ;Z[t±1]), and so ∆K ·1R ∈ R annihilates
H1(XK ;R) by (i). The same argument works for homology rel. ∂XK .

The polynomial ∆K ∈ Ξ decomposes as ∆K = (1− t)q(t)± 1 for some q(t) ∈ Z[t±1]. Since ∆K

annihilates the modules in question, multiplication by 1− t is an isomorphism, with inverse given
by multiplication by ∓q(t).
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(iii) One computes H0(∂XK ;R) ∼= H1(∂XK ;R) ∼= R/(t − 1)R. It follows that the inclusion
induced map H1(∂XK ;R)→ H1(XK ;R) and the connecting homomorphism H1(XK , ∂XK ;R)→
H0(∂X;R) both vanish, since multiplication by (1− t) is an isomorphism of H1(XK , ∂XK ;R) and
of H1(XK ;R) by (i) and (ii).

(iv) Part of the Bockstein long exact sequence coming from 0→ R→ Ω→ Ω/R→ 0 is

H1(XK ;R) H1(XK ; Ω) H1(XK ; Ω/R) H2(XK ;R) H2(XK ; Ω).α β

We have that

H2(XK ; Ω) ∼= H1(XK , ∂XK ; Ω) ∼= H1(XK , ∂XK ;R)⊗ Ω

by Poincaré duality and flatness of Ω. The latter module is trivial, since H1(XK , ∂XK ;R) is
Ξ-torsion by (ii). It follows that β is surjective.

The Kronecker evaluation κ is part of the short exact sequence

0 Ext1R(H0(XK ;R),Ω/R) H1(XK ; Ω/R) HomR(H1(XK ;R),Ω/R) 0.
γ κ

Since β and κ are both surjective, to show existence and uniqueness of δ it suffices to show that
Kerβ = Kerκ. For this, consider the following commutative diagram.

Ext1R(H0(XK ;R),Ω) Ext1R(H0(XK ;R),Ω/R)

H1(XK ; Ω) H1(XK ; Ω/R).

γ

α

Note that Hom(H1(XK ;R),Ω) vanishes, since H1(XK ;R) is Ξ-torsion by (ii). So the left map
in the diagram is an isomorphism. Moreover, Ext2R(H0(XK ;R), R) is trivial, since H0(XK ;R) =
R/(1− t)R. So the top map in the diagram is surjective. It follows that

Kerκ = γ(Ext1R(H0(XK ;R),Ω/R)) = α(H1(XK ; Ω)) = Kerβ.

(v) As shown in (iv), H1(XK ;Q(R)) ∼= Ext1R(H0(XK ;R), Q(R)). Since H0(XK ;R) ∼= R/(1−t)R,
the Ext-term is isomorphic to Q(R)/((1− t)Q(R)), which is trivial since (1− t) is invertible in Q(R).
So β is an isomorphism, and δ = κ ◦ β−1.

(vi) This follows from naturality. �

The next lemma analyses the relationship between Bl and BlR.

Lemma A.4. The following diagram of Z[t±1]-modules commutes.

H1(XK ;Z[t±1]) H1(XK ;R)

H1(XK , ∂XK ;Z[t±1]) H1(XK , ∂XK ;R)

H2(XK ;Z[t±1]) H2(XK ;R)

HomZ[t±1](H1(XK ;Z[t±1]),Ξ−1Z[t±1]/Z[t±1]) HomR(H1(XK ;R),Ξ−1R/R)

Here, the vertical maps are the isomorphisms given by inclusion, inverse of Poincaré duality and δ,
respectively. The first three horizontal maps are induced by ι, and the fourth horizontal map is
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defined as composition of

HomZ[t±1](H1(XK ;Z[t±1]),Ξ−1Z[t±1]/Z[t±1]) HomZ[t±1](H1(XK ;Z[t±1]),Ξ−1R/R)
ι′∗ ∼=

HomZ[t±1](H1(XK ;Z[t±1]),HomR(R,Ξ−1R/R)) HomR(H1(XK ;Z[t±1])⊗R,Ξ−1R/R)
∼= ∼=

HomR(H1(XK ;R),Ξ−1R/R).

Proof. Commutativity of the diagram follows from the naturality of the maps (for the naturality of
Poincaré duality, see e.g. [FNOP19, Section A.3]). �

Proof of Proposition A.1. The first map is an isomorphism, as shown in Lemma A.3(iii). For the
second map, see [FNOP19, Section A.3]. The third and fourth map are discussed in Lemma A.3(iv)

and (v). That these maps are isomorphisms implies the non-singularity of BlRK , whereas the

sesquilinearity of BlRK is automatic. The formula relating BlK and BlRK follows from Lemma A.3(vi)

and Lemma A.4. This formula also implies that BlRK is Hermitian, since BlK is. �

For the proof of Proposition A.2, we need several lemmas. Much of the required homological
algebra machinery was developed by Levine. In particular, we will need the following statement.

Lemma A.5 ([Lev77]). If M is a finitely generated Z-torsion free Z[t±1]-module on which multi-
plication with 1− t is an automorphism, then M is of homological dimension 1, i.e. there is a short
exact sequence

0 Z[t±1]n Z[t±1]m M 0.

for some n,m ∈ N. �

Lemma A.6. For every Z[t±1]-module M , HomZ[t±1](M,Ξ−1Z[t±1]/Z[t±1]) is Z-torsion free.

Proof. Let a homomorphism α : M → Ξ−1Z[t±1]/Z[t±1] be given such that mα = 0 for some
non-zero m ∈ Z. Let a ∈ M be given. Write α(a) = n(t)/d(t) ∈ Ξ−1Z[t±1]/Z[t±1], where
n(t) ∈ Z[t±1] and d(t) ∈ Ξ have no non-unital common divisors. Then mα(a) = mn(t)/d(t) = 0 ∈
Ξ−1Z[t±1]/Z[t±1], which implies that d(t) divides mn(t) in Z[t±1]. Because Z[t±1] is a UFD and
n(t) and d(t) have no common divisor, it follows that d(t) is an integer dividing m. But the only
integers in Ξ are ±1. It follows that α(a) = 0. So we have established α = 0. �

Lemma A.7. Let M be a finitely generated Z[t±1]-module without Z-torsion that is annihilated by
some q(t) ∈ Ξ, and let R be a Ξ-torsion free Z[t±1]-algebra R (possibly Z[t±1] itself).

(i) The R-module M ⊗R has homological dimension 1.

(ii) For a Ξ-torsion free R-module N , the module TorR1 (M ⊗R,N) is trivial.
(iii) For a Ξ-divisible R-module N , the module Ext1R(M ⊗R,N) is trivial.

Proof. Let us first prove (i)–(iii) in the special case that R = Z[t±1].

(i) for R = Z[t±1]. Similarly as in Lemma A.3(iii), one shows that multiplication by 1− t is an
isomorphism of M . So M is of homological dimension 1 by Lemma A.5.

(ii) for R = Z[t±1]. Consider the short exact sequence

0 N N N/q(t)N 0,
q(t)

which induces the exact sequence

Tor
Z[t±1]
2 (M,N/q(t)N)) Tor

Z[t±1]
1 (M,N) Tor

Z[t±1]
1 (M,N).

q(t)
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By (i), the first Tor term in the above sequence is trivial. Hence multiplication by q(t) is injective on

Tor
Z[t±1]
1 (M,N). But it is also trivial, since q(t) annihilates M . This implies that Tor

Z[t±1]
1 (M,N)

is trivial.

(iii) for R = Z[t±1]. The proof is dual to that of (ii), starting with the short exact sequence

0 {q-torsion of N} N N 0.
q(t)

(i) for general R. We have already shown that M is of homological dimension 1 over Z[t±1].
Tensoring the short exact sequence as in Lemma A.5 with R gives a short exact sequence

0 Rn Rm M ⊗R 0,

showing that M ⊗R is of homological dimension 1 over R, since TorZ[t
±1](M,R) is trivial by (ii).

Now, the proofs of (ii) and (iii) for general R are analogous to the proofs in the special case
R = Z[t±1]. �

Proof of Proposition A.2. (i) Consider the following short exact sequence of Z[t±1]-modules:

0 G G⊥ H1(XK ;Z[t±1]) 0.

The module H1(XK ;Z[t±1]) satisfies the hypotheses of Lemma A.7(ii), since it is annihilated by
∆K ∈ Z[t±1]. Thus tensoring with R, and using Lemma A.3 (i), yields a short exact sequence of
R-modules:

0 G⊗R G⊥ ⊗R H1(XK ;R) 0.

Here, G⊗R and G⊥ ⊗R carry pairings that are restrictions of BlRJ , while H1(XK ;R) carries the

pairing BlRK . By Proposition A.1, the homomorphisms in the sequence respect those pairings. This

implies that the BlRK is isometric to the pairing induced by BlRJ on (G⊥ ⊗R)/(G⊗R).

(ii) There is a short exact sequence of Z[t±1]-modules

(A.1) 0 G⊥ H1(XJ ;Z[t±1])→ HomZ[t±1](G,Ξ
−1Z[t±1]/Z[t±1]) 0,

where the second map is the inclusion, and the third map is the composition of the adjoint of BlJ
and the map induced by the inclusion G→ H1(XJ ;Z[t±1]). To see exactness, observe that G⊥ is
by definition the kernel of the third map, and the third map is surjective since

Ext1Z[t±1](H1(XJ ;Z[t±1])/G,Ξ−1Z[t±1]/Z[t±1])

is trivial by Lemma A.7(iii). The Hom-module in (A.1) is Z-torsion free by Lemma A.6, and it is
annihilated by ∆J . So the module satisfies the hypothesis of Lemma A.7(ii). Hence tensoring with
R preserves exactness of (A.1). Consider now the following diagram of R-modules, in which the
top row is (A.1) tensored by R.

0 G⊥ ⊗R H1(XJ ;R) HomZ[t±1](G,Ξ
−1Z[t±1]/Z[t±1])⊗R 0

0 (G⊗R)⊥R H1(XJ ;R) HomR(G⊗R,Ξ−1R/R) 0,

The bottom row is the analog of (A.1) over the base ring R, and its exactness is shown in the same
way as for (A.1). The first vertical map is just the inclusion, and the second map is the identity.
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The third map is induced by ι′ : Ξ−1Z[t±1]/Z[t±1]→ Ξ−1R/R, using the Tensor-Hom-adjunction
isomorphism

HomR(G⊗R,Ξ−1R/R) ∼= HomZ[t±1](G,Ξ
−1R/R)

f 7→
(
g 7→ f(g ⊗ 1)

)
.

Commutativity of the first square of the diagram is clear, and commutativity of the second square
follows from Lemma A.4. It follows that the first vertical map is injective, and the third vertical
map is surjective. Our goal is to show that the first map is bijective; for that, by an easy diagram
chase as in the proof of the Five Lemma, it suffices to show that the third map is injective.

By Lemma A.5, G admits a resolution

0 Z[t±1]n Z[t±1]m G 0

for some n,m ∈ N. Since Ext1Z[t±1](G,Ξ
−1Z[t±1]/Z[t±1]) = 0 by Lemma A.7(iii), we obtain another

short exact sequence by applying HomZ[t±1](−,Ξ−1Z[t±1]/Z[t±1]):

(A.2) 0 HomZ[t±1](G,Ξ
−1Z[t±1]/Z[t±1]) Bm Bn 0,

where we abbreviate Bi = HomZ[t±1](Z[t±1]⊕i,Ξ−1Z[t±1]/Z[t±1]). Let us show that Tor
Z[t±1]
1 (R,Bn)

is trivial. Tensoring the short exact sequence

0 Z[t±1] Ξ−1Z[t±1] Ξ−1Z[t±1]/Z[t±1] 0

with R yields the exact sequence

Tor
Z[t±1]
1 (R,Ξ−1Z[t±1]) Tor

Z[t±1]
1 (R,Ξ−1Z[t±1]/Z[t±1]) R Ξ−1R.

In that sequence, the first module is trivial since localizations are flat, and the last map is
injective, since R is Ξ-torsion free. It follows that the second module is trivial. Since Bi ∼=
(Ξ−1Z[t±1]/Z[t±1])⊕i, we have that Tor

Z[t±1]
1 (R,Bn) ∼= Tor

Z[t±1]
1 (R,Ξ−1Z[t±1]/Z[t±1])⊕i is trivial,

as desired.
Hence tensoring the short exact sequence (A.2) with R preserves exactness. Part of that sequence

forms the first row in the following diagram of R-modules:

0 HomZ[t±1](G,Ξ
−1Z[t±1]/Z[t±1])⊗R Bm ⊗R

0 HomZ[t±1](G,Ξ
−1R/R) HomZ[t±1](Z[t±1]m,Ξ−1R/R)

Note the second row, obtained from the resolution by applying HomZ[t±1](−,Ξ−1R/R), is also
exact, the diagram commutes, and the second vertical map is an isomorphism. This implies that
the first vertical map is injective, concluding the proof. �
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