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@ Goal: a cohomological index theorem for the pairing
Ko(Ag) X HCeV(Ag) — C.

Ac = (smooth) convolution algebra of a Lie groupoid G.

e HC*(Ag) is unknown, so we use cocycles that we can construct from
groupoid cohomology.

@ On the level of K-theory, we have the Baum—Connes map
1 Ke(BG) — Ke(Ag),

with BG the classifying map for proper actions.

@ We therefore focus on proper actions of Lie groupoids.
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Lie groupoids

G = M Lie groupoid.
gh

e

Z<——y~<—X
Examples:

1 M x M = M pair groupoid,

2 G = {e} Lie group,

3 G x M = M action of a Lie group,

4 F C TM foliations ~~ holonomy groupoid.
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What should we know about Lie groupoids?

Lie groupoids behave just like Lie groups:
@ They have a Lie algebroid capturing the infinitesimal data,
@ we can consider representations of Lie groupoids,
@ we can define smooth groupoid cohomology H3;4(G; E),
but:

o Lie Ill is not valid: not every Lie algebroid integrates to a Lie
groupoid (cf. Crainic—Fernandes)

@ The adjoint representation does not exist.
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Lie algebroids

The infinitesimal data of a Lie groupoid is given by a Lie algebroid:

(A= ker(dt),p:=ds,[, ]).

A Lie algebroid is a vector bundle A — M, whose space of sections

carries a Lie bracket, equipped with a bundle map p: A — TM (“the
anchor”) satisfying

p([X, YT) = [p(X), p(Y)],
[X, FY] = FIX, Y] + p(X)(f) - Y.

v

Lie Il is not true for Lie groupoids!
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Representations and Cohomology

Definition

A representation of G is a vector bundle E — M equipped with
A €T (G,Hom(s"E, t*E))

satisfying
>‘g1 © )‘g2 = )‘g1g2'

Smooth groupoid cohomology H34(G; E): T°°(Gk; s*E)
&p(gla o ?gk) = )\gl@(gZ, cee 7gk)
k—1

+ Z(_l)ltp(gla < Bi8i+1, - .- 7gk)

+ (1) ¢(g1, - .., 8k-1)-
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Transversal densities

Definition (Bundle of “transversal densities”)

top top

L=NA& \TM

Evens—Lu—Weinstein: L carries a canonical representation of G.

Definition (Unimodularity)
A Lie groupoid G is unimodular if there exists an invariant nonvanishing
section 2 of L.

Obstruction measured by the modular class

log§ € Hiig(G;R).
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Convolution algebra

A =T, (G;s* | \'PA*]).

cpt
Product:

(hr)e) = [ hle)hle)

8182=8

Proposition

There exists a canonical map

X : Hyg(G; L) — HC®*(Ag).

In degree 0: given Q € 'S (M; L),

mnv

is a trace.
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The index problem

We would like to evaluate the pairing

Hiig(Gi L) x Ke(BG) — C,
given by
(v,12,D]) = (x(v), 1([Z, D)) -
But u([Z, D) ¢ Ko(Ag).
Solution strategies:

@ consider the extension problem for the cyclic cocycles
x(v) € HC*(Ag).
o Lift the pairing to Z.
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proper actions of Lie groupoids

Definition
An action of G = M is given by a submersion y : Z — M together with

GexyZ—2Z, (g,2) gz,

which is associative.

The action is proper if the map
GexyZ—-2Zx2, (g,z)— (g2, 2).

is proper.
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Invariant Pseudodifferential Calculus

Let G act on Z with moment map u: Z —- M

P € Wk (Z;G): family P = {P,}xem of WDO's on p~1(x) such that:
@ x — P, is smooth,

@ P is G-invariant:
Ps(g) = Lg © Pe(g) © Lg-1-

@ supp(P) is G-compact.

Left multiplication:

Lg - 17 (s(g)) = M (t(g)) ~ Ly - C(u Y (t(g))) — C(n " (s(g)))
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Cut-off functions

Definition
A cut-off function on Z is a section ¢ € [2(Z; | \'P| A*) with

/ clg7lz)=1, forallze Z
s(g)=n(2)

Choose Q2 € I*°(M; L).

TQ(K):/Zk(z,z)<c(z),7r*Q), k € U-(Z:G).

mv

Tq is a trace if and only if  is invariant. J

(cf. H. Wang for the group action case)
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The characteristic map

Characteristic map:

x : Hiig (G L) — HC*(V;,5°(Z: G))

mv

Defined by:

X(©)(ko @ ... kp)
- /( " c(z0) (20, - - - zon)k1(z0, 21) - - - kon(22n, 20)7* Q2.
zlp

index pairing:

H3ig(G; L) x Ko(V,2°(Z;G)) — C.

mv
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The index theorem for proper actions

D invariant family of differential operators on Z.

D elliptic ~» Ind(D) € Ko(V.o°(Z; G)).

mv

For v € H3%(G; L), we have

1 . *
(v, Ind(D) = 5 /f 7 (e, 02(v)) TA(F* @ C) chx(o(D)).
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The van Est map

F = foliation by the fibers of u: Z — M.

van Est map : &z : Hy(G; E) — HR(Z; i*E)°

Theorem (Crainic)

The van Est map ® 7 is an isomorphism in degree @ < n and injective for
e = n+ 1, when the G-action is proper and the fibers of the moment map
w: Z — M are homologically n-connected.
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G-invariant cohomology

Let a € QRP(Z; u*L)®. The integral

/(0.

vanishes on exact forms. The linear map

/<c, )t HEP(Z;7*L)¢ — C
V4

is independent of c.
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Ingredients of the proof

1 The support of the parametrix k(zi,22) € W 7°(Z; G) can be

localized to the diagonal in Z ;x; Z. Near this diagonal, the groupoid
cocycle defines an invariant differential form.

2 Introduce the asymptotic G-invariant pseudodifferential calculus. This
induces a G-invariant x-product on T*Z, a regular Poisson manifold.

3 Compare the trace on the deformation quantization </, , agrees with
the trace obtained by the Fedosov construction.

4 Compute the higher index pairing by taking the limit # — 0, and use
the algebraic index theorem for regular Poisson manifolds.
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Special cases

e By specializing G, Z and the elements in H};4(G; L) we can now
recover various well-known index theorems.

@ In all these cases, the most interesting aspect is to identify the van
Est map in that situation.
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Special case: Z =G

E — M vector bundle, D € U(A) @ End(E).

D elliptic ~ Ind(D) € Ko(Ag)-

Let v € H3%(G; L). Then

Tnd, (D)) = ﬁ /A w7 06(1) T A(x A @ C)pi pch(o(D)).

o f: N — M a surjective submersion, f'A is the pull-back in the
category of Lie algebroids.

o &g : H3x(G; L) = Hp o (A; L) van Est map.
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Example: the pair groupoid

@ Pair groupoid M x M = M ~~ Lie algebroid TM.
o M x M is proper: H5:(G;L) =0 k > 0.
@ Only one index (trace) = Atiyah—Singer.
Discrete group I acting freely on M with quotient I\7I/F =M.

o Gr oy = M xr M = M, Lie algebroid TM.
o H3#(Grm; C) = Hg'rp(l'; C) = H*(Br';C)
@ Covering index theorem:

(Indr(D), o) = (%T\}jl)k/T*MwaTd(T*M@C)ch(a(D))

e ¢ : H*(Bl') — H*(M) van Est map.

H. Posthuma (University of Amsterdam) Lie groupoids and index theory Kyoto, December 18, 2013 19 /23



Homogeneous spaces of Lie groups

@ K C G compact subgroup of a Lie group. X := G/K.
o V cRep(K)~ V:=Gxg V.
o Elliptic G-equivariant differential operator

D :T(X; V) = I®(X; V).

Ind, (D) = (@x(v), Alg; K)ch(o (D)) -

1
(2m/—1)k

A(g; K)ch(o(D)) characteristic classes in H*(g; K). Remark

TgX =g/t = Q(TX)° = A\(g/8)".

o ®x: H3(G; \g) — H*(g, K; A™P g) the “van Est map".
o (,):H*(g,K;\"“Pg) x H*(g,K) — C natural pairing.
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G is unimodular: HY(G; A\*P g) = C ~~ trace ~ L%-index theorem of
Connes—Moscovici.

@ G semisimple, unimodular. K C G maximal compact,
rank(G) = rank(K) = dim(G/K) = even.
e V), irrep K with heights weight u ~» Dirac operator

Py :TEX; V5T = TR(X; Ve §)

| I /‘(’ F ’Ck

a>0 (pG’ a)

@ Atiyah and Schmidt showed that for u nonsingular (i.e.,
(1 + pr, ) #0) kerp2(D,) is a discrete series representation with
formal dimension given by the formula above

@ 1 singular corresponds to a “limit of discrete series”.
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