NORMALIZATION OF TWISTED ALEXANDER INVARIANTS
TAKAHIRO KITAYAMA

ABsTrRACT. Twisted Alexander invariants of knots are well-defined up to multiplication of units.
We get rid of this multiplicative ambiguity via a combinatorial method and define normalized
twisted Alexander invariants. We then show that the invariants coincide with sign-determined
Reidemeister torsion in a normalized setting, and refine the duality theorem. We further obtain
necessary conditions on the invariants for a knot to be fibered, and study behavior of the highest
degrees of the invariants.

1. INTRODUCTION

Twisted Alexander invariants, which coincide with Reidemeister torsion ([Ki], [KL]), were
introduced for knots in the 3-sphere by Lin [L] and generally for finitely presentable groups
by Wada [Wad]. They were given a natural topological definition by using twisted homology
groups in the notable work of Kirk and Livingston [KL]. Many properties of the classical
Alexander polynomial Ax were subsequently extended to the twisted case and it was shown
that the invariants have much information on the topological structure of a space. For example,
necessary conditions on twisted Alexander invariants for a knot to be fibered were given by
Cha [C], Goda and Morifuji [GM], Goda, Kitano and Morifuji [GKM], and Friedl and Kim
[FK]. Moreover, even sufficient conditions for a knot to be fibered were obtained by Friedl and
Vidussi [FV1, FV3].

It is well known that Ag can be normalized, for instance, by considering the skein relation.
In this paper, we first obtain the corresponding result in twisted settings. The twisted Alexander
invariant Ag, associated to a linear representation p is well-defined up to multiplication of units
in a Laurent polynomial ring. We show that the ambiguity can be eliminated via a combinatorial
method constructed by Wada and define the normalized twisted Alexander invariant KK,p (See
Definition 4.4 and Theorem 4.5).

Turaev [T2] defined sign-determined Reidemeister torsion by refining the sign ambiguity of
Reidemeister torsion for an odd-dimensional manifold and showed that the other ambiguity
depends on the choice of Euler structures. We also normalize sign-determined Reidemeister
torsion Tk, for a knot and define Tk ,(¢). Then we prove the equality

Ak, () = Ti,(t).

(See Theorem 5.7.) This shows that XK,,) is a simple homotopy invariant and gives rise to a
refined version of the duality theorem for twisted Alexander invariants. (See Theorem 5.9.)

As an application, we extend the above necessary conditions on ZK,p for fibered knots. We
can define the highest degree and the coefficient of the highest degree term of ZK,F,. We show
that these values are completely determined for fibered knots. (See Theorem 6.3.) Finally, we
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obtain the following inequality which bounds the free genus g(K) from below by the highest
degree h-deg Ak ,:

(1.1) 2h-deg Ag, < n(2g;(K) — 1).

(See Theorem 6.6.)

This paper is organized as follows. In the next section, we first review the definition of twisted
Alexander invariants for knots. We also describe how to compute them from a presentation of
a knot group and the duality theorem for unitary representations. In Section 3, we review Tu-
raev’s sign-determined Reidemeister torsion and the relation with twisted Alexander invariants.
In Section 4, we establish normalization of twisted Alexander invariants. In Section 5, we re-
fine the correspondence with sign-determined Reidemeister torsion and the duality theorem for
twisted Alexander invariants. Section 6 is devoted to applications. Here we extend the result
of Cha [C], Goda-Kitano-Morifuji [GKM] and Friedl-Kim [FK] for fibered knots, and study
behavior of the highest degrees of the normalized invariants to obtain (1.1).

Note. This article appeared first in 2007 on the arXiv, and has remained long to be unpublished.
Since then twisted Alexander invariants and Reidemeister torsion for knots and 3-manifolds
have been further intensively studied by many researchers. We refer the reader to the survey
papers [FV5, Mo] and the recent preprint [DFL] for details and references. As this article has
been already referred in the papers [DFJ, DFV, FKK, FV2, FV3, FV4, FV5, FV6, FV7, KM,
SW] and frequently suggested to be published, we think that it might be worthwhile to have it
published.
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revised version. Finally the author also would like to thank the anonymous referee for helpful
suggestions in revising the manuscript. The author was supported by Research Fellowship of
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2. TWISTED ALEXANDER INVARIANTS

In this section, we review twisted Alexander invariants of an oriented knot, following [C] and
[KL]. For a given oriented knot K in S3, let Ex := S3 \ N(K), where N(K) denotes an open
tubular neighborhood of K, and let Gy := mEx. We fix an element u € G represented by a
meridian in E, and denote by a: Gg — (f) be the abelianization homomorphism which maps
u to the generator . Let R be a Noetherian unique factorization domain and Q(R) the quotient
field of R.

We first define twisted homology groups and twisted cohomology groups. Let X be a con-
nected CW-complex and X the universal cover of X. The chain complex C *(f) is a left Z[m, X]-
module via the action of ;X as deck transformations on X. We regard C.(X) also as a right
Z[n;X]-module by defining o -y := y! - o fory € 7, X and o € C,(X). For a linear representa-
tion p: mX — GL,(R), R®" naturally has the structure of a left Z[z; X]-module. We define the
twisted homology group H;(X; RY") and the twisted cohomology group H(X; RS") associated to
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p as follows:
Hi(X; R®") := H(C.(X) ®zpn,x) R*"),
H'(X; RE") := H'(Homziz, x)(C.(X), R*")).

Definition 2.1. For a representation p: Gx — GL,(R), we define A’}(,p to be the order of the i-th
twisted homology group Hi(Ex; R[t,1'13,,), where R[z,r7'1®" = R[1,r7'] ® R®". It is called the
i-th twisted Alexander polynomial associated to p, which is well-defined up to multiplication of

units in R[z,#"']. We furthermore define

Akp = A,/ A, € OR)Q),

which is called the twisted Alexander invariant associated to p, and well-defined up to factors
nt' for some n € R* and [ € Z.

Remark 2.2. Lin’s twisted Alexander polynomial defined in [L] coincides with A}{, o

The homomorphisms « and a®p naturally induce ring homomorphisms @: Z[Gg] — Z[t, 1]
and @: Z[Gg] — M,(R[t,t"']). For a knot diagram of K, we choose and fix a Wirtinger pre-
sentation Gx = (x1,..., X, | r1,...,rm1). Let us consider the (m — 1) X m matrix Ay whose
component is the n X n matrix © (%) e M,(R[t,t"']), where %}_ denotes Fox’s free derivative
with respect to x;. For 1 < k < m, let us denote by Aq the (m — 1) X (m — 1) matrix obtained
from Ag by removing the k-th column. We naturally regard Ao 4 as an (m — 1)n X (m— 1)n matrix
with coefficients in R[z,7'].

The twisted Alexander invariants can be computed from a Wirtinger presentation as follows.
The following is nothing but Wada’s construction [Wad].

Theorem 2.3 (([HLN], [KL]). For a representation p: Gy — GL,(R), a Wirtinger presentation
(X1yeoes X | 715, 1) Of Gk and an index k,
detAq),k
det (D(Xk - 1)
Remark 2.4. Wada [Wad] showed that Ag, is well-defined up to factors nt™. He also showed

that in the case where p is a unimodular representation, Ag, is well-defined up to factors +¢" if
n is odd and up to only #" if n is even.

AKp = mod <ntl>n€Rx,lEZ-

It is also known that twisted Alexander invariants have the following duality. We extend the
complex conjugation to C(¢) by taking t > ¢!

Theorem 2.5 ([Ki], [KL]). For a representation p: Gg — U(n) (resp. O(n)),

Ak (1) = Ag (1) mod <77tl>11€R><,leZ-

3. SIGN-DETERMINED REIDEMEISTER TORSION

In this section, we review the definition of Turaev’s sign-determined Reidemeister torsion.
See [T1], [T2] for more details. For two bases u and v of an n-dimensional vector space over a
field F, [u/v] denotes the determinant of the base change matrix from v to u.

LetC. = (0 —» C, ﬁ) Cpoy = - ﬂ) Co — 0) be a chain complex of finite dimensional
vector spaces over F. For given bases b; of Imd,,; and h; of H;(C.), we can choose bases
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b; U h; U b;_, of C; as follows. First, we choose a lift &; of &; in Ker d; and obtain a basis b; U A
of Ker d;, where we consider the exact sequence

0 - Imd;,; — Kero, —» H;(C.) — 0.

Then we choose a lift b;,_, of b;_; in C; and obtain a basis (b; Uh;) Ub;_, of C;, where we consider
the exact sequence

0 —> Kerd;, » C; » Imag; — 0.
Definition 3.1. For given bases ¢ = (¢;) of C,. and h = (h;) of H.(C.), we choose a basis b = (b;)
of Im 0, and define

Tor(C..e.h) = (D [ 16 Uk U by fe) ™ e P
i=0
where , '
n ] J
C.l = ) (D dim (Y dim Hi(C.).

j=0 =0 i=0
Remgrk 3.2. It can be easily checked that Tor(C., ¢, k) does not depend on the choices of b, b;
and h;.

Now let us apply the above algebraic torsion to geometric situations. Let X be a connected
finite CW-complex. By a homology orientation of X we mean an orientation of the homology
group H.(X;R) = @i H;(X;R) as areal vector space.

Definition 3.3. For a representation p: mX — GL,(F) such that H.(X; F;‘f”) vanishes and a
homology orientation o, we define the sign-determined Reidemeister torsion T, (X, o) associated
to p and o as follows. We choose a lift ; of each cell ¢; in X and bases k of H.(X;R) which is
positively oriented with respect to o and (fj, ..., f,) of F®". Then we define
T,(X, 0) := 74 Tor(C.(X) ®, F®",&) € FX,
where
70 := sgn Tor(C.(X;R), ¢, h),

c:=<e1,...,Cuqmc.)

C:=@1®f1,. 1@ fur. . Ciimc. ® [f15- -5 Cdimc. ® fn)-
Remark 3.4. Itis known that 7,,(X, o) does not depend on the choices of &;, h and (fi, ..., f,) and
is well-defined as a simple homotopy invariant up to multiplication of elements in Im(det op).

Here let us consider the knot exterior Ex. In this case, we can equip Ex with its canonical
homology orientation wg as follows. We have H.(Ex;R) = Hy(Eg;R) @ (t), and define wg :=
[{[pt], )], where [pt] is the homology class of a point.

Definition 3.5. For a representation p: Gy — GL,(F) such that H.(X; F (t)fgp) vanishes, the
sign-determined Reidemeister torsion Tk ,(t) associated to p is defined by T,g,(Ek, wg). Here

we consider & ® p as a representation Gy — GL,(F[t,t™']) = GL,(F(?)).
In Section 5, we generalize the following theorem.

Theorem 3.6 ([Ki], [KL]). For a representation p: Gy — GL,(F) such that H.(X; F (t)fgp)
vanishes,

Ak (1) = Ti () mod (nt'yerx jez.
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4. CONSTRUCTION

Now we establish one of our main results. We get rid of the multiplicative ambiguity of
twisted Alexander invariants via a combinatorial method. For f(¢) = p(¢)/q(t) € Q(R)(t) (p,q €
R[t,t7']), we define

deg f :=degp —degg,
h-deg f := (the highest degree of p) — (the highest degree of ¢g),
lI-deg f := (the lowest degree of p) — (the lowest degree of ¢),

o(f) = (the coefficient of the highest degree term of p)

~ (the coefficient of the highest degree term of ¢)
We make use of a combinatorial group theoretical approach constructed by Wada [Wad].

Definition 4.1. For a finite presentable group G = {xy,...,x, | r1,...,r,) and any word w in
X1, ..., Xn, the operations of the following types are called the strong Tietze transformations:

Ia. To replace one of the relators r; by its inverse rl.‘l.
1

Ib. To replace one of the relators r; by its conjugate wr;w™".

Ic. To replace one of the relators r; by r;r; for any j # i.

II. To add a new generator y and a new relator yw™!. (Namely, the resulting presentation is
Xty e s Xy Y P e F W™ 1))

If one presentation is transformable to another by a finite sequence of operations of above
types and their inverse operations, then such two presentations are said to be strongly Tietze
equivalent.

Remark 4.2. The deficiency of a presentation does not change via the strong Tietze transforma-
tions.

Wada showed the following lemma.

Lemma 4.3 ([Wad)]). All the Wirtinger presentations for a given link in S* are strongly Tietze
equivalent to each other.

Let ¢: Z[Gg] — Z be the augmentation homomorphism, namely, ¢(y) = 1 for any element
v of G. For a given presentation (xi,..., X, | 71,...,7u-1) of Gg, we denote A, and Az, by

or; ~ (or; . .
((p ((gj))#k and (0/ (ax,-))#k as in Section 2.
We eliminate the ambiguity of 7¢ in Definition 2.1 as follows.

Definition 4.4. Given a representation p: Gy — GL,(R), we choose a presentation
(X1yeeus Xy | 715 .. o1y of Gg Which is strongly Tietze equivalent to a Wirtinger presenta-
tion and an index & such that h-deg a(x;) # 0. Then we define the normalized twisted Alexander
invariant associated to p as:

~ 0" detAQk

Ax =
Ko™ (emyd det D(x, — 1)

€ QR)(€2)(1?),
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where

€ := detp(u),
0 := sgn(h-deg a(x;) det A x),

1
d:= E(h—deg detAsx + 1-degdet A, — h-deg a(xy)).

Theorem 4.5. Ak, is an invariant of a linear representation p.

Proof. From Lemma 4.3, it suffices to check (i) the independence of the choice of k and (ii) the
invariance for each operation in Definition 4.1.

We assume that there is another index, say k’, also satisfying the condition h-deg a(xy) # O.
We set

0’ := sgn(h-deg a(xy) det A, p),

1
d = E(h—deg det Az + l-degdet Az — h-deg a(xy)).

Since
= Or;
— x] -D=r-1,
2.3,
we have
or;
dCtAq>’k/ detCD(xk - 1) =det{... , (D(ax )(D(Xk ) . ) ,
or;
=det|....- Y @ ( 4 )cb(xj )]
J#k
or;
= det|. —CD( )CI)(xk, —-1),. )
axk/

= (=1)"**) det Ag; det D(xp — 1).
Similarly, we have
det Agp det@(x; — 1) = (=1 det Az det @(xp — 1).
Hence d' = d. Moreover, by dividing this equality by (# — 1) and taking # — 1, we can see that
h-deg a(x;) det A, = (—=1)** h-deg a/(xy ) det A .

Hence ¢’ = (—1)¥¥'5. The above equalities prove (i).
Next, we consider the strong Tietze transformations. Since

0(1‘1._1) B or;
ox; =-r ia_xj’
Owrw™) or;
Ox; ~Vox, j

a(r,r,) 61’, . @
Ox; ij laxj’
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the changes of the values detAgy, 0, d by the transformation Ia, Ib and Ic are as follows.
By the transformation Ia, detAgy — (—1)"detAgy, 6 — —0 and d does not change. By the
transformation Ib, det Ag > (e")%€*™) det Ay, 6 does not change and d +— d + deg a(w). By
the transformation Ic and I, it is easy to see that all the values do not change. These observations
proves (ii). |

From the construction, the following lemma holds.

Lemma 4.6. (i)For a representation p: Gg — GL,(R),

Akp(t) = A (1) mod (€2, 1t Yyep ez
(ii)If p is trivial (i.e., ® = @), then
Vi(t: = 172) = (12 = £ )Ax, (1),
where Vg (2) is the Conway polynomial of K.

Proof. Since (i) is clear from Theorem 2.3 and Definition 4.4, we prove (ii). For the trivial
representation p, we set

F0) = (2 = DA ().
Then it is easy to see that
f(t) = Ax(r) mod (£1).

Moreover, we can check the following:

J =1,
h-deg f + I-deg f = 0,

which establishes the desired formula. O

5. RELATION TO SIGN-DETERMINED REIDEMEISTER TORSION

In this section, we generalize Theorem 2.5 and Theorem 3.6. Here we only consider the case
where R is a field F.

First, we also normalize sign-determined Reidemeister torsion as twisted Alexander invari-
ants.

Definition 5.1. For a representation p: Gy — GL,(F) such that H.(Eg; F (t)%p) vanishes, we

define TK,p(t) as follows. We choose a lift &; in E x of each cell ¢;, bases h of H.(Ex;R) which
is positively oriented with respect to wx and (fi, ..., f,) of F(t)®". Then we define

n

T (1) = (;no)d, Tor(C.(Ex) ®agp F(™,€) € F(1)",
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where

€ := detp(u),
70 := sgn Tor(C.(Eg;R), ¢, h),

d = %(h-deg Tor(C.(Ex) ®y Q(1), &) + 1-deg Tor(C.(Ex) @ Q(1), &),

c : <el’ L] edsz*>’

= (El ®1,..~,édimC* ® 1>’
C:=@1®f1,..,81® fur. s Caimc, ® f15- -+ »Caimc, ® Ju)-

Remark 5.2. We can also define normalized Reidemeister torsion for an oriented link whose
Alexander polynomial does not vanish by a similar method as follows: When K is an oriented
link with ordered components K1, ..., K,,, we think a: Gx — (t,...,t,) as the homomorphism
which maps the meridional element y; of K; to the generator ¢; for each i, and define the canon-
ical homology orientation as wg := [{[pt], [u1], ..., [un])]. In the notation in Definition 5.1 we
replace the field F(¢) by F(t,,...,t,), and instead of € and d we set

€ = detp(y,-),
1 — —
d; := 5 (h-deg; Tor(C.(Ex) ® Q11 - .. 1), €0) + I-deg; Tor(C.(Ex) ®, Q(t1, ..., tm), Co)),

where h-deg; and 1-deg; are defined as h-deg and 1-deg for polynomials on #;. Then we define

n

Txo(tls ... ty) = 0 Tor(C.(Ex) ®uep F(t1, ... 1), &) € F(t1,....1,)".
Kol t0) 1= e TOHCAER) Bty Flt o)™ 8) € Flt )

Note that if we permute two of the indices of components K, ..., K,,, then the normalized
invariant is multiplied with (—1)".

One can prove the following lemma by a similar way as in the non-normalized case. As a
reference, see [T1].

Lemma 5.3. TK,p is invariant under homology orientation preserving simple homotopy equiva-
lence.

Remark 5.4. From the result of Waldhausen [Wal], the Whitehead group Wh(Gg) is trivial
for a knot group Gg. Therefore homotopy equivalence between finite CW-complexes whose
fundamental groups are isomorphic to Gg for some K is simple homotopy equivalence.

Let F be a field with (possibly trivial) involution f — f. We extend the involution to F(f) by
taking ¢ — t'. We equip F()®" with the standard hermitian inner product (-, -) defined by

v, w) :="vw

for v,w € F(¢)®", where 'v is the transpose of v. For a representation p: Gy — GL,(F), we
define a representation p': Gx — GL,(F) by

P ) =py)

for y € Gk, where A* := 'A for a matrix A.
We can also refine the duality theorem for sign-determined Reidemeister torsion as follows.
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Theorem 5.5. For a representation p: Gy — GL,(F), if H.(Eg; F(t)
H*(EKa F(t)i;/ﬁ)» and

a®p) vanishes, then so does

T, () = (=1)'"T ().

The proof is based on the following observations. Let (E%, {e;}) denote the PL manifold Ek
with the dual cell structure and choose a lift &/ which is the dual of &;. In the remainder of this
section, for abbreviation, we write

C, := C,(Ex) ® Q(), Cpyg = Cy(Ex) ®asp F(O®",
C, := C,(OEx) ®, Q1), C), = CL(IEx) ®usp F(D™",
Cl/ = Cy(Ex, 0Ex) ®, Q(1), Cll, = C(Ex, OEx) ®qsp F(1)",
D, := C,(E}) ®, Q) Dy = Cy(Ey) @y F(O",
B, :=Im(@:C,,, - C)), B, =Im@:C,,, —C,),
B" =Im(@0 : ”+1 - C’) B;;q :=Im(0 : C”qul - C;fq).
Note that since a direct computation implies
(5.1) H.(0Ek; F(t)a®p) =0
we have

dim B, = 2(—1)1'—1' dimC),
(5.2) -
= Y (=1)/ndim C} = ndim B;.
=0
(See, for example, [KL, Subsection 3.3.].) Similarly, if H.(Eg; F (t)w®p) = 0, then it follows

from (5.1) and the long exact sequence of the pair (Eg, 0Ek) that H.(Eg,0Ek; F (l)(,®p) =0, and
SO

(5.3) dim B); = ndim B}
The inner product
[-,]: C (E ) X Cs_ q(EK’aEK) — Z[Gk]
defined by
[.21:= > @7,

veGk

where (-, -) denote the intersection pairing, induces an inner product

()i DpgxCls_ . — C(1)

p:3-q
defined by

e ov.e;ew):=l[é,¢e] w)
for v,w € C(r)®". (See, for example, [Mi, Lemma 2.].) This gives
5.4 Dpy=(Cly )



10 TAKAHIRO KITAYAMA

The differential 9, of D, , corresponds with (-1)78;_ . of (C;)’, 3y
also have

(5.5) D, = (Cy )"

)* under this isomorphism. We

Lemma 5.6. For a representation p: Gy — GL,(F),
Hy(Ex; FOS: ) = H3_y(Ex; F(t)gg,)"

®p agp
Proof. From (5.4) and the universal coeflicient theorem,
Hy(Ex; F(0),) = Hs-o(Ex, OEk; F(1)g5,)".

®) a®p
From (5.1) and the long exact sequence of the pair (Eg, 0Ek),
H.(Ex; F(0)5g,) = H.(Ex, 0Eg; F(0)3g,).
These isomorphisms prove the lemma. O

Now we prove the theorem.

Proof of Theorem 5.5. Lemma 5.6 proves the first assertion.

In the following we use the notation in Definition 5.1. We choose an orthonormal basis
(fi,..., fny of F(t)®" with respect to the hermitian product (-, -) defined above. Let ¢’, ¢”, Co»
¢, ¢’ and ¢” be the bases of C.(0Ek), C.(Ex,0Ek), C,, C/, C;,’* and C;,:* respectively induced
by ¢, ¢; and ¢. We set

¢ =l )

&y :=(e\®1,...,e},0 1),

C =@ ®f1,. 8 ® frre s i ® [l Eie. © S
From (5.4) and the duality for algebraic torsion ([T2, Theorem 1.9]),

Tor(D,,., &) = (— 1) ™ i 4™ BiTor(Cy,, €.
On the other hand, from the exact sequence
0-C,,—C.—>C), >0

and the multiplicativity for algebraic torsion ([T2, Theorem 1.5]),

TOI'(CP’*, E) — (_1)21 dil’l’lB;m.il dll’l’lB;)il TOI'(C;’*, Z.I) Tor(c/l E”).

Therefore :
(5.6) Tor(C,,., &) = (- 1)> ™ B *IM B )M B Tor(CY | &) Tor(D,,.., €).
Similarly,
(5.7) Tor(C., &) = (—1)Zm B +dimBL) dim B o 1) Tor(D.,, €).
We set

d’ = %(h—deg Tor(C’, ¢;) + 1-deg Tor(C., €;)),

d" = %(h—deg Tor(D., &) + 1-deg Tor(D., &)).
From (5.7),

(5.8) d=d"-d.
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Since it is well-known that
(t = 1) Tor(C,, ¢g) = Ag(t) mod (*1),
from Lemma 5.3,

lim (¢ = 1) Tor(C., &) = lim3(¢ = 1) Tor(D., &) = =1,
t— —

where
7o = sgn Tor(C.(E%; R), ¢*, h).
Hence, by multiply (5.7) by (¢ — 1) and taking t — 1, we obtain

(59) Ty = —(—1)Zi(dimB;*1+dimBgi1)dimB’{/T6T8,

where

!’ =/

T, = lti_I)I]lTOI"(C*, ).

From (5.2), (5.3), (5.6), (5.8) and (5.9),

n

—_ T,
Tk, (t) = ﬁ Tor(C,,.., €)

()"

(Etn)d”

()"

(erm)®

=(-1)" Tor(C,,,.¢') - Tor(D, ., €*).
A direct computation implies
Tor(C., &) = Tt
(See, for example, [KL, Subsection 3.3.].) Since the normalized invariants do not change by
conjugation of representations, we can assume that elements of p(10Ek) are all diagonal. This
deduces
Tor(C),,., &) = ()" ()"

Thus

()"

(el_n)d//

Tor(C,,,,¢") = 1.
Further it can be easily seen that
()"
(el—n)d*

and the proof is complete. O

Tor(D,., ¢*) = Tk i (?),

In the normalized setting, Theorem 3.6 also holds.

Theorem 5.7. For a representation p: Gy — GL,(F) such that H.(Ex; F (t)%p) vanishes,
Axp(t) = T p(0).

Proof. We choose a Wirtinger presentation Ggx = (Xi,..., Xy | 71,...,"n-1) and take the CW-
complex W corresponding with the presentation. Namely, W has one vertex, m edges labeled
by the generators x,..., x, and (m — 1) 2-cells attached along the relations ry,...,r,_;. Let
X1y..., Xy and ry,...,r,_ also denote the cells. It is easy to see that W is homotopy equivalent
to Ex. It follows from Remark 5.4 that W is simple homotopy equivalent to Ex. Thus from
Lemma 5.3 we can compute the normalized torsion TK,p as that of W.
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The chain complex C.(W;R) is written as:

m—1 m
0 — @Rrj 6—2> @in i Rpt — 0,
j=1

i=1

where

=z

Let ¢y = pt, c; = {x1,...,x,) and ¢; = (ry,...,Fm_1). We choose by = dc, and hy = [pt],
hy = [x¢] (1 £ k <m). Then

ey b1 UM/l

To = sgn(—1 [ho/collb1/ca)
0
0
= —sgndet (‘P (%)) !
0
0

— (_ 1)k+m+] 5.

We define an involution ~: Z[Gg] — Z[Gk] by exten@ng the inverse operation y — y~! of
G linearly. We can choose lifts pt, %; and 7 ' s0 that C,(W) ®qg, F(1)®" is written as:

0 @D rorenD P rocenH S Procie s - o

1<j<m-1,1<I<n 1<i<m,1<i<n 1<i<n

where

01(%® f)) = pt@ d(F — 1)f;

i m or,
52(7j®ﬁ):;xi®®[a—2]ﬁ.

1

Letc) = (Pt® fi,....pt® fi), ¢} = (F1® fiy oo s X1 ® froee s X ® fi,. .., Xy ® f) and ¢} =
F1® fla o s F1® frn o s Pt ® fi,o o s ® ). We choose by = 0(% ® fi,..., % ® f,) and
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) vanishes, |C.(W) ®ugp F()®"| = 0, and so

[b] U bi/c)]
[by/cpllD)/c5]

b} = dc,. Since H.(W; F(1)%,

n
0

Tor(C.(W) ®aep F(1)®", (To, T1,E2)) =

det ((I) (%)) 1

detd(x;, — 1)

w(o(E)
— (_ 1 )n(k+m) J

det @(x, — 1)

o )

deta(e — 1)

Similarly, we obtain

Tor(C.(W) ®, Q(t), (Zo, &1, E2)) = (1) ™

Hence d' = —d.
The above computations imply

Txp(t) = (=1)"Ag i (0),
where we consider the trivial involution on F. Now establishes the theorem follows from The-

orem 5.5. O

From the above theorems and the following lemma, we have the duality theorem for normal-
ized twisted Alexander invariants.

Lemma 5.8. If H.(Ex; F(1)®" ) does not vanish, then

adp
Ak (1) = Ag (1) = 0.
Proof. If H.(Eg; F(t fgp) does not vanish, then neither does H,(Eg; F (t)f;ﬂ) from Lemma 5.6.
Since

2
> dim Hy(Ex; F(0)2,) = ny(Ex) = 0,
q=0

i " ) # 0, and s0 Ag,(r) = 0. Similarly,
we obtain Ag () = 0, which proves the lemma. O

it follows from the assumption and (5.1) that H,(Ex; F(£)og

Theorem 5.9. For a representation p: Gx — GL,(F),

Ag i (1) = (=1)"Ag (0).
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For a unitary representation p, the difference between the highest and lowest coeflicients of
Ak () 1s not clear from Theorem 2.5 because of the ambiguity. However, this difference is now
strictly determined from the following corollary.

Corollary 5.10. For a representation p: Gx — U(n) or O(n),

Ak (1) = (=1)"Ag (2.

Example 5.11. Let K be the (p, g) torus knot where p,g > 1 and (p,q) = 1. It is well known
that the knot group has a presentation

Gk = {(x,y | xPy )

where h-deg a(x) = q and h-deg a(y) = p. The 2-dimensional complex W corresponding with
this presentation is K(Gg, 1). Therefore we can use this presentation for the computation via
Lemma 5.3, Remark 5.4 and Theorem 5.7.

From the result of Klassen [KI], all the irreducible S U(2)-representations up to conjugation
are given as follows:

Pa,b,s - GK ) U(2) :

cos%+isin%r 0
X - ..
0 cosZ —isin¥Z|’
P )4
br fain b i b s
cos 7 +isin“f cos s sin = sin s
Y —sm%”smns cos%”—zsm%”cosns ’

where a,b e N, 1 <a<p-1,1<b<qg-1,a=bmod?2and0 < s < 1. The normalized
twisted Alexander invariants associated to these representations are computed as follows:

(t% = (D)3
(1P — 2 cos %” +17P)(17 — 2 cos “ + 1)

KKapa,bA,s (t) =

6. APPLICATIONS

Now we consider applications of the normalized invariants. First we extend the result of
Goda-Kitano-Morifuji and Friedl-Kim. We denote by g(K) the genus of K.
Their results are as follows.

Theorem 6.1 ((GKM)]). For a fibered knot K and a unimodular representation p: Gy —
S Ly,(F), c(Ak,) is well-defined and equals 1.

Theorem 6.2 ([C],[FK]). For a fibered knot K and a representation p: Gy — GL,(R), A}(’ o is
monic and deg Ax, = n(2g(K) — 1), where a polynomial is said to be monic if both the highest
and lowest coefficients are units.

In the normalized setting, we have the following theorem.
Theorem 6.3. For a fibered knot K and a representation p: Gy — GL,(R),
deg Ag, = 2h-deg Ag, = n(2g(K) — 1),

c(Ax,) = c(Vg)'e® 2,
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Proof. The equality deg ZK,p = n(2g(K) — 1) can be obtained from Theorem 6.2. Since we have
Akop = Ak, Where ¢ is the natural inclusion GL,(R) — GL,(Q(R)), we can assume R is a field
F.

Let ¢ denote the automorphism of a surface group induced by the monodromy map. We can
take the following presentation of G by using the fibered structure:

GK = <X1, o ,ng,]’l | ri = hxih_lw*(xi)_l’ 1 <i< 2g(K)>

where a(x;) = 1 for all i and a(h) = ¢. It is easy to see that the corresponding CW-complex
is homotopy equivalent to the exterior Ex. Thus we can compute the invariant by using the
presentation as in Example 5.11.

Since
0 x (X o ;
or; h— —‘/’ag) i=j
Y PR A 60) R
ij _6—xj 1 ¥ J
we have

det Az g1 = PR 1,

al/’* (-xi)

det Agager = €K o (=1)" det(d( >
X

).

J
det®dh—1)=€t"+---+(-1)".

From the classical theorem of Neuwirth, which states that the degree of the Alexander polyno-

mial of a fibered knot equals twice the genus, we can determine that the lowest degree term of

the first equality equals 1. Since

6 = sgn c(Vi)V(t? — £°7) 1
=

=c(Vg)
1
d=o(K)— =
8(K) = 7
we obtain h-deg FAVK,p = n(g(K) — %) and c(FAvK,p) = (Vi) e®-1, -

Next we study behavior of the highest degrees of the normalized invariants.

Definition 6.4. A Seifert surface for a knot K is said to be canonical if it is obtained from a
diagram of K by applying the Seifert algorithm. The minimum genus over all canonical Seifert
surfaces is called the canonical genus and denoted by g.(K). A Seifert surface S is said to be
free if m(S3\ S) is a free group. This condition is equivalent to that $* \ N(S) is a handlebody,
where N(S) is an open regular neighborhood of §. The minimum genus over all free Seifert
surfaces is called the free genus and denoted by g (K).

Remark 6.5. Since every canonical Seifert surface is free, the following fundamental inequality
holds:

8(K) < g4(K) < g.(K).
The highest degrees of the normalized invariants give lower bounds on the free genus.
Theorem 6.6. For a representation p: Gx — GL,(R), the following inequality holds:
2h-deg A, < n(2g,(K) - 1).
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Proof. We choose a free Seifert surface S with genus g(K) and take a bicollar § x [-1, 1] of §
such that S x0 = §. Lett,: § < S*\S be the embeddings whose images are S X {+1}. Picking
generator sets {ay, . . .,y )} Of 11§ and {xy, ..., X240k} Of 71 (§3\S) and setting u; := (t,).(a;)
and v; := (¢_).(q;) for all i, we have a presentation

(Xt Xagis L i = hugh™'Vi! 1 < i < 28 ((K))

of Gx where a(x;) = 1 for all i and a(h) = ¢.

Collapsing surfaces S x * and the handlebody S° \ (S x [-1, 1]) to bouquets, we can realize
the 2-dimensional complex corresponding with this presentation as a deformation retract of Ek.
Therefore we can compute the invariant by using the presentation as in Example 5.11. Since

% 614,‘ av,-

ﬁxj 8)61' an
we have

h-deg A, = h-deg det A 2q, k)41 — nd — n
< 2ngs(K)—nd —n.

Thus the proof is completed by showing that d = g(K) — %

Let V be the Seifert matrix with respect to the basis ([a1],..., [ay,x)]) of Hi(S;Z) and
([a1]", ..., [azg,x0)]") the dual basis of H((S3\ S:2), ie., k([a], [a;]") = 0;j. We denote
by A, the matrices representing (t.).: H;(S;Z) — H(S> \ S;Z) with respect to the bases
(a1l ..., [agg,x]) and ([x1], ..., [x2g,]) and by P the base change matrix of H((S3\ S;2)
from ([x(], ..., [x2g,a0]) to ([a1]", ..., [azg,)]")- Tt is well known that the matrices represent-
ing (t,), and (¢_),: H\(S;Z) — H(S*\ §;Z) with respect to the bases ([a;], ..., [asg,x)]) and
([a1]%, ..., [azg,k)]") are V and 'V. Hence

det Ag og, 41 = det(FA, —'A)
= det(tA, — A_)
= det(tPV — P'V)
= +det(tV = 'V),

and so d = g;(K) — 1 as required. O

Example 6.7. Let K be the knot 11,75 illustrated in Figure 1. The normalized Alexander poly-
nomial of K equals > — 2t + 3 — 2t + 172,

The Wirtinger presentation of the diagram in Figure 1 consists of 11 generators and 10 rela-
tions:

-1 -1 -1,-1
-1.-1 -1,-1
-1 -1 -1,-1
-1.-1 -1.-1

-1 -1 -1.-1
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W(—/\

Figure 1. The knot 11,73

Let p: Gx¢ — S L,(FF,) be a nonabelian representation over [F, defined as follows:

1
0 ,ifi=4,8
1 1
01
p(x;) = L 0 ,ifi=17,9
1 1
, otherwise
0 1

From them, we can compute the normalized twisted Alexander invariant Zk,p as:
Ak =0 +t+1" +17.

Since deg ZK,p # 2(deg Ax — 1), we can see that K is not fibered. Moreover, from Theorem
6.6, we have

10 <2(2g4(K) - 1),
which becomes

On the other hand, we obtain a canonical Seifert surface with genus 3 by applying the Seifert
algorithm to the diagram in Figure 1. Hence

gr(K) < go(K) < 3.
By these inequalities we conclude that
gr(K) = g.(K) = 3.
Remark 6.8. Friedl and Kim [FK] showed the following inequality:
deg Ak, < n(2g(K) - 1).

Therefore g(K) also equals 3 in the above example.
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