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Abstract. In 1983 Culler and Shalen established a way to construct essential surfaces in a
3-manifold from ideal points of the SL2-character variety associated to the 3-manifold group.
We present in this article an analogous construction of certain kinds of branched surfaces (which
we call essential tribranched surfaces) from ideal points of the SLn-character variety for a natu-
ral number n greater than or equal to 3. Further we verify that such a branched surface induces
a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain
2-dimensional complex of groups.

0. Introduction

In their notable work [CS83] Culler and Shalen established a method to construct essential
surfaces in a 3-manifold from information of the SL2(C)-character variety of its fundamental
group. The method is based upon the interplay among hyperbolic geometry, the theory of in-
compressible surfaces and the theory on the structure of subgroups of the special linear group
SL(2) of degree 2. Culler–Shalen theory provides a basic and powerful tool in low-dimensional
topology, and it has given fundamentals for many significant breakthroughs; for example, Culler
and Shalen themselves proved the generalised Smith conjecture as a special case of their main
results in [CS83]. Meanwhile, Morgan and Shalen [MS84, MS88a, MS88b] proposed new un-
derstandings of Thurston’s results: the characterisation of 3-manifolds with the compact space
of hyperbolic structures [Th86] and a compactification of the Teichmüller space of a surface
[Th88]. Further Culler, Gordon, Luecke and Shalen [CGLS87] proved the cyclic surgery theo-
rem on Dehn fillings of knots. We refer the reader to the exposition [Sh02] for more literature
and related topics on Culler and Shalen’s theory.

Meanwhile, it is expected from the representation theoretic view that one can obtain much
more fruitful information of a 3-manifold and its fundamental group, considering not only 2-
dimensional representations but also higher dimensional representations. Indeed, recently there
have been many interesting results in low dimensional topology derived from higher dimen-
sional representations of surface groups and 3-manifold groups. Against the background of
such situations, we attempt in this article to extend Culler and Shalen’s theory for higher dimen-
sional representations of 3-manifold groups. Fortunately, the main algebraic tools which Culler
and Shalen used to establish their theory—the SL2(C)-character varieties and the Bruhat–Tits
trees— are naturally generalised to higher dimensional representations—the SLn(C)-character
varieties and the Bruhat–Tits buildings (associated to SL(n)). Therefore, as in classical Culler–
Shalen theory, we can find from an ideal point of the SLn(C)-character variety of the 3-manifold
group π1(M) a nontrivial action of π1(M) on the Bruhat–Tits building, and obtain a map from
M to the quotient of the Bruhat–Tits building by the action of π1(M). In the SL2(C)-case, the
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resultant quotient complex is of dimension 1 (a graph), and thus Culler and Shalen just had to
consider the midpoints of their edges, and pulled back them to obtain surfaces (which one could
modify to be essential by several local surgeries). In the SLn(C)-case, however, the resultant
quotient complex is of dimension n−1, and thus we have to consider a certain 1-subcomplex of
the first barycentric subdivision of its 2-skelton. Pulling back such a 1-complex, one naturally
encounters the notion of [essential] tribranched surfaces, which is a generalisation of the notion
of [essential] surfaces in the sense that “[essential] tribranched surfaces without any branched
points are [essential] surfaces” (for detailed explanation, see Section 2.1). It is worth point-
ing out that, even in the SLn(C)-case, one can sometimes obtain essential surfaces without any
branched points; see Question 6.1 in Section 6 for details. Moreover, we obtain as a byproduct
a nontrivial presentation of the 3-manifold group induced from an essential tribranched sur-
face, which identifies the 3-manifold group as the fundamental group of a certain 2-complex of
groups (see Section 2 for details).

We here explain our strategy to construct an essential tribranched surface in more detail.
Let M be a compact, connected, irreducible and orientable 3-manifold. We suppose that the
SLn(C)-character variety Xn(M) of π1(M) is of positive dimension, and let x̃ be an ideal point
of an affine algebraic curve C in Xn(M). By construction Xn(M) is obtained as the (geometric
invariant theoretical) quotient of the affine algebraic set Hom(π1(M),SLn(C)) by the conjugate
action of SLn(C), and we may take a lift D of C in Hom(π1(M),SLn(C)). Let ỹ be a “lift” of x̃,
which is an ideal point of the affine curve D. We denote by C(D) the field of rational functions
on D. The construction of an essential tribranched surface from x̃ is divided into the following
three steps. Firstly, on the basis of the theory of Bruhat–Tits buildings elaborated by Iwahori
and Matsumoto [IM65], and Bruhat and Tits [BT72, BT84], we may associate to the ideal point
ỹ a canonical action of SLn(C(D)) on an (n − 1)-dimensional Euclidean building Bn,D̃,ỹ (see
Section 4.2 for details). Pulling back this canonical action by the tautological representation
π1(M)→ SLn(C(D)), we obtain an action of π1(M) onBn,D̃,ỹ. Secondly, we prove that this action
is nontrivial, that is, the isotropy subgroup at each vertex of Bn,D̃,ỹ with respect to this action is a
proper subgroup of π1(M). The important point to note here is that in the case of n = 2 this step
is an algebraic heart of Culler and Shalen’s original work [CS83, Theorem 2.2.1]. Thirdly, we
show that one can construct an essential tribranched surface in general from a nontrivial action
of π1(M) on a Euclidean building. In this step we consider certain modifications of classical
techniques due to Stallings and Waldhausen for constructing an essential surface as a dual of a
nontrivial action of π1(M) on a tree.

Now letB(2)
n,D̃,ỹ

denote the 2-skeleton of the Bruhat–Tits buildingBn,D̃,ỹ and let Y(B(2)
n,D̃,ỹ

) denote

the 1-dimensional subcomplex of the first barycentric subdivision of B(2)
n,D̃,ỹ

consisting of all the
barycentres of 1- and 2-simplices and all the edges connecting them. The main theorem of this
article is as follows:

Main Theorem (Theorem 4.9). Let n be a natural number greater than or equal to 3, and
assume that the boundary ∂M of M is non-empty when n is strictly greater than 3. Then, for
each ideal point x̃ of an affine curve in Xn(M), there exists an essential tribranched surface Σ
in M such that the inverse image of Σ in the universal cover M̃ of M coincides with the inverse
image of Y(B(2)

n,D̃,ỹ
) under some π1(M)-equivariant piecewise-linear map f̃ : M̃ → B(2)

n,D̃,ỹ
.

The assumption on the boundary of M comes from a certain technical reason required in the
proof of the main result. See the proof of Theorem 4.7 for details.
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This article is organised as follows. In Section 1 we give a brief exposition on complexes
of groups. Section 2 is devoted to introduce the notion of essential tribranched surfaces and
to describe splittings of the 3-manifold groups induced by essential tribranched surfaces. In
Section 3 we collect fundamentals on Bruhat–Tits buildings, in particular, for the special linear
groups. In Section 4 the main theorem stated above is proved. We first review several standard
facts on SLn(C)-character varieties in Section 4.1. We then show in Section 4.2 that the action
of the 3-manifold group on the Bruhat–Tits building associated to an ideal point of the SLn(C)-
character variety Xn(M) is nontrivial, and construct an essential tribranched surface from such
a nontrivial action in Section 4.3. Section 5 provides an application of the theory of this article
to small Seifert manifolds. In Section 6 we raise several questions to be further studied.

The contents of Sections 1, 2.2, 2.3 and 2.4 (concerning complexes of groups associated to
essential tribranched surfaces) are rather independent of other parts of this article, and hence
readers who are only interested in the construction of nontrivial essential tribranched surfaces
may skip these sections and proceed to Section 4.

Note. After the first version of this article appeared on the arXiv, Question 6.1 in Section 6
was solved affirmatively in a much stronger form by Friedl, Nagel and the second-named au-
thor [FKN18]. In fact, based on the construction of essential tribranched surfaces developed in
this article, the breakthroughs of Agol [Ag13] and Wise [Wi11] on the separability of subgroups
in a 3-manifold group and the subsequent works of Przytycki and Wise [PW14a, PW14b], they
proved that every connected essential surface (without any branched points) in M is detected by
an ideal point of a rational curve in Xn(M) for some natural number n as in Main Theorem.

Acknowledgments. The authors would like to express their sincere gratitude to Masanori Mor-
ishita for his valuable comments suggesting that their results might be extended in the direction
of arithmetic topology. They would also like to thank Steven Boyer for several helpful com-
ments drawing their attention to the contents of Section 5, and Stefan Friedl, Matthias Nagel,
Tomotada Ohtsuki, Makoto Sakuma and Yuji Terashima for helpful suggestions. Finally, the
authors are also very grateful to the anonymous referee for reading earlier versions of this ar-
ticle very carefully and for giving a lot of valuable suggestions and comments, which greatly
improved several results including Theorem 4.4 and the exposition of this article. This research
was supported by JSPS Research Fellowships (Grant-in-Aids for Early-Carrer Scientists: Grant
Numbers 18K13395 and 18K13404, and Fund for the Promotion of Joint International Research
(Fostering Joint International Research (A)): Grant Number 18KK0380).

Contents

0. Introduction 1
1. Preliminaries on complexes of groups 4
1.1. Scwols associated to ∆-complexes 4
1.2. Complexes of groups 6
1.3. Group actions on ∆-complexes and developability 8
2. Essential tribranched surfaces and complexes of groups 9
2.1. Tribranched surfaces and essential tribranched surfaces 9
2.2. Complexes of groups associated to essential tribranched surfaces 10
2.3. Splittings of 3-manifold groups induced by essential tribranched surfaces 13
2.4. Appendix: About injectivity on local groups 16



4 T. HARA AND T. KITAYAMA

3. The Bruhat–Tits buildings B(SL(n)/F) associated to the special linear groups 16
3.1. Euclidean buildings and their contractibility 17
3.2. Combinatorial construction of B(SL(n)/F) 18
4. Construction of essential tribranched surfaces 20
4.1. SLn(C)-character variety 21
4.2. Nontrivial actions on Bruhat–Tits buildings 21
4.3. Ideal points of character varieties and tribranched surfaces 23
5. An application to small Seifert manifolds 30
6. Questions 31
References 32

1. Preliminaries on complexes of groups

The theory of graphs of groups due to Hyman Bass and Jean-Pierre Serre [Se77] has been
generalised to the theory of complexes of groups of higher dimension. Historically, Stephen
M. Gersten and John Robert Stallings first considered a special case of complexes of groups of
dimension 2, namely triangles of groups, and proved that “non-positively curved” triangles of
groups were developable [St91]. The general theory of complexes of groups were developed
independently by Jon Michael Corson [Co92] (mainly for 2-complexes of groups) and André
Haefliger [Hae91] (for complexes of any dimension). We shall briefly recall the definitions of
complexes of groups and their fundamental groups. We here adopt a combinatorial descrip-
tion proposed by Haefliger [Hae91] (see also [BH99, Chapter III.C]) rather than a topological
description based upon the concept of complexes of spaces especially when we define the funda-
mental groups of complexes of groups (see [Co92] for details of the latter approach). One of the
great virtues of the combinatorial approach is that one may explicitly describe generators and
relations of the fundamental group of a complex of groups, as we shall see later in Section 1.2.

1.1. Scwols associated to ∆-complexes. First let us recall from [Hat01, Appendix, Simplicial
CW Structures] or [Hae91, Section 1] the notion of a ∆-complex1 (or a simplicial CW complex).
Roughly speaking, it is a CW complex each of whose open cells has an affine structure. More
precisely, a CW complex X is called an unordered ∆-complex if, for each open n-cell σ, there
exists a set of (n + 1)! continuous maps (called orderings of σ) from the standard n-simplex ∆n

into X such that
(∆1) the restriction of every ordering to the interior of ∆n is a homeomorphism onto σ;
(∆2) two orderings of σ differ by an affine isomorphism on ∆n;
(∆3) the composition of an affine injection ∆k ↪→ ∆n from ∆k onto a k-face of ∆n with an

ordering of σ is an ordering for an open k-cell of X.
A continuous map f : Y → X of ∆-complexes is called simplicial if it sends each n-cell σ of Y
onto a k-cell τ of X for some k so that the composition of an ordering of σ and f coincides with
the composition of an affine surjection ∆n → ∆k and an ordering of τ.

The barycentre of an n-cell σ of a ∆-complex X is well defined as the image of the barycentre
of the standard simplex ∆n under an arbitrary ordering. Therefore we can consider the barycen-
tric subdivision X′ of X, which is again a ∆-complex. Note that every cell of X′ has a natural

1To be precise, what we call a ∆-complex in this article is the one referred as an unordered ∆-complex in [Hat01].
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ordering; namely, if we denote the barycentre of a cell σ of X by vσ, the 0-cells vσ1 , vσ2 , . . . , vσk+1

appearing in the boundary of a k-cell τ′ of X′ are labeled by k + 1 cells σ1, σ2, . . . , σk+1 of X of
distinct dimension, which equips τ′ with an ordering.

Definition 1.1 (The scwol X associated to X). For a ∆-complex X, we define V(X) (the vertex
set) and E(X) (the edge set) as the set of 0-cells and 1-cells of the first barycentric subdivision
X′ of X, respectively. Note that each vertex vσ ∈ V(X) is labeled by a cell σ of X. For an
edge e ∈ E(X) with endpoints vσ and vτ satisfying dimσ > dim τ, we define the initial vertex
i(e) and the terminal vertex t(e) of e as i(e) = vσ and t(e) = vτ respectively, which endow the
quadruple X = (V(X), E(X), i, t) with a structure of a directed graph. We finally impose the law
of composition on E(X) as follows;

a pair (a, b) of edges is called composable if i(a) = t(b) holds, and in the case the
composition c = ab of a and b is defined as a unique edge c with i(c) = i(b) and
t(c) = t(a) such that a, b and c form the boundary of a 2-cell of X′.

We call the directed graph X = (V(X), E(X), i, t) equipped with the law of composition on
E(X) the scwol associated to the ∆-complex X.

Figure 1 illustrates the scwol structure (namely the associated directed graph and the law
of composition of edges) on the standard 2-simplex ∆2. Here circles, squares and a triangle
indicate barycentres of 0-cells, 1-cells and a 2-cell of ∆2 respectively.

Remark 1.2. Indeed X fulfills all the axioms of a small category without loops (abbreviated
as scwol) introduced in [BH99, Chapter III.C Definitions 1.1]. Bridson and Haefliger develop
their theory on complexes of groups over abstract scwols in [BH99, Chapter III.C], but for
our purpose it suffices to consider “geometric scwols” obtained as in Definition 1.1. Therefore
we decided to adopt the description of [Hae91] and avoid dealing with generalities on abstract
scwols.

0-cell τ = vτ

2-cell ϱ

1-cell σ
bab

a vσ

vϱ▲

Figure 1. The scwol associated to the standard 2-simplex ∆2

Now we introduce the edge path fundamental group of the scwol X = (V(X), E(X), i, t)
associated to a ∆-complex X. We briefly summarise basic notion on edge paths in our context,
but for details see [ST67, Section 4.4] (for simplicial complexes) and [Ge08, Chapter 3] (for CW
complexes). We denote by E±(X) the set of symbols a+ and a−, where a belongs to the edge set
E(X). The symbols a+ and a− mean “following the edge a backward and forward” respectively2;
namely the initial and terminal vertices of a+ and a− for a ∈ E(X) as i(a+) = t(a−) = t(a) and

2Here we adopt the convention introduced in [BH99, Chapter III.C, Section 1.6]. Note that the opposite con-
vention is adopted in [Hae91, Section 3.1].
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t(a+) = i(a−) = i(a), and regard E±(X) as the set of oriented edges of the first barycentric
subdivision X′ of X. We also set (a±)−1 = a∓ (double sign in the same order). An edge path in
X is a finite sequence l = (e1, . . . , en) of elements of E±(X) satisfying t(e j) = i(e j+1) for each
1 ≤ j ≤ n − 1. The vertices i(e1) and t(en) are called the initial and terminal vertices of the
edge path l, and denoted by i(l) and t(l) respectively. We define the concatenation l ∗ l′ of two
edge paths l = (e1, . . . , em) and l′ = (e′1, . . . , e

′
n) by l ∗ l′ = (e1, . . . , em, e′1, . . . , e

′
n) when they

satisfy t(l) = i(l′), and also define the inverse edge path l−1 of an edge path l = (e1, . . . , en) by
l−1 = (e−1

n , e
−1
n−1, . . . , e

−1
1 ). An edge path is called an edge loop when its initial vertex coincides

with its terminal vertex; in this case the initial (and hence also terminal) vertex is called its base
vertex.

Now assume that X is connected, and consider the set of all edge loops with base vertex v0.
We endow it with an equivalence relation ∼ generated by the following two elementary relations
(E1) and (E2) (called simple equivalences):

(E1) (e1, . . . , e j−1, e j, e j+1, e j+2, . . . , en) ∼ (e1, . . . , e j−1, e j+2, . . . , en) if e j+1 coincides with e−1
j ;

(E2) for each composable pair (a, b) of edges in X, we impose

(e1, . . . , ei−1, ei = a+, ei+1 = b+, ei+2, . . . , em) ∼ (e1, . . . , ei−1, (ab)+, ei+2, . . . , em)

and

(e1, . . . , e j−1, e j = b−, e j+1 = a−, e j+2, . . . , en) ∼ (e1, . . . , e j−1, (ab)−, e j+2, . . . , en).

The set πedge
1 (X, v0) of all the equivalence classes of edge loops with base vertex v0 is indeed

equipped with a group structure, whose group law is induced by the concatenation of edge
loops: [c] ∗ [c′] = [c ∗ c′]. For an edge loop c, the inverse of [c] is given by the equivalence class
[c−1] of the inverse edge loop c−1 of c, and the unit element is given by the equivalence class
of the constant loop [cv0] at v0 (by definition the constant loop cv0 corresponds to the “empty
word” cv0 = ( ) of E±(X), both of whose initial and terminal vertices are defined as v0). We
call πedge

1 (X, v0) the edge path fundamental group of the scwol X at v0. We can construct an
isomorphism π

edge
1 (X, v0)

∼−→ π
edge
1 (X, v′0); [c] 7→ [l−1

v0,v′0
∗ c ∗ lv0,v′0

] as in the case of usual funda-
mental groups, where lv0,v′0

is an edge path with initial vertex v0 and terminal vertex v′0 (since
we assume that X is connected, such lv0,v′0

always exists; obviously this isomorphism heavily
depends on the choice of an edge path lv0,v′0

and is far from canonical). We end this subsection
by remarking that the edge path fundamental group πedge

1 (X, v0) is canonically isomorphic to the
usual (or topological) fundamental group of the ∆-complex X.

Proposition 1.3. Let X be a connected ∆-complex and v0 a 0-cell of X′. Let πtop
1 (|X|, v0) denote

the fundamental group (in the usual sense) of the underlying topological space |X| of X. Then
there exists a canonical isomorphism π

edge
1 (X, v0)

∼−→ π
top
1 (|X|, v0).

Proof. Indeed π
edge
1 (X, v0) is no other than the edge path fundamental group π

edge
1 (X′, v0) of

the ∆-complex X′, but the underlying topological space of X is the same as that of its first
barycentric subdivision X′. Therefore we obtain πedge

1 (X, v0)
∼−→ π

top
1 (|X′|, v0) = πtop

1 (|X|, v0) due
to [Ge08, Theorem 3.4.1]. □

1.2. Complexes of groups. A complex of groups G(X) = (X, {Gvσ , {ψa}, {gab}}) over a
∆-complex X consists of for types of data: the scwol X associated to X, a group Gvσ for each
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vertex vσ of X (labeled by a cell σ of X) called the local group at vσ, an injective group homo-
morphism ψa : Gi(a) → Gt(a) for each edge a of X, and a specific element ga,b of Gt(a), called a
twisting element, for each composable pair (a, b) of edges in X. We impose the following two
constraints on these data:
(CG1) (twisted commutativity) the equality ga,bψab(x)g−1

a,b = ψa ◦ ψb(x) holds for each compos-
able pair (a, b) of edges in X and every element x of Gi(b);

(CG2) (cocycle condition) the equality ψa(gb,c)ga,bc = ga,bgab,c holds for a, b, c in E(X) such
that both (a, b) and (b, c) are composable.

We define the dimension of a complex of groups G(X) as the dimension of the ∆-complex X.

Remark 1.4. We here remark that for a complex of groups of dimension at most 2, the cocycle
condition (CG2) is just the empty condition (simply because there is no triple (a, b, c) of edges
such that both (a, b) and (b, c) are composable). Later we shall mainly study complexes of
groups associated to essential tribranched surfaces in a 3-manifold (see Section 2.2). Obviously
by construction they are of dimension at most 2, and hence we do not have to consider the
cocycle condition (CG2) whenever we are concerned with complexes of groups associated to
essential tribranched surfaces.

A morphism ϕ : G(X) → G from a complex of groups G(X) to a group G consists of group
homomorphisms {ϕvσ : Gvσ → G}vσ∈V(X) and specific elements {ϕ(a)}a∈E(X) (called twisting ele-
ments) of G satisfying

ϕ(a)
(
ϕi(a)(x)

)
ϕ(a)−1 = ϕt(a) ◦ ψa(x) for each a ∈ E(X) and x ∈ Gi(a)

and

ϕt(a)(ga,b)ϕ(ab) = ϕ(a)ϕ(b) for each a, b ∈ E(X) with i(a) = t(b).

Next we introduce the notion of the fundamental group of a complex of groups. Let
G(X) be a complex of groups over a ∆-complex X. A G(X)-path in X is a finite sequence
l = (g0, e1, g1, . . . , gn−1, en, gn) where (e1, . . . , en) is an edge path in X, g0 is an element of the
local group Gi(e1) at i(e1) and g j is an element of the local group Gt(e j) at t(e j) for each 1 ≤ j ≤ n.
For G(X)-paths we define their initial and terminal vertices, concatenations and inverse paths
similarly to those of edge paths as follows.
Initial and terminal vertices: for a G(X)-path l = (g0, e1, g1, . . . , en, gn), set i(l) = i(e1) and

t(l) = t(en).
Concatenation: for G(X)-paths l = (g0, e1, g1, . . . , em, gm) and l′ = (g′0, e

′
1, g
′
1, . . . , e

′
n, g
′
n) satis-

fying t(l) = i(l′), set l ∗ l′ = (g0, e1, g1, . . . , em, gmg′0, e
′
1, g
′
1, . . . , e

′
n, g
′
n).

Inverse path: for a G(X)-path l = (g0, e1, g1, . . . , en, gn), define the inverse G(X)-path l−1 of l as
l−1 = (g−1

n , e
−1
n , g

−1
n−1, . . . , e

−1
1 , g

−1
0 ).

Now let FG(X) be the universal group associated to G(X) which is defined by the following
generators and relations.
Generators: elements of all local groups Gvσ and elements of E±(X).
Relations: we impose on the generators above the following four types of relations:

– the group relations for each Gvσ;
– (a±)−1 = a∓ for each edge a in X (double sign in the same order);
– a+b+ = ga,b(ab)+ for each composable pair (a, b) of edges in X;
– ψa(x) = a+xa− for each edge a in X and each element x of Gi(a).
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Then it is easy to check that the morphism ι : G(X) → FG(X), which consists of group ho-
momorphisms {ιvσ : Gvσ → FG(X); g 7→ g}vσ∈V(X) and twisting elements {ι(a) = a+}a∈E(X),
has a universal property among morphisms from G(X) to groups. More specifically, for every
morphism ϕ : G(X) → G from G(X) to a group G, we obtain a unique group homomorphism
Fϕ : FG(X)→ G which satisfies ϕ = Fϕ ◦ ι (see [BH99, Chapter III.C Section 3.2] for details).

We associate to each G(X)-loop c = (g0, e1, g1, . . . , en, gn) with base vertex v0 an element [c]
of FG(X) which is by definition the image of the word g0e1g1 · · · engn in FG(X). The image
of [ · ] (as a map from the set of G(X)-loops with base vertex v0 to FG(X)) is equipped with a
group structure induced by concatenations, which we denote by π1(G(X), v0) and call the fun-
damental group of G(X). We remark that the definition of the fundamental group π1(G(X), v0)
of a complex of groups G(X) (of higher dimension) introduced here is a direct generalisation of
that of the fundamental group of a graph of groups due to Bass and Serre [Se77, Section 5.1].

1.3. Group actions on∆-complexes and developability. Let G be a group and Y a∆-complex.
An action of G on Y is simplicial if every g in G induces a simplicial homeomorphism on Y . We
assume in this article that every group action on a ∆-complex is simplicial. An action without
inversions of G on Y is a simplicial action of G such that, if an element of G maps a cell ϱ of Y
onto itself, its restriction to ϱ is the identity map.

When a group G acts on a ∆-complex Y without inversions, we readily see that the quotient
X = G\Y is naturally a ∆-complex so that the projection p : Y ↠ X = G\Y is a simplicial
map. We shall associate to this action a complex of groups G(X) over X as follows; for each
cell σ of X, we choose a lift σ̃ of σ to Y (that is, σ̃ is a cell of Y satisfying p(σ̃) = σ). Then
vσ̃ ∈ V(Y) is a lift of the vertex vσ of X labeled by σ. For each a ∈ E(X) with i(a) = vσ, we
can find a unique edge ã contained in σ̃ such that p(ã) = a. Let us choose an element ha of G
satisfying hat(ã) = vτ̃, where τ = t(a). We define the local group Gvσ at a vertex vσ of X as the
isotropy subgroup Gσ̃ of G at σ̃ with respect to the group action of G on Y . For each edge a
of X, we define a group homomorphism ψa : Gi(a) → Gt(a) by ψa(g) = hagh−1

a . Finally for each
composable pair (a, b) of edges in X, we define a twisting element ga,b as hahbh−1

ab . It is easy to
verify that these data endow the quotient ∆-complex X = G\Y with a structure of a complex of
groups, which we denote by G(X). Moreover the set of natural inclusions {ϕvσ : Gvσ ↪→ G}vσ∈V(X)

and the specification of elements {ϕ(a) = ha}a∈E(X) of G define a morphism ϕ : G(X) → G.
Consequently we see that to an action of group G on a ∆-complex Y are associated a complex
of groups G(X) (over X = G\Y) and a morphism ϕ : G(X)→ G.

Remark 1.5. The complex of groups G(X) and the morphism ϕ : G(X) → G constructed as
above depend on choices of σ̃’s and ha’s, and thus they are not canonical. However, even if we
choose a different lift σ̃′ for each cell σ of X and a different element h′a for each edge a of X,
the resultant complex of groups G′(X) is still isomorphic to G(X) as complexes of groups; see
[BH99, Chapter III.C Section 2.9 (2)] for details.

A complex of groups G(X) over a ∆-complex X is called developable if it is obtained as a
complex of groups associated to an action without inversions of a group G on a ∆-complex Y
such that X = G\Y . Unlike graphs of groups, complexes of groups of higher dimension are not
always developable. The following proposition provides a necessary and sufficient condition
for a complex of groups to be developable.

Proposition 1.6. A complex of groups G(X) is developable if and only if there exists a morphism
from G(X) to a certain group G which is injective on each local group Gvσ of G(X).



CHARACTER VARIETIES AND SPLITTINGS OF 3-MANIFOLDS 9

Proof. See [Hae91, Theorem 4.1] or [BH99, Chapter III.C Corollary 2.15]. □

We end this section by summarising several facts concerning the covering space theory for
complexes of groups.

Theorem 1.7. Let G(X) be a complex of groups over a connected ∆-complex X and v0 a vertex
of X.

(1) There exist a simply connected ∆-complex X̃ (called the universal cover of X) on which
π1(G(X), v0) acts without inversions and a simplicial map p̃ : X̃ → X such that p̃ induces
a homeomorphism from π1(G(X), v0)\X̃ to X.

(2) Let G be a group, and suppose that G(X) and a morphism G(X) → G are associated
to an action without inversions of G on a ∆-complex Y with X = G\Y. Then there are
a surjection φ : π1(G(X), v0) → G and a φ-equivariant simplicial map f : X̃ → Y such
that the induced map X = π1(G(X), v0)\X̃ → G\Y = X is the identity map on X (namely
f : X̃ → Y is a covering map with the Galois group Kerφ).

Proof. See [Hae91, Theorem 4.1], or see [BH99, Chapter III.C Theorem 3.13] for (1) and
[BH99, Chapter III.C 2.18] for (2). □

2. Essential tribranched surfaces and complexes of groups

We introduce in this section the notion of tribranched surfaces and essential tribranched
surfaces which shall play key roles throughout this article. It is a certain generalisation of the
concepts of surfaces (contained in a 3-manifold) and essential surfaces; see, for example, [Sh02,
Definition 1.5.1] for the definition of essential surfaces. After proposing the definitions of
tribranched surfaces and essential tribranched surfaces in Section 2.1, we observe that essential
tribranched surfaces behave compatibly with the theory of complexes of groups in Sections 2.2
and 2.3 (as the notion of essential surfaces is well adapted to Bass and Serre’s theory on graphs
of groups [Se77] in the original work of Culler and Shalen [CS83]). Section 2.4 is an appendix,
where we discuss essential surfaces whose associated complexes of groups are not developable.

2.1. Tribranched surfaces and essential tribranched surfaces. Let M be a compact, con-
nected, irreducible and orientable 3-manifold with possibly nonempty boundary. Let Σ be a
compact subset of M such that the pair (M,Σ) is locally homeomorphic to (H,Y × [0,∞)),
where H and Y are defined by

H = { (z, s) ∈ C × R | s ≥ 0 }, Y = { re
√
−1θ ∈ C | r ∈ R≥0 and θ = 0,±2π/3 }.

We denote by C(Σ) the set of branched points of Σ corresponding to {0}×[0,∞) ⊂ Y×[0,∞), by
S (Σ) the complement of a sufficiently small tubular neighbourhood of C(Σ) in Σ, and by M(Σ)
the complement of a sufficiently small regular neighbourhood of Σ in M. The subsets C(Σ) and
S (Σ) are a properly embedded 1-submanifold and a subsurface of M respectively.

Definition 2.1 (Tribranched surfaces). Let (M,Σ) be as above. We call Σ a tribranched surface
in M if the following two conditions are fulfilled;

(TBS1) the intersection of Σ and a sufficiently small tubular neighbourhood of C(Σ) in M
is homeomorphic to Y ×C(Σ);

(TBS2) the subsurface S (Σ) is orientable.
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C(Σ)

S (Σ)

∂M

Figure 2. A local picture of a tribranched surface Σ

See Figure 2 for a local picture of a tribranched surface Σ. In the following, we will suppress
the base point in the notation of fundamental groups unless specifically noted.

Now let us define essential tribranched surfaces. Note that if the boundary of S ∈ π0(S (Σ))
appears in the boundary of a tubular neighbourhood UC of C ∈ π0(C(Σ)), we can define a natural
homomorphism π1(C) → π1(S ) as the composition π1(C)

∼−→ π1(UC ∩ ∂S ) → π1(S ). Similarly
if the boundary of N ∈ π0(M(Σ)) appears in the boundary of a regular neighbourhood US of
S ∈ π0(S (Σ)), we can also define a natural homomorphism π1(S ) → π1(N) as the composition
π1(S )

∼−→ π1(US ∩ ∂N)→ π1(N).

Definition 2.2 (Essential tribranched surfaces). A tribranched surface Σ in M is said to be
essential if the following three conditions are fulfilled, other than the conditions (TBS1) and
(TBS2) of Definition 2.1;

(ETBS1) for any component N of M(Σ), the homomorphism π1(N) → π1(M) induced by
the natural inclusion N ↪→ M is not surjective;

(ETBS2) for any components C, S , N of C(Σ), S (Σ), M(Σ) respectively, if the natural ho-
momorphisms π1(C)→ π1(S ) and π1(S )→ π1(N) are defined, they are injective;

(ETBS3) no component of Σ is contained in a 3-ball in M or a collar of ∂M.

Remark 2.3. An essential surface (in the usual sense) in M is regarded as an essential tribranched
surface without any branched points. Note that since M is irreducible, every embedded sphere
in M is contained in a 3-ball. It follows that an essential triblanched surface in M contains no
sphere component.

2.2. Complexes of groups associated to essential tribranched surfaces. It is well known
that one may associate a graph of groups to an essential surface (without any branched points)
embedded in a 3-manifold, which gives a splitting of the 3-manifold group; we refer the readers
to [Sh02, Sections 1.4 and 1.5]. Then the concept of essential tribranched surfaces, which is
a more general notion including essential surfaces, should be closely related to the theory of
complexes of groups of higher dimension. Here we discuss the relation between them.

Now let M be a compact, connected, irreducible and orientable 3-manifold. Suppose that M
contains a tribranched surface Σ.
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The dual 2-complex associated to Σ. In this paragraph we associate to the pair (M,Σ) a
∆-complex XΣ = X(M,Σ) of dimension 2. The construction of XΣ which we shall explain below is
a natural generalisation of a well-known construction of the dual graph of a bicollared surface
contained in a 3-manifold. The readers are referred to the exposition [Sh02, Section 1.4], for
example, for details on the classical construction of dual graphs.

Recall that C(Σ) denotes the set of branched points of Σ. Let C be a connected component of
C(Σ), and let D2 (resp. D̊2) denote the closed unit disk { z ∈ C | |z| ≤ 1 } (resp. the open unit disk
{ z ∈ C | |z| < 1 }). For each C, there exists a tubular neighbourhood hC : C×D2 → M by virtue of
the condition (TBS1) of tribranched surfaces; more specifically, hC induces a homeomorphism
of C × D2 onto a neighbourhood of C in M and satisfies hC(x, 0) = x for each point x of C.
Furthermore h|C×(D̊2∩Y) induces a homeomorphism of C× (D̊2∩Y) onto a regular neighbourhood
of C in Σ. We choose and fix such a tubular neighbourhood hC for each connected component
C of C(Σ). We denote by UC (resp. ŪC) the open tubular neighbourhood hC(C × D̊2) (resp. the
closed tubular neighbourhood hC(C × D2)) of C in M.

Next let S be an arbitrary connected component of S (Σ) = Σ \∪C∈π0(C(Σ)) UC. The condition
(TBS2) combined with the theory of regular neighbourhoods provides us with a homeomor-
phism hS : S × [−1, 1] → M onto a bicollar neighbourhood of S in M \∪C∈π0(C(Σ)) UC; namely
hS satisfies hS (x, 0) = x for each point x of S and ∂hS (S × [−1, 1]) coincides with the inter-
section of hS (S × [−1, 1]) and ∂M ∪ ∪C∈π0(C(Σ)) ∂ŪC. We also choose and fix such a regular
neighbourhood hS for each connected component S of S (Σ). We further assume that the closed
sets hS (S × [−1, 1]) are pairwisely disjoint after replacing them by thinner ones if necessary.
We denote by US (resp. ŪS ) the subset hS (S × (−1, 1)) (resp. hS (S × [−1, 1])) of M which is an
open (resp. a closed) bicollar neighbourhood of S in M \∪C∈π0(C(Σ)) UC.

We denote by M(Σ) the complement of
∪

C∈π0(C(Σ)) UC ∪
∪

S∈π0(S (Σ)) US in M. Note that all of
π0(C(Σ)), π0(S (Σ)) and π0(M(Σ)) are finite sets due to the compactness of M. We thus obtain a
partition of M into disjoint subsets:

M =
⊔

N∈π0(M(Σ))

N ⊔
⊔

S∈π0(S (Σ))
t∈(−1,1)

hS (S × {t}) ⊔
⊔

C∈π0(C(Σ))
s∈D̊2

hC(C × {s}).(2.1)

We use the notation x ∼Σ y to indicate that both of two points x, y ∈ M are contained in one of the
disjoint subsets occurring in the right hand side of (2.1). Obviously ∼Σ defines an equivalence
relation on M. Set XΣ = X(M,Σ) = M/∼Σ and endow XΣ with the quotient topology. One then
easily observes that XΣ has a natural structure of a ∆-complex of dimension 2 whose 0-cells,
1-cells and 2-cells are labeled by elements of π0(M(Σ)), π0(S (Σ)) and π0(C(Σ)) respectively. It
is straightforward to check that a 1-cell σS (labeled by an element S of π0(S (Σ))) occurs in the
boundary of a 2-cell σC (labeled by an element C of π0(C(Σ))) if and only if the intersection of
ŪS and ŪC is nonempty. Similarly a 0-cell σN (labeled by an element N of π0(M(Σ))) occurs
in the boundary of a 1-cell σS (resp. a 2-cell σC) if and only if the intersection of N and ŪS

(resp. ŪC) is nonempty. We call XΣ the dual 2-complex associated to the tribranched surface Σ.
Figure 3 illustrates a local picture of the dual 2-complex XΣ. We denote the scwol associated to
XΣ by XΣ (see Definition 1.1). Note that XΣ is connected since M is connected by assumption
and XΣ is the image of a continuous quotient map rΣ : M → XΣ.

The complexes of groups associated to essential tribranched surfaces. Now let us try to
endow XΣ with a structure of a complex of groups. As we shall see, the following construction
works well only when Σ is essential. Set Π0(M,Σ) = π0(C(Σ))⊔ π0(S (Σ))⊔ π0(M(Σ)). Then, by
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Σ

C1

C2

S 1

S 2

S 3

S 4

S 5

N1

N2

N3

N4

σN1

σN2

σN3

σN4

σS 1

σS 2

σS 3
σS 4

σS 5

σC1

σC2

Figure 3. The dual 2-complex XΣ associated to a tribranched surface Σ

construction, each cell of XΣ corresponds to an element ofΠ0(M,Σ). In the following arguments,
we often identify a cell of XΣ with the corresponding element of Π0(M,Σ), and use the same
symbol to indicate them. Let us choose and fix a point xσ in each σ ∈ Π0(M,Σ) and define the
local group GΣvσ at vσ ∈ V(XΣ) as the fundamental group π1(σ, xσ) (in the usual sense). We next
associate a group homomorphism ψΣa : GΣi(a) → GΣt(a) to each edge a. Let σ and τ be elements of
Π0(M,Σ) satisfying i(a) = vσ and t(a) = vτ. The existence of the edge a implies that the cell
τ of XΣ occurs in the boundary of the cell σ, and in particular the intersection of Ūσ and Ūτ is
nonempty as we have already remarked (with the convention UN = ŪN = N for each element
N of π0(M(Σ))). We may thus take a path lσ,τ : [0, 1] → Ūσ ∪ Ūτ satisfying lσ,τ(0) = xσ and
lσ,τ(1) = xτ. We choose and fix such a path lσ,τ for each edge a with i(a) = vσ and t(a) = vτ. We
may readily verify that τ is a deformation retract of Ūσ ∪ Ūτ by the definition of Ūτ as a tubular
or bicollar neighbourhood, and therefore we may define a group homomorphism ψΣa : GΣvσ → GΣvτ
as the composition

GΣvσ = π1(σ, xσ)→ π1(Ūσ ∪ Ūτ, xσ)
(♯)−→ π1(Ūσ ∪ Ūτ, xτ)

∼−→ π1(τ, xτ) = GΣvτ(2.2)

where the first map is induced from the natural inclusionσ ↪→ Ūσ∪Ūτ and the last isomorphism
is induced from a deformation retraction from Ūσ∪Ūτ to τ. The middle map (♯) is the change of
base points with respect to the path lσ,τ, or in other words, the map defined by [c] 7→ [l−1

σ,τ∗c∗lσ,τ].
Here we define the concatenation l1 ∗ l2 of two paths l1, l2 : [0, 1]→ T in a topological space T
with l1(1) = l2(0) as follows:

l1 ∗ l2(t) =

l1(2t) for 0 ≤ t ≤ 1
2 ,

l2(2t − 1) for 1
2 ≤ t ≤ 1.

We finally define a twisting element gΣa,b for each composable pair (a, b) of edges inXΣ. Suppose
that the vertices i(b), t(b)(= i(a)) and t(a) are labeled by elements C of π0(C(Σ)), S of π0(S (Σ))
and N of π0(M(Σ)) respectively. Then we define gΣa,b as the image of [l−1

S ,N ∗ l−1
C,S ∗ lC,N] under

the map π1(N ∪ ŪS ∪ ŪC, xN) → π1(N, xN) = GΣvN
induced by a deformation retraction from

N ∪ ŪS ∪ ŪC to N. The twisted commutativity (CG1)

gΣa,bψ
Σ
ab([c])(gΣa,b)−1 = ψΣa ◦ ψΣb([c])(2.3)

straightforwardly holds for each element [c] of GΣC = π1(C, xC). We have now verified, com-
bining Remark 1.4 with the calculations above, that G(XΣ) = (XΣ, {GΣvσ}, {ψΣa}, {gΣa,b}) satisfies all
the conditions of complexes of groups over XΣ except for injectivity of each ψΣa . If we further
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assume that the tribranched surface Σ under consideration is essential, we readily observe that
every ψΣa is injective due to the condition (ETBS2) and the twisted commutativity (2.3). As a
consequence G(XΣ) is indeed a 2-complex of groups over XΣ when Σ is essential, which we call
the complex of groups associated to the essential tribranched surface Σ.

2.3. Splittings of 3-manifold groups induced by essential tribranched surfaces. In this sub-
section we show that when M contains an essential tribranched surface Σ, the fundamental group
π1(M) (in the usual sense) is presented as the fundamental group of the complex of groups
G(XΣ), which is a slight modification of G(XΣ).

A morphism ϕΣ from G(XΣ) to the fundamental group π1(M). Recall that we have chosen and
fixed a point xσ in σ for each σ ∈ Π0(M,Σ) in the previous subsection. Let us further choose
and fix a point x0 in M(Σ) and a path lσ : [0, 1] → M for each element σ of Π0(M,Σ) such that
lσ(0) = x0 and lσ(1) = xσ. We define a morphism ϕΣ : G(XΣ) → π1(M, x0) as follows. For each
σ ∈ Π0(M,Σ), we define a group homomorphism ϕΣvσ : GΣvσ → π1(M, x0) as the composition

GΣvσ = π1(σ, xσ)→ π1(M, xσ)
(♭)−−→ π1(M, x0),(2.4)

where the first map is induced from the natural inclusion σ ↪→ M and the second map (♭) is the
change of the base point with respect to the path lσ, that is, the map defined as [c] 7→ [lσ∗c∗l−1

σ ].
We also associate an element ϕΣ(a) of π1(M, x0) defined as [lτ ∗ l−1

σ,τ ∗ l−1
σ ] to each edge a of XΣ

when i(a) and t(a) are denoted by vσ and vτ respectively. Then the twisted commutativity

ϕΣ(a)ϕΣvσ([c])ϕΣ(a)−1 = ϕΣvτ ◦ ψ
Σ
a([c])(2.5)

straightforwardly holds for each element [c] of GΣvσ = π1(σ, xσ) by the construction of ϕΣ(a).
Furthermore, for each composable pair (a, b) of edges in XΣ with i(b) = vC, t(b) = i(a) = vS and
t(a) = vN , one readily verifies the equation ϕΣvN

(gΣa,b)ϕΣ(ab) = ϕΣ(a)ϕΣ(b) by direct calculation.
Therefore ϕΣ = ({ϕΣvσ}σ∈Π0(M,Σ), {ϕΣ(a)}a∈E(XΣ)) is a morphism from G(XΣ) to π1(M, x0).

The quotient G(XΣ) of G(XΣ) with respect to ϕΣ. For each σ ∈ Π0(M,Σ), set G
Σ

vσ = ϕ
Σ
vσ(GΣvσ).

Then one readily sees from the twisted commutativity (2.5) that the kernel of ϕΣi(a) coincides

with that of ϕΣt(a) ◦ ψa for each a ∈ E(XΣ); hence ψa induces an injection ψa : G
Σ

i(a) → G
Σ

t(a).
By construction, the twisted commutativity (CG1) clearly holds for {ψa}a∈E(XΣ) if we define the
twisting element ga,b as ga,b = ϕ

Σ
t(a)(ga,b) ∈ G

Σ

t(a) for each composable pair (a, b) of edges in XΣ.
Therefore G(XΣ) := (XΣ, {G

Σ

vσ}, {ψa}, {ga,b}) is again a complex of groups over XΣ, which we call

the quotient complex of G(XΣ) with respect to ϕΣ. Note that since every local group G
Σ

vσ is by

definition a subgroup of π1(M, x0), the induced morphism ϕ
Σ

: G(XΣ) → π1(M, x0) satisfies the
assumption of Proposition 1.6, and thus G(XΣ) is developable. In the rest of this subsection, we
prove the following theorem by explicitly constructing the “universal development” of G(XΣ).

Theorem 2.4. Let Σ be an essential tribranched surface contained in a compact, connected,
irreducible and orientable 3-manifold M. Then the morphism ϕ

Σ
: G(XΣ) → π1(M, x0) con-

structed as above induces an isomorphism π1(G(XΣ), σ0)
∼−→ π1(M, x0).
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Geometric construction of a development. Consider the universal cover M̃ of M and let Σ̃ de-
note the preimage of Σ under the universal covering map pM̃ : M̃ → M. Then one readily shows
by using the covering space theory that Σ̃ is also a tribranched surface, and the preimage C(Σ̃)
of C(Σ) under pM̃ coincides with the set of branched points of Σ̃. Furthermore, for each con-
nected component C̃ of C(Σ̃) in the preimage of C ∈ π0(C(Σ)) under pM̃, there exists a unique
tubular neighbourhood hC̃ : C̃ × D2 → M̃ of C̃ in M̃ satisfying pM̃(hC̃(x, t)) = hC(pM̃(x), t).
We define UC̃ as hC̃(C̃ × D̊2) and set S (Σ̃) as Σ̃ \ ∪C̃∈π0(C(Σ̃)) UC̃. Then, for each connected
component S̃ of S (Σ̃) in the preimage of S ∈ π0(S (Σ)) under pM̃, there exists a unique regu-
lar neighbourhood hS̃ : S̃ × [−1, 1] → M̃ \∪C̃∈π0(C(Σ̃)) UC̃ of S̃ in M̃ \∪C̃∈π0(C(Σ̃)) UC̃ satisfying
pM̃(hS̃ (x, t)) = hS (pM̃(x), t). We define US̃ as hS̃ (S̃ × (−1, 1)), and define M(Σ̃) as the comple-
ment of

∪
C̃∈π0(C(Σ̃)) UC̃ ∪

∪
S̃∈π0(S (Σ̃)) US̃ in M̃. We remark that S (Σ̃) and M(Σ̃) coincide with the

preimages of S (Σ) and M(Σ) under pM̃ respectively. Now we can endow M̃ with an equivalence
relation ∼Σ̃ and construct a ∆-complex XΣ̃ of dimension 2 as the quotient space XΣ̃ = M̃/ ∼Σ̃, in
the completely same manner as the construction of XΣ. Similarly to XΣ, there exists a quotient
map rΣ̃ : M̃ → XΣ̃, and it is easy to construct a continuous map iΣ̃ : XΣ̃ → M̃ such that rΣ̃ ◦ iΣ̃ is
homotopic to the identity map on XΣ̃. The compositions of the induced maps

π0(XΣ̃)
i
Σ̃,∗−−→ π0(M̃)

r
Σ̃,∗−−→ π0(XΣ̃), π1(XΣ̃)

i
Σ̃,∗−−→ π1(M̃)

r
Σ̃,∗−−→ π1(XΣ̃)

are thus the identity maps. Since M̃ is simply connected, both of π0(XΣ̃) and π1(XΣ̃) are single-
tons, and hence we see that XΣ̃ is also simply connected. Note that the ∆-complex XΣ̃ admits
an action of π1(M, x0), which is indeed a simplicial action without inversions, induced from its
natural action on M̃ via deck transformations.

Proposition 2.5. The 2-complex of groups G(XΣ) and the morphism ϕ
Σ

: G(XΣ) → π1(M, x0)
are associated to the action of π1(M, x0) on the ∆-complex XΣ̃ constructed as above.

Proof. Recall that pM̃ : M̃ → M denotes the universal covering of M. Take an arbitrary point x̃0

from p−1
M̃

(x0). For each σ ∈ Π0(M,Σ), let l̃σ denote a unique lift of lσ to M̃ satisfying l̃σ(0) = x̃0.
We set x̃σ = l̃σ(1) and denote by σ̃ a unique connected component of p−1

M̃
(σ) containing x̃σ.

Note that x̃σ is a lift of xσ to M̃. We shall verify that all the data of which the complex of groups
G(XΣ) consists (specifically the local groups G

Σ

vσ , the local homomorphisms ψ
Σ

a and the twisting
elements gΣa,b) are obtained from the action of π1(M, x0) on the ∆-complex XΣ̃.

Via the monodromy homomorphism and the parallel translation along l̃σ, we may identify
π1(M, x0) with the automorphism group of p−1

M̃
({xσ}). The isotropy subgroup π1(M, x0)σ̃ of

π1(M, x0) at σ̃ is then identified with the group of covering automorphisms of σ̃ → σ, and the
latter group coincides with the image of π1(σ, xσ) in π1(M, x0) under the map (2.4). We can thus
conclude that

G
Σ

vσ = ϕ
Σ
vσ(GΣvσ) = the image of π1(σ, xσ) in π1(M, x0) under the map (2.4)

is the isotropy subgroup of π1(M, x0) at σ̃ (or at vσ̃) with respect to the natural action of π1(M, x0)
on M̃ (or on XΣ̃).

Next we verify that, for an appropriate choice of ha ∈ π1(M, x0) for each edge a in XΣ, the
equalities ψa(− ) = ha (−) h−1

a and ga,b = hahbh−1
ab hold. Let a be an edge in XΣ and denote its
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initial and terminal vertices by vσ and vτ respectively. Let ã be a unique edge of XΣ̃ which is a
lift of a and satisfies i(ã) = vσ̃. We may identify ã with a unique lift l̃σ,τ of lσ,τ to M̃ satisfying
l̃σ,τ(0) = x̃σ up to homotopy. Then the parallel translation along the path l̃−1

σ,τ ∗ l̃−1
σ ∗ l̃τ defines

an element h̃a = [l−1
σ,τ ∗ l−1

σ ∗ lτ] of Aut(p−1
M̃

({xτ})) � π1(M, xτ) satisfying h̃at(ã) = t̃(a) = vτ̃.
We denote by ha = [lτ ∗ l−1

σ,τ ∗ l−1
σ ] the image of h̃a in π1(M, x0) under the change of base points

π1(M, xτ)
(♭)−−→ π1(M, x0) appearing in (2.4). Then the image ϕΣvσ(ξ) of an element ξ of π1(σ, xσ)

in π1(M, x0) under the map (2.4) is none other than [lσ]ξ[l−1
σ ] if we denote the image of ξ in

π1(M, xσ) by ξ, and thus we may calculate as

haϕ
Σ
vσ(ξ)h−1

a = [lτ ∗ l−1
σ,τ ∗ l−1

σ ]
(
[lσ]ξ[l−1

σ ]
)
[lσ ∗ lσ,τ ∗ l−1

τ ] = [lτ ∗ l−1
σ,τ]ξ[lσ,τ ∗ l−1

τ ],

which is identified with the image of [l−1
σ,τ]ξ[lσ,τ] in π1(τ, xτ) under the map (2.4). Comparing

with the definition (2.2) of ψΣa , we obtain the desired equality ψ
Σ

a(ϕΣvσ(ξ)) = haϕ
Σ
vσ(ξ)h−1

a . Simi-
larly we calculate as

hahbh−1
ab = [lN ∗ l−1

S ,N ∗ l−1
S ][lS ∗ l−1

C,S ∗ l−1
C ][lC ∗ lC,N ∗ l−1

N ]

= [lN ∗ l−1
S ,N ∗ l−1

C,S ∗ lC,N ∗ l−1
N ] (as an element of π1(M, x0))

= [l−1
S ,N ∗ l−1

C,S ∗ lC,N] = gΣa,b (as an element of ϕΣvN
(π1(N, xN)))

for composable edges a and b. Here C, S and N denote elements of π0(C(Σ)), π0(S (Σ)) and
π0(M(Σ)) respectively such that i(b) = vC, t(b) = i(a) = vS and t(a) = vN hold. Moreover
ϕΣ(a) = ha trivially follows by the definitions of ϕΣ(a) and ha. Therefore, under the specific
choices of a lift σ̃ of each cellσ of XΣ and an element ha = [lτ∗l−1

σ,τ∗l−1
σ ] ∈ π1(M, x0) for each edge

a in XΣ with i(a) = vσ and t(a) = vτ, the complex of groups G(XΣ) is indeed the one associated
to the action of π1(M, x0) on the ∆-complex XΣ̃, and ϕ

Σ
is the associated morphism. □

Proof of Theorem 2.4. Since the induced morphism ϕ
Σ

: G(XΣ) → π1(M, x0) satisfies the as-
sumption of Proposition 1.6, the complex of groups G(XΣ) over the connected ∆-complex
XΣ is developable and thus, by Theorem 1.7 (1), it admits a universal cover X̃Σ. On the
other hand, we have constructed the simply connected ∆-complex XΣ̃ and the action with-
out inversions of π1(M, x0) on XΣ̃, to which the complex of groups G(XΣ) and the morphism
ϕ
Σ

: G(XΣ) → π1(M, x0) are associated. Then Theorem 1.7 (2) implies that there are a surjec-
tion φ : π1(G(XΣ), v0) ↠ π1(M, x0) and a φ-equivariant simplicial map f : X̃Σ → XΣ̃ such that
f is a covering map with Galois group Kerφ; in particular π1(XΣ̃) = Kerφ holds. The sim-
ply connectedness of XΣ̃ implies the triviality of Kerφ, and we thus obtain an isomorphism
π1(G(XΣ), v0)

∼−→ π1(M, x0) as desired. □

Remark 2.6. Note that there exists a natural surjection

π1(G(XΣ), v0)↠ π
edge
1 (XΣ, v0)

∼−→ π
top
1 (|XΣ|, x0),

where the first map sends any elements of
⨿

σ G
Σ

vσ to the unit, and the second isomorphism
is due to Proposition 1.3. The rightmost group π

top
1 (|XΣ|, x0) reflects topological information

on the arrangement of the essential tribranched surface Σ in M (recall the construction of the
∆-complex XΣ). Theorem 2.4 combined with the the natural surjection above implies that the
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Figure 4. An essential tribranched surface which does not satisfy (ETBS4)

arrangement of Σ also affects the presentation of π1(M, x0) as the fundamental group of the
complex of groups G(XΣ).

2.4. Appendix: About injectivity on local groups. Now let us consider the following addi-
tional condition on essential tribranched surfaces;

(ETBS4) for each component N of M(Σ), the homomorphism π1(N)→ π1(M) induced from
the natural inclusion N ↪→ M is injective.

We readily see that G(XΣ) coincides with G(XΣ) if an essential tribranched surface Σ satisfies
the condition (ETBS4). In the case Theorem 2.4 implies that π1(M, x0) can be completely
recovered from the fundamental groups π1(σ, xσ) of components σ ∈ Π0(M,Σ).

Unlike the case of essential surfaces (without any branched points), one cannot derive
the condition (ETBS4) from the conditions (ETBS1), (ETBS2) and (ETBS3) of essential tri-
branched surfaces, and there does exist an essential tribranched surface which does not satisfy
the condition (ETBS4). For example, consider two solid tori M1 and M2. Let Σ1 be a tribranched
surface isomorphic toΘ×S 1, whereΘ is a theta graph, naturally embedded in the interior of M1,
and Σ2 a meridian disk in M2. Then the boundary-connected sum M of M1 and M2 contains an
essential tribranched surface Σ = Σ1 ⊔ Σ2, which does not satisfy (ETBS4); indeed if we denote
by N0 a unique connected componen of M \ Σ outside Σ1, the image of its fundamental group
π1(N0) � Z2 in π1(M) is cyclic because a meridian loop of N0 is homotopic to the trivial loop in
M. Theorem 2.4 combined with construction of the complex of groups G(XΣ) implies that such
a “redundant” loop does not contributes to the fundamental group of the total space M. Figure 4
illustrates the picture of Σ and the associated complex of groups G(XΣ); the base ∆-complex of
G(XΣ) consists of two triangles identified along their boundaries and a circuit whose initial and
terminal vertex corresponds to N0. Here circles, squares and triangles indicate barycentres of
0-cells, 1-cells and 2-cells of XΣ respectively.

The example above seems a bit artificial, because the handle body M of genus 2 contains a
much simpler essential (tribranched) surface, namely the disjoint union of two meridian disks
each in M1 and M2, which obviously satisfies the condition (ETBS4). Thus it would be in-
teresting to ask for which class of 3-manifolds their fundamental groups have presentations
associated to essential tribranched surfaces satisfying (ETBS4).

3. The Bruhat–Tits buildings B(SL(n)/F) associated to the special linear groups

Bruhat–Tits buildings are combinatorial and topological objects associated to reductive al-
gebraic groups defined over non-archimedean valuated fields, which behave as Riemannian
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symmetric spaces in differential geometry; in particular they admit natural “transitive” actions
of the algebraic groups (to be precise, the natural group actions on the Bruhat–Tits buildings
are strictly transitive; see the end of Section 3.1 for the definition of strict transitivity). The
theory of Bruhat–Tits buildings has its origin in the study of Nagayoshi Iwahori and Hideya
Matsumoto on the generalised Bruhat decomposition of p-adic Chevalley groups [IM65], and
then it has been elaborated by François Bruhat and Jacques Tits in a systematic and axiomatic
way [BT72, BT84]. The Bruhat–Tits tree, which appears in the work of Culler and Shalen
[CS83], is none other than the Bruhat–Tits building associated to the special linear group SL(2)
of degree 2, and the Bruhat–Tits buildings associated to the special linear groups of higher de-
gree play crucial roles in our extension of Culler and Shalen’s results. In this section we shall
summarise basic notion on Bruhat–Tits buildings and their fundamental properties, especially
for the special linear groups.

3.1. Euclidean buildings and their contractibility. We first review the axiomatic definition of
(Euclidean) buildings after Tits and basic properties of Euclidean buildings. Refer, for instance,
to [AB08, Ga97] for details of the contents of this subsection.

Definition 3.1 (Chamber complexes). Let Σ be an abstract simplicial complex of finite dimen-
sion (that is, every simplex of Σ is of finite dimension). We call Σ a chamber complex if the
following two conditions are fulfilled:
(CC1) every maximal simplex of Σ has the same dimension n;
(CC2) every two maximal simplices C and C′ are connected by a gallery; that is, there exists a

sequence of maximal simplices C0 = C, C1, . . . ,Cr = C′ of Σ such that Ci−1 and Ci are
adjacent for each 1 ≤ i ≤ r.

Here we say that maximal simplices C and C′ of Σ are adjacent if C and C′ are distinct and
contain a common (n − 1)-dimensional face. A maximal simplex of Σ is called a chamber of
Σ. The dimension of Σ is defined as the (same) dimension n of a chamber of Σ. A chamber
complex Σ of dimension n is said to be thin if every (n − 1)-dimensional simplex of Σ is a face
of exactly two chambers.

Definition 3.2 (Buildings). Let ∆ be an abstract simplicial complex. We call ∆ a (simplicial)
thick building of dimension n if there exists a familyA of n-dimensional thin chamber subcom-
plexes of ∆ and the pair (∆,A) satisfies the following axioms:

(B0) the complex ∆ is the union of all elements ofA, and each (n − 1)-dimensional simplex
of ∆ is a face of at least three maximal simplices of ∆ (which are of dimension n);

(B1) every two simplices of ∆ lie in a common chamber subcomplex of ∆ belonging toA;
(B2) if Σ and Σ′ are elements ofA both of which contain two simplices σ and τ, there exists

an isomorphism Σ
∼−→ Σ′ of chamber complexes which fixes all the vertices of σ and τ.

A thin chamber subcomplex Σ of∆ belonging toA is called an apartment of∆, and a maximal
simplex of ∆ is called a chamber of ∆. Among families of thin chamber subcomplexes of ∆
satisfying all the axioms (B0), (B1) and (B2), there exists a unique maximal one Acpl which
is called the complete system of apartments of ∆. We can deduce from the conditions (B0),
(B1), (B2) that the apartments of a thick building ∆ are all isomorphic to some Coxeter complex
Σ(W, S ) for a well-defined Coxeter system (W,S); refer to [AB08, Theorem 4.131] (see also
[AB08, Sections 2 and 3] for details on Coxeter systems and Coxeter complexes).
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It is well known that a building ∆ of dimension n is a colorable chamber complex; namely
there exists an In+1-valued function τ on the vertices of ∆ such that the vertices of each chamber
of ∆ are mapped bijectively onto In+1, where In+1 denotes a finite set of cardinality n + 1. Such
a function τ is called a type function on ∆ (with values in In+1). We refer the reader to [AB08,
Proposition 4.6] for details.

Definition 3.3 (Euclidean buildings). A building ∆ of dimension n is said to be a Euclidean
building (or a building of affine type) if the geometric realisations of all apartments of ∆ are
isomorphic to a Euclidean Coxeter complex Σ(W, S ) of dimension n for a certain Euclidean
Coxeter system (W, S ).

We omit the definition of Euclidean Coxeter systems and Euclidean Coxeter complexes be-
cause we do not need their explicit definition in this article (see, for example, [AB08, Chap-
ter 10] for details). As a simplicial complex, the Euclidean Coxeter complex Σ(W, S ) is home-
omorphic to the Euclidean space Rn of dimension n tessellated by n-simplices; the type of
tessellation is determined by the Euclidean Coxeter system (W, S ).

Now let ∆ be a Euclidean building. For arbitrary two points x and y of the geometric reali-
sation |∆| of ∆, there exists an apartment Σ(x,y) of ∆ whose geometric realisation |Σ(x,y)| contains
both of x and y due to the axiom (B1) of buildings. We equip |Σ(x,y)| with the standard Euclidean
metric d|Σ(x,y) |, and define a real-valued function d|∆| on |∆| × |∆| by

d|∆| : |∆| × |∆| → R≥0 ; (x, y) 7→ d|Σ(x,y) |(x, y).

Then d|∆| is a metric on the geometric realisation |∆| of ∆ which is well defined independently
of the choice of an apartment Σ(x,y) due to the axiom (B2) of buildings. One readily checks that
the topology of |∆| determined by the metric d|∆| coincides with the weak topology endowed on
|∆|. Bruhat and Tits have verified that the metric space (|∆|, d|∆|) is a CAT(0) space; in particular
|∆| is contractible (refer to [BT72, Propositions 2.5.3. et 2.5.16] for details; see also [AB08, the
proof of Theorem 11.16]). The contractibility of Euclidean buildings shall play a crucial role in
the construction of tribranched surfaces in Section 4.2.

We shall end this subsection by presenting several notion concerning group actions on build-
ings. Let G be a group and ∆ a building on which G acts. One easily verifies that the action of
G on ∆ induces actions of G both on the complete system of apartmentsAcpl of ∆ and on the set
of all the chambers of ∆. An action of a group G on a building ∆ is said to be strictly transitive
if G acts transitively on the set of all pairs (Σ,C) consisting of an apartment Σ (belonging to
Acpl) and a chamber C contained in Σ, and said to be type-preserving if an arbitrary element γ
of G maps a vertex of ∆ to one of the same type (with respect to a certain type function on ∆).

3.2. Combinatorial construction of B(SL(n)/F). One of the most significant aspects in the
theory of Euclidean buildings is the fact that one may associate in a canonical manner a Eu-
clidean building 3 B(G/F) to a reductive algebraic group G defined over a non-archimedean
valuated field F. Furthermore B(G/F) admits a natural, strictly transitive action of G(F). The
existence of such Euclidean buildings was first observed in the pioneering work of Iwahori and
Matsumoto [IM65] for Chevalley groups (which are in particular split, semisimple and simply

3We remark that, for general reductive groups, the Bruhat–Tits buildings are polysimplicial complexes and not
necessarily simplicial.



CHARACTER VARIETIES AND SPLITTINGS OF 3-MANIFOLDS 19

connected algebraic groups) defined over p-adic fields.4 Then Bruhat and Tits established con-
struction of such Euclidean buildings in [BT72, BT84] for general reductive algebraic groups.
The Euclidean building B(G/F) attached to G/F is therefore called the Bruhat–Tits building
associated to G/F .

Bruhat and Tits’s construction of B(G/F) utilising “valuated root data” is rather abstract and
complicated, but limiting ourselves to the Bruhat–Tits building B(G/F) associated to the special
linear group G = SL(n) defined over a discrete valuation field (which is a p-adic Chevalley
group and thus has been already dealt with by Iwahori and Matsumoto in [IM65]), we may
explicitly describe the combinatorial structure of B(G/F) and the effect of the action of G(F)
on B(G/F) without introducing any root datum. We propose in this subsection a combinato-
rial description of the Bruhat–Tits building B(SL(n)/F) associated to the special linear group
SL(n)/F , mainly following [Ga97, Chapter 19]. We shall only utilise the Bruhat–Tits buildings
B(SL(n)/F) associated to the special linear groups in our later applications.

Let F be a field equipped with a (normalised) discrete valuation w : F× → Z. We do not re-
quire that the base field F is complete with respect to the multiplicative valuation |·|w associated
to w (indeed we shall later apply results of this subsection to a case where the base field is not
complete). We denote the valuation ring of F with respect to w by Ow. We fix a uniformiser
ϖw of the discrete valuation field (F,w); in other words, we choose and fix a generator ϖw of
the maximal ideal of Ow (which is known to be a principal ideal due to basic facts of valuation
theory).

Let Vn denote an n-dimensional vector space over F equipped with a basis {e1, . . . , en}. We
identify Vn with F⊕n (the F-vector space of n-dimensional column vectors) with respect to the
specified basis {e j}nj=1 and regard the special linear group SLn(F) as a subgroup of AutF(Vn). An
Ow-submodule L of Vn is called a lattice of Vn if L spans Vn over F: ⟨L⟩F = Vn. Every lattice
of Vn is then a free Ow-module of rank n by elementary divisor theory. Two lattices L and L′

of Vn are said to be homothetic if there exists a nonzero element a of F such that L coincides
with aL′ (as an Ow-submodule of Vn). The homothety relation is an equivalence relation on
the set of all lattices of Vn, and we define the vertex set V(B(SL(n)/(F,w))) of the Bruhat–Tits
building B(SL(n)/(F,w)) as the set of homothety classes of lattices of Vn. We say that two distinct
elements v and v′ of V(B(SL(n)/(F,w))) are adjacent if there exist lattices L and L′ representing
the homothety classes v and v′ respectively such that

ϖwL′ ⊊ L ⊊ L′

holds (asOw-submodules of Vn). We then defineB(SL(n)/(F,w)) as an abstract simplicial complex
each of whose simplices is a finite subset {v1, . . . , vr} of V(B(SL(n)/(F,w))) consisting of vertices
adjacent to each other; in other words, a set {v1, . . . , vr} of r vertices of B(SL(n)/(F,w)) forms an
r-simplex if and only if there exists a lattice Li representing vi for each 1 ≤ i ≤ r such that

ϖwLr ⊊ L1 ⊊ L2 ⊊ · · · ⊊ Lr

holds (after appropriate relabeling of the subindices). For an arbitrary F-basis f = { f1, . . . , fn}
of Vn, consider a subcomplex Σf of B(SL(n)/(F,w)) generated by the homothety classes of lattices
of the form

∑n
j=1Owϖ

m j
w f j (each m j takes an arbitrary integer). The subcomplex Σf is indeed

4More precisely, Iwahori and Matsumoto have constructed a (generalised) BN pair with respect to the Iwahori
subgroup B of a p-adic Chevalley group in [IM65, Proposition 2.2, Theorem 2.22]. Although they have never
mentioned buildings in [IM65], it is well known that one may associate buildings to such BN-pairs in a canonical
way; see [AB08, Theorem 6.56] for example.
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a thin chamber complex of dimension n − 1. Denote by A the family of the subcomplexes
Σf of B(SL(n)/(F,w)) indexed by an F-basis f of Vn. Then we may readily verify that the pair
(B(SL(n)/(F,w)),A) satisfies all the axioms (B0), (B1) and (B2) of buildings; see [Ga97, Chap-
ter 19.2] for details. The special linear group SLn(F) acts on the set of lattices of Vn in an
obvious manner; namely, for a lattice L =

∑n
j=1Ow f j with an Ow-basis { f1, . . . , fn}, we define

gL as an Ow-submodule of Vn spanned by {g( f1), . . . , g( fn)} (here we regard g as an element of
AutF(Vn)). This defines an action of SLn(F) on V(B(SL(n)/(F,w))), which is naturally extended
to an action of SLn(F) on B(SL(n)/(F,w)). One of the significant features of the action of SLn(F)
on B(SL(n)/(F,w)) is that it is a strictly transitive and type-preserving action. In particular, an
element γ of SLn(F) fixes all the vertices of a chamber C whenever γ stabilises C.

In order to see that it is type-preserving, one has only to check that an association of a
value τ(v) = (w(det gv) mod n) to each vertex v of B(SL(n)/(F,w)) defines a type function τ on
B(SL(n)/(F,w)) with values in Z/nZ. Here gv is an element of AutF(Vn) satisfying L = gv(L0)
for a certain lattice L representing v, and L0 denotes the standard lattice of Vn defined as
L0 =

∑n
j=1Owe j. Then the type of a vertex of B(SL(n)/(F,w)) does not change under the action of

an element γ of SLn(F) since one has

τ(γv) = (w(det(γgv)) mod n) = (w(det γ) mod n) + τ(v) = τ(v)

by using det(γ) = 1.

Remark 3.4. The Bruhat–Tits building B(GL(n)/(F,w)) associated to the general linear group
GL(n)/(F,w) is the same one as B(SL(n)/(F,w)). However, the natural action of GLn(F) on
B(GL(n)/(F,w)) does not preserve the type function τ(v) = (w(det gv) mod n) introduced above
since the Z-valued function w ◦ det on GLn(F) takes arbitrary value (indeed GLn(F) acts tran-
sitively on the vertex set V(B(GL(n)/(F,w)))). In order to guarantee that the natural action on the
Bruhat–Tits building is type-preserving, we deal with the Bruhat–Tits building associated to the
special linear group SL(n) rather than the Bruhat–Tits building associated to the general linear
group GL(n). We shall effectively utilise the type-preserving property of the action when we
consider the quotient complex Bn,D̃,ỹ/π1(M, x0) in Section 4.3.

Example 3.5 (Bruhat–Tits trees). In the case where n equals 2, the construction ofB(SL(2)/(F,w))
explained above is none other than the classical construction of the Bruhat–Tits tree associated
to SL(2)/F , which is, for example, presented in [Se77, Chapitre II, Section 1]. Note that the
Bruhat–Tits trees play crucial roles in the original work of Culler and Shalen [CS83].

4. Construction of essential tribranched surfaces

We shall establish our construction of essential tribranched surfaces in this section. There are
two technical hearts in the construction. One is to obtain a nontrivial type-preserving action of
the 3-manifold group on the Bruhat–Tits building associated to the special linear group SL(n)
by utilising geometry of character varieties of higher degree. After a brief review on charac-
ter varieties of higher degree in Section 4.1, we explain how to obtain such a nontrivial action
in Section 4.2. The other is to construct a non-empty tribranched surfaces from such a non-
trivial action. In Section 4.3, we put this procedure in practice, and then modify the obtained
tribranched surfaces to be essential by certain local surgeries.
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4.1. SLn(C)-character variety. We begin with briefly reviewing the SLn(C)-character variety
of a finitely generated group. See for instance Lubotzky and Magid [LM85] for basic results on
representations and character varieties.

Let π be a finitely generated group. We denote by Rn(π) the set Hom(π,SLn(C)) of all the
SLn(C)-representations of π, which is an affine algebraic set. The algebraic group SL(n)/C acts
on Rn(π) by conjugation. We denote by Xn(π) the geometric invariant theoretical quotient of
Rn(π) with respect to this action, which is called the SLn(C)-character variety of π. We define
the character χρ : π → C of an SLn(C)-representation ρ : π → SLn(C) as χρ(γ) = tr ρ(γ) for
each element γ in π. The set of C-valued points Xn(π) of Xn(π) coincides with that of characters
χρ of SLn(C), and under this identification the quotient map Rn(π)(C) → Xn(π)(C) is regarded
as the map which sends ρ to χρ. For an element γ of π, we define the invariant functions
σγ,i : Xn(π)(C)→ C associated to γ for i = 1, . . . , n− 1 as the (sign-modified) coefficients of the
characteristic polynomial of ρ(γ)

det(tEn − ρ(γ)) = tn − σγ,1(χρ)tn−1 + · · · + (−1)n−1σγ,n−1(χρ)t + (−1)n,

where En is the identity matrix of size n. Note that each coefficient (−1)iσγ,i(χρ) depends only
on the equivalent class of ρ, and is a regular functions on Xn(π)(C). We set Iγ = σγ,1 for each γ
and call it the trace function associated to γ.

The following theorem is a direct consequence of the result of Claudio Procesi [Pr76].

Theorem 4.1 (Procesi, [Pr76, Theorem 3.4 (a)]). Let γ1, . . . , γm be a generator system of π.
Then the trace functions {Iγi1 ...γik

}1≤k≤2n−1
1≤i1,...,ik≤m give affine coordinates of Xn(π).

For a compact 3-manifold M we abbreviate Xn(π1(M)) as Xn(M) to simplify notation.

Remark 4.2. Let M be an orientable, finite-volume, hyperbolic 3-manifold with l torus cusps.
Then we may consider a lift ρ0 : π1(M)→ SL2(C) of the monodromy representation with respect
to the hyperbolic structure of M [CS83, Proposition 3.1.1]. Menal-Ferrer and Porti [MFP12a,
MFP12b] showed for general n the following facts;

i) the character variety Xn(M) is smooth at the C-valued point χιn◦ρ0;
ii) the irreducible component of Xn(M) containing χιn◦ρ0 is of dimension l(n − 1).

Here ιn : SL2(C)→ SLn(C) denotes a rational irreducible representation of highest weight n−1,
which is well known to be a unique irreducible representation of SL2(C) of dimension n (up to
equivalences). They also gave explicit local coordinates around χιn◦ρ0 [MFP12b]. When n equals
2, these results had been already proved by Kapovich [Ka01] (see also Bromberg [Br04]).

Definition 4.3 (Ideal points). Suppose that Xn(π) is of positive dimension and let us take an
affine curve C contained in Xn(π). Let C̃ → C denote a desingularisation of a projective com-
pletion of C, so that C̃ is a smooth projective model of C. A C-valued point x̃ of C̃ is called an
ideal point of C if the birational map C̃ → C above is undefined at x̃.

Note that the notion of ideal points does not depend on the choices of projective completions
and desingularisations in the definition (see [CS83, Section 1.3] for details). We also remark
that there are only finitely many ideal points of C on C̃.

4.2. Nontrivial actions on Bruhat–Tits buildings. We discuss in this subsection how to ob-
tain a nontrivial, type-preserving action of a finitely generated group π on a Euclidean building.
Such a nontrivial action gives rise to a nontrivial splitting of π, which shall play a central role
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in the construction of tribranched surfaces when π is a 3-manifold group. Similarly to the ar-
guments in [CS83, Section 2.2], we utilise geometry of the character variety associated to π in
order to obtain such an action.

Assume that the character variety Xn(π) is of positive dimension and consider an affine curve
C in Xn(π). Then we may take a lift D of C in Rn(π). Namely D is an affine curve contained in
the inverse image of C under the natural projection prn : Rn(π)→ Xn(π) such that the restriction
prn|D is not a constant morphism. The projection prn|D : D → C induces a (surjective) regular
morphism prn|∼D : D̃ → C̃ on the smooth projective models of C and D, which sends the ideal
points of D̃ to those of C̃.

Recall that, by the definition of Rn(π), each C-valued point y of Rn(π) corresponds to an
SLn(C)-representation ρy : π → SLn(C). We denote by C[Rn(π)] the ring of regular functions
of Rn(π). Let ρtaut : π → SLn(C[Rn(π)]) denote the tautological representation of π; namely
ρtaut(γ) is a regular SLn(C)-valued function on Rn(π) for each element γ of π whose evaluation
at a C-valued point y of Rn(π) is ρy(γ). Let ρD̃ : π → SLn(C(D)) denote the composition of the
tautological representation ρtaut : π→ SLn(C[Rn(π)]) with

SLn(C[Rn(π)])→ SLn(C[D]) ↪→ SLn(C(D)),

where the first map is induced by the natural embedding D ↪→ Rn(π). In the construction of
ρD̃, we identify C(D) with the field of rational functions of D̃ due to the fact that D̃ is birational
to D (this gives justification to the notation ρD̃). We call ρD̃ the tautological representation
associated to the affine curve D. Now recall that a C-valued point y of the smooth projective
curve D̃ (possibly an ideal point of D) determines a discrete valuation wy : C(D)× → Z; f 7→
ordy( f ) on the field of rational functions C(D) of D̃ (that is, the order function at y; see [Mu91,
Definition (1.32)] for details). The Bruhat–Tits building associated to (D̃, y) is then defined as
Bn,D̃,y = B(SL(n)/(C(D),wy)), which admits a canonical action of SLn(C(D)). We thus obtain an
action of π on the Bruhat–Tits building Bn,D̃,y

π
ρD̃−−→ SLn(C(D))

canonical−−−−−−→ Aut(Bn,D̃,y)

which is automatically type-preserving as we have already remarked in Section 3.2.
The following theorem is a generalisation of Culler and Shalen’s “Fundamental Theorem”

[CS83, Theorem 2.2.1] for representations of π of higher dimension.

Theorem 4.4. Let prn|∼D : D̃ → C̃ be as above and let y be a C-valued point of D̃. Set x =
prn|∼D(y). Then the invariant functions σγ,i associated to an element γ of π are holomorphic at x
for all i if and only if γ fixes some vertex of the Bruhat–Tits building Bn,D̃,y associated to (D̃, y).

Proof. We first claim that, for each i, σγ,i is holomorphic at x if and only if σ̃γ,i := σγ,i ◦ prn|∼D
is contained in Oy, the valuation ring of C(D) with respect to the valuation wy = ordy. Indeed
we may easily check, taking the natural injection C(C) ↪→ C(D) ; f 7→ f ◦ prn|∼D into accounts,
that σγ,i is holomorphic at x = prn|∼D(y) if and only if σ̃γ,i is holomorphic at y, or in other
words, the inequality wy(σ̃γ,i) ≥ 0 holds. Note that, by construction, (−1)iσ̃γ,i’s coincide with
the coefficients of the characteristic polynomial of ρD̃(γ);

det(tEn − ρD̃(γ)) = tn − σ̃γ,1(χρ)tn−1 + · · · + (−1)n−1σ̃γ,n−1(χρ)t + (−1)n.
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Next we claim that the isotropy subgroup of SLn(C(D)) at the vertex v0 corresponding
to the standard lattice

∑n
j=1Oye j is SLn(Oy). Indeed, the isotropy subgroup at v0 is a pri-

ori Z(SLn(C(D)))SLn(Oy), where Z(SLn(C(D))) denotes the centre of SLn(C(D)) consisting of
scalar matrices aI with a ∈ C(D), an = 1. But since Oy is integrally closed in C(D), all n-th roots
of unity in C(D) are elements of Oy. This implies that Z(SLn(C(D))) is a subgroup of SLn(Oy).

Now let us prove the sufficiency of the claim, and assume that γ fixes a vertex v of Bn,D̃,y.
Then there exists an element g of GLn(C(D)) satisfying gv0 = v. The isotropy subgroup of
SLn(C(D)) at v then coincides with gSLn(Oy)g−1, which contains ρD̃(γ) by assumption. We may
thus conclude that all coefficients (−1)iσ̃γ,i(γ) of det(tEn−ρD̃(γ)) are contained inOy, as desired.

Next, to prove the necessity of the claim, assume that the functionsσD̃,i(γ) are contained inOy

for all i. We consider the rational canonical form of the matrix ρD̃(γ) over C(D); see for instance
[DF04, Section 12.2]. Namely, we can find an element g of GLn(C(D)) such that g−1ρD̃(γ)g is
a block sum of companion matrices C1 ⊕ · · · ⊕ Cl over C(D) for some l. The product of the
characteristic polynomials of Ci coincides with the characteristic polynomial of ρD̃(γ), which
is, by the assumption, a polynomial with coefficients in Oy. It follows from Gauss’s lemma
(for primitive polynomials) that the characteristic polynomials of Ci are also polynomials with
coefficients in Oy for all i, which implies that the companion matrices Ci are defined over Oy

for all i. Thus ρD̃(γ) is contained in the conjugate gSLn(Oy)g−1 of SLn(Oy), and thus γ fixes the
vertex gv0 as desired. □

As a direct consequence of Theorem 4.4, we may verify that the action of π associated to an
ideal point of Xn(π) is nontrivial. Recall that an action of a group G on a simplicial complex ∆
is said to be nontrivial if, for every vertex v of ∆, the isotropy subgroup Gv of G at v is a proper
subgroup of G.

Corollary 4.5. Let x̃ be an ideal point of an affine curve C contained in Xn(π) and ỹ a lift of x̃
(namely, an ideal point of a lift D of C satisfying prn|∼D(ỹ) = x̃). Then the associated action of π
on Bn,D̃,ỹ is nontrivial.

Proof. Let D be a lift of C in Rn(π). Striving for a contradiction, suppose that the action of π
induced on Bn,D̃,ỹ is trivial, or in other words, suppose that there exists a vertex v of Bn,D̃,ỹ at
which the isotropy subgroup of π coincides with the whole group π. Theorem 4.4 then implies
that the trace function Iγ does not have a pole at x̃ for every element γ of π. In particular every
affine coordinate function of C is holomorphic at x̃ due to Theorem 4.1. The last assertion
contradicts the fact that at least one coordinate function must have a pole at x̃ (recall that we
have chosen x̃ from ideal points of C). □

4.3. Ideal points of character varieties and tribranched surfaces. Now we show that an
essential tribranched surface in a 3-manifold is constructed from a nontrivial type-preserving
action of its fundamental group on a Euclidean building. Such an action is obtained from an
ideal point of an affine curve in the character variety as in Section 4.2, and consequently, an
essential tribranched surface is detected by an ideal point under certain conditions.

Let M be a compact, connected, irreducible and orientable 3-manifold. In the following
argument, a “triangulation” of M should be understood to be a piecewise-linear triangulation,
that is, the link of every i-simplex in the triangulation is piecewise-linearly homeomorphic to a
(2− i)-simplex or the boundary of a (3− i)-simplex for i = 0, 1, 2, according as the i-simplex lies
in ∂M or not; see for instance [He76, Chapter 1]. Now let K be a (possibly locally infinite) 2-
dimensional ∆-complex. We call a map f : M → K piecewise-linear if, for some triangulation
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of M, the images of the vertices of every simplex in M span a simplex in K, and the restriction
of f to each simplex of M is a linear map. We define Y(K) to be the 1-dimensional subcomplex
of the first barycentric subdivision of K consisting of all the barycentres of 1- and 2-simplices
and all the edges connecting them.

Lemma 4.6. Let f : M → K be a piecewise-linear map. Then the inverse image of Y(K) under
f is a tribranched surface in M.

Proof. Consider a triangulation of M with respect to which f is a piecewise-linear map, and set
Σ to be the inverse image of Y(K) under f . Note that Σ is a compact subset of M since it is a
closed subset of the compact manifold M. Let us use the notation introduced in Section 2.1.

We first show that (M,Σ) is locally homeomorphic to (H,Y × [0,∞)); recall that we define
the topological space Y as

Y = { re
√
−1θ ∈ C | r ∈ R≥0 and θ = 0,±2π/3 }.

The piecewise-linear map f maps each 3-simplex τ in M onto either a vertex, an edge or a 2-
simplex in K. Corresponding to the image of τ in K, the restriction of Σ to τ is either the empty
set, a normal disk (more precisely a triangle or a quadrilateral), or a 2-dimensional ∆-complex
consisting of one triangle and two quadrilaterals sharing one common edge; see Figure 5. The
inverse image Σ is the union of these subspaces glued up along 2-simplices in M.

Figure 5. The inverse image Σ in a single 3-simplex τ of M

Now take an arbitrary point x of Σ, and let us study the topological structure around x. Firstly
we know from the construction of Σ that x cannot be any vertex in M. If x is in the interior
of a 3-simplex τ in M, then the above classification of types of Σ restricted to τ shows at once
that (M,Σ) is locally homeomorphic to (H,Y × (0,∞)) around x. Next suppose that x is in the
interior of a 2-simplex in M. Then the above classification again shows that, for each 3-simplex
τ containing the 2-simplex under consideration, a sufficiently small open neighborhood of x in
Σ ∩ τ is homeomorphic to R × [0,∞) or Y × [0,∞). Since every 2-simplex is adjacent to at
most two 3-simplices in M, a sufficiently small open neighborhood of x in Σ is homeomorphic
to R × [0,∞) or Y × [0,∞) if x ∈ ∂M, and to R2 or Y × R otherwise. It thus follows that (M,Σ)
is locally homeomorphic to (H,Y × [0,∞)) around x in this case.

As the final case suppose that x is the midpoint of an edge in M. Note that, for each 3-simplex
τ containing the edge under consideration, a sufficiently small open neighborhood of x in Σ ∩ τ
is a sector in any cases of the above classification of Σ∩τ. Since we consider a piecewise-linear
triangulation of M, a finite number of 3-simplices are glued along 2-simplices around every
edge in M so that its link in M is homeomorphic to a closed interval or a circle according as
the edge lies in ∂M or not. If we take a sufficiently small open neighborhood of x in Σ, we
now see that its boundary is homeomorphic to the link of the edge under consideration since
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the neighbourhood is just the union of sectors glued up along 2-simplices; see Figure 6. This
implies that, aroud x, Σ is homeomorphic to R× [0,∞) or R2 according as x is contained in ∂M
or not, and thus (M,Σ) is locally homeomorphic to (H,R× [0,∞)) in this case. In summary, we
see that (M,Σ) is locally homeomorphic to (H,Y × [0,∞)) around each x in Σ.

x
the link of the edge

the boundary of
a neighbourhood of x in Σ the edge containing x

Figure 6. Around the midpoint x of an edge

Next we show that Σ satisfies (TBS1). Let C be an arbitrary component of the set C(Σ)
of branched points, and consider a sufficiently small tubular neighbourhood ν(C) of C in M.
The intersection ν(C) ∩ Σ naturally admits the structure of a fibre bundle over C whose fibre
is homeomorphic to Y . We may identify f (ν(C) ∩ Σ) with Y so that f (C) corresponds to {0}.
Then since the inverse image of {0} under f is C, the topological space f ((ν(C) ∩ Σ) \ C)
has 3 components, and so does (ν(C) ∩ Σ) \ C by continuity of f . Therefore the fibre bundle
ν(C) ∩ Σ→ C above must be trivial, which implies that Σ satisfies (TBS1).

Finally we show that Σ satisfies (TBS2). We denote by M0 the complement of a small open
tubular neighbourhood of C(Σ) in M. Let S be an arbitrary component of the subsurface S (Σ),
which can be regarded as a properly embedded subsurface in the orientable 3-manifold M0. The
image f (S ) is contained in a component Γ of the complement in Y(K) of the subset consisting of
all the barycentres of 2-simplices. Since Γ is bicollared in K, S is two-sided, and so orientable.
Hence Σ satisfies (TBS2), and the lemma follows. □

We now consider a type-preserving action of π1(M) on a Euclidean buildingB. The simplicial
complex structure of B(2) naturally induces the ∆-complex structure of B(2)/π1(M), where, for
each non-negative integer i, we denote by B(i) the i-skeleton of B. We say that a tribranched
surface Σ is dual to a type-preserving action of π1(M) on a Euclidean building B if there exists
a π1(M)-equivariant piecewise-linear map f̃ : M̃ → B(2) such that the inverse image of Σ in M̃
coincides with the inverse image of Y(B(2)) under f̃ .

Theorem 4.7. Let n be a natural number greater than or equal to 3, and assume that the
boundary ∂M of M is non-empty when n is strictly greater than 3. Then, for any nontrivial
type-preserving action of π1(M) on a Euclidean building B of dimension n − 1, there exists an
essential tribranched surface in M dual to the action.

Proof. The proof is divided into two parts. In the first part we show that there exists a non-
empty tribranched surface, which is not necessarily essential, dual to the action of π1(M) on B,
and in the second part we modify such a tribranched surface dual to the action to be essential
by local surgeries.

Let us take a triangulation of M and consider the triangulation on M̃ induced from it. We
construct a π1(M)-equivariant simplicial map f̃ : M̃ → B(2) as follows. First consider the case
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of n = 3 (in the case the 2-skeleton of B coincides with B itself since it is of dimension 2). For
each vertex v of M, we choose a lift ṽ of v in M̃ and a vertex f̃ (ṽ) of B. Then we define f̃ |M̃(0) as

f̃ |M̃(0)(γ · ṽ) = γ f̃ (ṽ)

for arbitrary γ ∈ π1(M) so that f̃ |M̃(0) is π1(M)-equivariant. Now assume that we have already
constructed a π1(M)-equivariant simplicial map f̃ |M̃(i−1) : M̃(i−1) → B on the (i − 1)-skeleton of
M̃, and let us take an arbitrary i-simplex σ of M̃. We may extend the restriction f̃ |∂σ of f̃ |M̃(i−1)

onto ∂σ to a map f̃ |σ on σ due to the contractibility of the Euclidean building B. Moreover we
can take f̃ |σ to be a simplicial map by subdividing M (and M̃) if necessary. By continuing this
procedure, we can extend f̃ |M̃(0) to simplicial maps on M̃(1), M̃(2), and M̃ inductively, and obtain
a desired simplicial map f̃ : M̃ → B. Next consider the case of n ≥ 4. Since ∂M is non-empty
by assumption, we can take a 2-dimensional subcomplex V which is a deformation retract of
M. Denote by Ṽ the preimage of V under the universal covering map M̃ → M. We define f̃ |Ṽ (0)

on Ṽ (0) and, by subdividing M if necessary, we extend it to a π1(M)-equivariant simplicial map
f̃ |Ṽ : Ṽ → B(2) similarly to the case of n = 3. Note that the image of the extended map f̃ |Ṽ
is contained in the 2-skeleton B(2) of B since Ṽ is of dimension 2. By composing f̃ |Ṽ with a
deformation retraction M̃ → Ṽ , we obtain a desired map f̃ : M̃ → B(2).

We can slightly modify the above construction so that the restriction of f̃ : M̃ → B(2) to each
simplex is a linear map. Then f̃ induces on the quotients by π1(M) a piecewise-linear map
f : M → B(2)/π1(M). Set Σ to be the inverse image of Y(B(2)/π1(M)) under f . By Lemma 4.6
we see that Σ is a tribranched surface in M. Note that the above construction of Σ is far from
being canonical since it depends on many choices, for instance, of a triangulation of M and a
π1(M)-equivariant simplicial map f̃ .

Next we show that Σ satisfies (ETBS1), which, in particular, implies that Σ is non-empty.
Striving for a contradiction, suppose that there exists a component N of M(Σ) such that the
homomorphism π1(N) → π1(M) induced by the natural inclusion N ↪→ M is surjective. Let
N0 be a component of the preimage of N under the universal covering map M̃ → M. Since
f̃ (N0) does not intersect Y(B(2)) by construction, it is contained in the open star of a certain ver-
tex v of B(2) in its barycentric subdivision. Obviously N0 is a covering space over N, and thus
the fundamental group π1(N) stabilises N0. The image of the homomorphism π1(N) → π1(M)
then also stabilises the open star of v containing f̃ (N0) due to the π1(M)-equivariance of f̃ , and
it is, in particular, contained in the isotropy subgroup π1(M)v of π1(M) at v. Hence we con-
clude that π1(M)v coincides with the whole group π1(M), combining the arguments above with
the assumption on the surjectivity of the homomorphism π1(N) → π1(M), which contradicts
nontriviality of the action of π1(M) on B.

As we have already mentioned at the beginning of the proof, the tribranched surface Σ itself
might not be essential. From now on we modify Σ to be essential as the second part of the proof.
For a tribranched surface Σ given by the nontrivial type-preserving action of π1(M) on B, we
set

l(Σ) = the number of components of C(Σ),

m(Σ) =
∑

S

(2 − χ(S ))2 (where χ(S ) is the Euler characteristic of the surface S ),

n(Σ) = the number of components of Σ,
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where the sum in the second equation runs over all components S of S (Σ). We see at once that
these integers are all non-negative. We consider the triple (l(Σ),m(Σ), n(Σ)) ∈ Z3 with respect
to the lexicographical order of Z3 as a complexity of a non-empty tribranched surface Σ. In
the following we show that if Σ is not essential, there are operations of replacing Σ by another
tribranched surface with lower complexity, which is also dual to the action of π1(M) on B.
Consequently a tribranched surface of minimal complexity dual to the action of π1(M) on B
must be essential.

Let us consider the case where Σ does not satisfy (ETBS2). First assume that there exists a
pair of components C and S of C(Σ) and S (Σ) respectively such that the natural homomorphism
π1(C) → π1(S ) is defined but not injective. This implies that S is a disk. Let S 1 and S 2 be
the other components of S (Σ) whose boundary contain parallel copies of C as components (the
surfaces S 1 and S 2 might coincide). Take a small neighbourhood B of S which is homeomorphic
to a ball and intersects S 1 and S 2 in the collars of C. Figure 7 illustrates a local picture of the
neighbourhood B. Choose properly embedded disks D1 and D2 in B bounding S 1 ∩ ∂B and

Σ

C

S

B

D1 D2B1 B2S 1 S 2

B3

Figure 7. A neighbourhood B of the surface component S

S 2 ∩ ∂B respectively and not intersecting S . We construct a map g : B → B(2)/π1(M) such
that g|∂B = f |∂B and that g−1(Y(B(2)/π1(M))) = D1 ∪ D2 as follows. Since f (∂D1) and f (∂D2)
are contained in open edges of Y(B(2)/π1(M)) near the vertex f (C), the maps g|∂D1 = f |∂D1 and
g|∂D2 = f |∂D2 extend to D1 and D2 respectively so that g(D1) and g(D2) are contained in the same
open edges. The ball B is divided into 3 balls B1, B2 and B3 by D1 and D2, where ∂B1 does not
contain D2 but contains D1, ∂B2 does not contain D1 but contains D2, and ∂B3 contains both
disks. There exists a unique 2-simplex of B(2) which contains f (C) as its barycentre, and the
open star of each of its 3 vertices contains one of g(∂B1 \D1), g(∂B2 \D2) and g(∂B3 \(D1∪D2)).
We can thus extend g|∂B1 , g|∂B2 and g|∂B3 to B1, B2 and B3 respectively so that all of g(B1 \ D1),
g(B2 \ D2) and g(B3 \ (D1 ∪ D2)) do not intersect Y(B(2)/π1(M)). Then we see at once that
the inverse images of Y(B(2)/π1(M)) under the maps g|B1 , g|B2 and g|B3 are D1, D2 and D1 ∪ D2

respectively. Figure 8 illustrates the image g(B) of the neighbourhood B of S . We now define
f ′ : M → B(2)/π1(M) so that f ′|M\B = f |M\B and f ′|B = g. Then f ′−1(Y(B(2)/π1(M))) is another
tribranched surface and has a lower complexity since l(Σ) decreases. Since each component of
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f (C)g(B1) g(B2)

g(B3)

g(D1) g(D2)

Figure 8. The image g(B) for the pair (C, S )

the inverse image of B in M̃ is homeomorphic to B, the map f ′ is induced by a π1M-equivariant
map f̃ ′ : M̃ → B(2) obtained from f̃ by the same modification in M̃.

Next assume that there exists a pair of components S and N of S (Σ) and M(Σ) respectively
such that the natural homomorphism π1(S ) → π1(N) is defined but not injective. By Dehn’s
lemma, there exits a compressing disk D of S in N. Take a small neighbourhood B of D
which is homeomorphic to a ball and intersects an annulus in S . Figure 9 illustrates a local
picture of the neighbourhood B. Choose properly embedded disks D1 and D2 in B bounding

S

D

B

D1 D2B1 B2

B3

N

Figure 9. A neighbourhood B of the compression disk D

the components of the boundary of the annulus. We construct a map g : B → B(2)/π1(M) such
that g|∂B = f |∂B and that g−1(Y(B(2)/π1(M))) = D1 ∪ D2 as follows. Since f (∂D1) and f (∂D2)
are contained in the open star of a vertex in Y(B(2)/π1(M)) which is a barycentre of an edge of
B, the maps g|∂D1 = f |∂D1 and g|∂D2 = f |∂D2 extend to D1 and D2 respectively so that g(D1) and
g(D2) are contained in the same star. The ball B is divided into 3 balls B1, B2 and B3 by D1 and
D2, where ∂B1 does not contain D2 but contains D1, ∂B2 does not contain D1 but contains D2,
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and ∂B3 contains both disks. Since g(∂B1 \D1) and g(∂B2 \D2) are contained in the open star of
a vertex of B(2) in its barycentric subdivision (corresponding to N), and since g(∂B3 \ (D1∪D2))
is contained in that of another vertex of B(2), we can extend g|∂B1 , g|∂B2 and g|∂B3 to B1, B2 and B3

respectively so that g(B1 \D1), g(B2 \D2) and g(B3 \ (D1 ∪D2)) do not intersect Y(B(2)/π1(M)).
Then we see at once that the inverse images of Y(B(2)/π1(M)) under the maps g|B1 , g|B2 and g|B3

are D1, D2 and D1 ∪D2 respectively. Figure 10 illustrates the image g(B) of the neighbourhood
B of the compression disk D. Now we define f ′ : M → B(2)/π1(M) so that f ′|M\B = f |M\B and

a star
corresponding to N

g(B1) g(B2)

g(B3)

g(D1) g(D2)

Figure 10. The image g(B) for the pair (S ,N)

f ′|B = g. Set Σ′ = f ′−1(Y(B(2)/π1(M))), which is another tribranched surface with the same l(Σ′)
as l(Σ). We show in the followings that m(Σ′) is strictly less than m(Σ), which implies that Σ′

has a lower complexity than Σ. Set S ′ = (S \ B) ∪ D1 ∪ D2. First suppose that S ′ is connected.
Then we can calculate as

m(Σ) − m(Σ′) = (2 − χ(S ))2 − (2 − χ(S ′))2

= 4 + 4(2 − χ(S ′)) > 0

by using χ(S ′) = χ(S ) + 2 ≤ 2. Next suppose that S ′ has two components S ′1 and S ′2. Note that
neither S ′1 nor S ′2 is a sphere. Then we can calculate as

m(Σ) − m(Σ′) = (2 − χ(S ))2 − (2 − χ(S ′1))2 − (2 − χ(S ′2))2

= 2(2 − χ(S ′1))(2 − χ(S ′2)) > 0

by using χ(S ′1) + χ(S ′2) = χ(S ) + 2, χ(S ′1) < 2 and χ(S ′2) < 2. In both the cases m(Σ′) decreases
from m(Σ), as desired. Similarly to the previous case, f ′ is induced by a π1M-equivariant map
f̃ ′ : M̃ → B(2).

Finally, we consider the case where Σ does not satisfy (ETBS3). Then we see as follows that,
after eliminating a component of Σ contained in a ball in M or a collar of ∂M, the resultant
tribranched surface is also dual to the action of π1(M) on B. If there is a component of Σ con-
tained in a ball B, we can construct a map f ′ : M → B(2)/π1(M) so that f ′|M\B = f |M\B and that
f ′(B) does not intersect Y(B(2)/π1(M)), because f (∂B) is contained in a contractible component
of the complement of Y(B(2)/π1(M)) in B(2)/π1(M). If there is one contained in a collar of ∂M,
we set f ′ : M → B(2)/π1(M) to be the composition of a deformation retraction from M to the
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complement of the collar with the restriction of f to it. In both the cases the complexity of a
new tribranched surface defined as f ′−1(Y(B(2)/π1(M))) is lower than the original one’s, since
l(Σ) and m(Σ) do not increase and n(Σ) decreases. Also, it is straightforward to see that f ′ is
induced by a π1M-equivariant map f̃ ′ : M̃ → B(2) obtained from f̃ by the same modification in
M̃. The proof is now completed. □

Remark 4.8. (1) Since a tribranched surface of minimal complexity dual to the action of
π1(M) on a Euclidean building is not necessarily unique, the construction of an essential
tribranched surface in the proof is far from being canonical.

(2) The same argument in the proof shows that the theorem holds also for a nontrivial type-
preserving action of π1(M) on a contractible colorable chamber complex of dimension
(n − 1).

The following is the main theorem of this article, which is now a direct consequence of
Corollary 4.5 and Theorem 4.7.

Theorem 4.9. Let n be a natural number greater than or equal to 3, and assume that the
boundary ∂M of M is non-empty when n is strictly greater than 3. Then, for each ideal point
x̃ of an affine curve C in Xn(M), there exists an essential tribranched surface Σ contained in M
dual to the action π1(M) on the Bruhat–Tits building Bn,D̃,ỹ associated to x̃, where D is a lift of
C in Rn(M) and ỹ is an ideal point of D satisfying prn|∼D(ỹ) = x̃.

5. An application to small Seifert manifolds

One of great advantages of extending Culler–Shalen theory to higher dimensional represen-
tations is that we may apply our extended theory also to a non-Haken 3-manifold, that is, a
3-manifold which does not contain any essential surfaces. Here we describe an application of
Theorem 4.9 to a class of 3-manifolds called small Seifert manifolds, which contain non-Haken
3-manifolds.

A Seifert manifold is a compact, orientable 3-manifold admitting the structure of a Seifert
fibred space whose base orbifold is a compact surface with cone points. A small Seifert manifold
is a Seifert manifold with at most 3 singular fibres. We refer the reader to [Ja80, Chapter IV]
for details on Seifert manifolds.

Let p, q and r be natural numbers greater than or equal to 3. We denote by S 2(p, q, r) the
2-sphere with three cone points whose cone angles are 2π/p, 2π/q and 2π/r respectively, and
consider a small Seifert manifold M with the base orbifold S 2(p, q, r). Such a 3-manifold is
known to be irreducible, and it is Haken if and only if its first homology group H1(M,Z) is
infinite. The fundamental group π1(M) has a presentation of the form

⟨x, y, h | h: central, xp = ha, yq = hb, (xy)r = hc⟩
for certain integers a, b, c satisfying (a, p) = (b, q) = (c, r) = 1. The orbifold fundamental group
πorb

1 (S 2(p, q, r)) of S 2(p, q, r) is isomorphic to the ordinary triangle group (or the von Dyck
group) ∆(p, q, r) defined as

⟨x, y | xp = yq = (xy)r = 1⟩,
and by identifying πorb

1 (S 2(p, q, r)) with ∆(p, q, r), we may regard the natural homomorphism
π1(M) → πorb

1 (S 2(p, q, r)) induced by the projection M → S 2(p, q, r) as the group homomor-
phism which maps x and y identically and sends h to the unit (in particular it is a surjection). It
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is easy to see that the first homology group H1(M,Z) is infinite if and only if the equality

a
p
+

b
q
=

c
r

holds. From this observation we thus find that M tends to be non-Haken in most cases.
In the case where M is Haken, we may readily construct an affine curve in X3(M) consisting

of abelian characters because the first homology group H1(M,Z) is infinite. In the following we
verify that X3(M) contains an affine curve also in the case where M is non-Haken. It thus follows
from Theorem 4.9 that an essential tribranched surface Σ contained in M is detected by an ideal
point of the curve. One can never obtain such an essential tribranched surface by utilising
classical Culler–Shalen theory (since the SL2(C)-character variety X2(M) is of dimension 0 in
the case).

We may regard the group ∆(p, q, r) as a subgroup of index 2 of the Schwartzian triangle
group Γ(p, q, r) defined as

⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1⟩,
identifying x with ab and y with bc respectively. It follows from the argument in [Go88, Section
6] that there exists a family of SL3(C)-representations ρs : Γ(p, q, r) → SL3(C) with complex
parameter s defined by

ρs(a) =


1 0 0

−2s cos π
p −1 0

−2 cos π
r 0 −1

 ,
ρs(b) =


−1 −2s−1 cos π

p 0
0 1 0
0 −2 cos π

q −1

 ,
ρs(c) =


−1 0 −2 cos π

r
0 −1 −2 cos π

q
0 0 1


(the representations above are minor modifications of the ones introduced in [Go88], where
cos π

p , cos π
q and cos π

r are replaced by cos 2π
p , cos 2π

q and cos 2π
r respectively in the matrices). A

simple computation enables us to obtain the equation

tr ρs(abac) = 8(s + s−1) cos
π

p
cos

π

q
cos

π

r
+ 16 cos2 π

p
cos2 π

r
+ 4 cos2 π

q
− 1,

which shows that the restrictions of tr ρs to ∆(p, q, r) define a nontrivial affine curve contained
in X3(∆(p, q, r)). Since the natural homomorphism π1(M) → πorb

1 (S 2(p, q, r)) is surjective, the
morphism X3(πorb

1 (S 2(p, q, r))) → X3(M) induced on the character varieties is an embedding.
Therefore one readily sees that, by identifying X3(∆(p, q, r)) with X3(πorb

1 (S 2(p, q, r))), the char-
acter variety X3(M) also contains a nontrivial curve.

6. Questions

We conclude with a list of questions. Let M be a compact, connected, irreducible and ori-
entable 3-manifold. It is known by Boyer and Zhang [BZ98], Motegi [Mo88], and Schanuel and
Zhang [SZ01] that there exists an essential surface not detected by any ideal points of any affine
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curves in X2(M) for a certain 3-manifold M. We may now propose the following important
question:

Question 6.1. Does there exist an essential surface (without branched points) not detected by
any ideal points of any affine curves in X2(M) but detected by an ideal point of an affine curve
in Xn(M) for n ≥ 3 as in Theorem 4.9?

Here we remark that an essential surface (without any branched points) is also an essential
tribranched surface in our terminology. [Note: as we have mentioned at the end of Section 0, (a
much stronger form of) Question 6.1 has been already solved affirmatively in [FKN18].]

Now recall that we have imposed a little too strong assumption on the boundary of the 3-
manifold M under consideration in the proof of Theorem 4.9; namely we have assumed there
that the boundary of M is not empty when n is strictly greater than 3.

Question 6.2. Does the same conclusion as Theorem 4.9 hold without the assumption that the
boundary ∂M is non-empty when n is strictly greater than 3?

Next let M be a small Seifert manifold whose base orbifold is S 2(p, q, r) with p, q, r ≥ 3.
Recall that we saw in Section 5 that X3(M) contains a nontrivial curve.

Question 6.3. What essential tribranched surfaces are detected as in Theorem 4.9 by an ideal
point of the nontrivial curve considered in Section 5?

The final question is concerning the characterisation of the class of 3-manifolds containing
essential tribranched surfaces.

Question 6.4. Does every aspherical 3-manifold contain an essential tribranched surface?

[Note: Friedl, Nagel and the second-named author [FKN17, Theorem 1.2] proved that if M is
closed and rank π1(M) ≥ 4, then M contains an essential tribranched surface. They constructed
such essential tribranched surfaces using open boook decompositions.]
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Boston, Inc., Boston, MA, 2001. xxvi+467 pp.
[LM85] A. Lubotzky and A. R. Magid, Varieties of representations of finitely generated groups, Mem. Amer.

Math. Soc. 58 (1985), no. 336, xi+117 pp.
[MFP12a] P. Menal-Ferrer and J. Porti, Local coordinates for SL(n,C)-character varieties of finite-volume hyper-

bolic 3-manifolds, Ann. Math. Blaise Pascal 19 (2012), no. 1, 107–122.
[MFP12b] P. Menal-Ferrer and J. Porti, Twisted cohomology for hyperbolic three manifolds, Osaka J. Math. 49

(2012), no. 3, 741–769.
[MS84] J. W. Morgan and P. Shalen, Valuations, trees, and degenerations of hyperbolic structures I, Ann. of

Math. (2) 120 (1984), no. 3, 401–476.
[MS88a] J. W. Morgan and P. Shalen, Degenerations of hyperbolic structures II, Measured laminations in 3-

manifolds, Ann. of Math. (2) 127 (1988), no. 2, 403–456.
[MS88b] J. W. Morgan and P. Shalen, Degenerations of hyperbolic structures III, Actions of 3-manifold groups

on trees and Thurston’s compactness theorem, Ann. of Math. (2) 127 (1988), no. 3, 457–519.
[Mo88] K. Motegi, Haken manifolds and representations of their fundamental groups in SL(2,C), Topology

Appl. 29 (1988), no. 3, 207–212.
[Mu91] D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Springer (1991).
[Pr76] C. Procesi, The invariant theory of n × n matrices, Advances in Math. 19 (1976), no. 3, 306–381.
[PW14a] P. Przytycki and D. T. Wise, Graph manifolds with boundary are virtually special, J. Topol. 7 (2014),

no. 2, 419–435.
[PW14b] P. Przytycki and D. T. Wise, Separability of embedded surfaces in 3-manifolds, Compos. Math. 150

(2014), no. 9, 1623–1630.
[Se77] J.-P. Serre, Arbres, amalgames, SL(2), Astérisque, vol. 46, SMF, Paris, 1977.
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