Lie groupoids, cyclic homology and index theory (Based on joint work with M. Pflaum and X. Tang)

H. Posthuma

University of Amsterdam

Kyoto, December 18, 2013

Goal

Goal: a cohomological index theorem for the pairing

$$K_0(A_\mathsf{G}) imes HC^{ev}(A_\mathsf{G}) o \mathbb{C}.$$

 $A_{\mathsf{G}} = (\mathsf{smooth})$ convolution algebra of a Lie groupoid G .

- $HC^{\bullet}(A_{\mathsf{G}})$ is unknown, so we use cocycles that we can construct from groupoid cohomology.
- On the level of K-theory, we have the Baum-Connes map

$$\mu: K_{\bullet}(\underline{BG}) \to K_{\bullet}(A_G),$$

with \underline{BG} the classifying map for proper actions.

• We therefore focus on proper actions of Lie groupoids.

Lie groupoids

 $G \rightrightarrows M$ Lie groupoid.

Examples:

- 1 $M \times M \Rightarrow M$ pair groupoid,
- 2 $G \rightrightarrows \{e\}$ Lie group,
- 3 $G \times M \Rightarrow M$ action of a Lie group,
- 4 $\mathcal{F} \subset TM$ foliations \rightsquigarrow holonomy groupoid.

What should we know about Lie groupoids?

Lie groupoids behave just like Lie groups:

- They have a Lie algebroid capturing the infinitesimal data,
- we can consider representations of Lie groupoids,
- we can define smooth groupoid cohomology $H_{\text{diff}}^{\bullet}(\mathsf{G};E)$,

but:

- Lie III is not valid: not every Lie algebroid integrates to a Lie groupoid (cf. Crainic–Fernandes)
- The adjoint representation does not exist.

Lie algebroids

The infinitesimal data of a Lie groupoid is given by a Lie algebroid:

$$(A := \ker(dt), \rho := ds, [,]).$$

Definition

A **Lie algebroid** is a vector bundle $A \to M$, whose space of sections carries a Lie bracket, equipped with a bundle map $\rho: A \to TM$ ("the anchor") satisfying

$$\rho([X, Y]) = [\rho(X), \rho(Y)],$$

[X, fY] = f[X, Y] + \rho(X)(f) \cdot Y.

Warning

Lie III is not true for Lie groupoids!

Representations and Cohomology

Definition

A representation of G is a vector bundle $E \rightarrow M$ equipped with

$$\lambda \in \Gamma^{\infty}(\mathsf{G},\mathsf{Hom}(s^*E,t^*E))$$

satisfying

$$\lambda_{g_1} \circ \lambda_{g_2} = \lambda_{g_1 g_2}.$$

Smooth groupoid cohomology $H^{\bullet}_{\mathrm{diff}}(G; E)$: $\Gamma^{\infty}(G_k; s^*E)$

$$\begin{split} \delta\varphi(g_1,\ldots,g_k) &= \lambda_{g_1}\varphi(g_2,\ldots,g_k) \\ &+ \sum_{i=1}^{k-1} (-1)^i \varphi(g_1,\ldots,g_i g_{i+1},\ldots,g_k) \\ &+ (-1)^k \varphi(g_1,\ldots,g_{k-1}). \end{split}$$

Transversal densities

Definition (Bundle of "transversal densities")

$$L := \bigwedge^{top} A \otimes \bigwedge^{top} T^*M$$

Evens-Lu-Weinstein: L carries a canonical representation of G.

Definition (Unimodularity)

A Lie groupoid G is *unimodular* if there exists an invariant nonvanishing section Ω of L.

Obstruction measured by the modular class

$$\log \delta \in H^1_{\mathrm{diff}}(\mathsf{G}; \mathbb{R}).$$

Convolution algebra

$$\mathcal{A}_{\mathsf{G}} := \mathsf{\Gamma}^{\infty}_{\mathit{cpt}}\left(\mathsf{G}; s^* \left| \bigwedge^{\mathit{top}} \mathcal{A}^* \right| \right).$$

Product:

$$(f_1 * f_2)(g) := \int_{g_1g_2=g} f_1(g_1)f_2(g_2).$$

Proposition

There exists a canonical map

$$\chi: H^{\bullet}_{\mathrm{diff}}(\mathsf{G}; L) \to HC^{\bullet}(\mathcal{A}_{\mathsf{G}}).$$

In degree 0: given $\Omega \in \Gamma^{\infty}_{inv}(M; L)$,

$$au_\Omega(a) := \int_M \langle a, \Omega
angle$$

is a trace.

The index problem

We would like to evaluate the pairing

$$H_{\mathrm{diff}}^{\bullet}(\mathsf{G};L) \times K_{\bullet}(\underline{\mathit{BG}}) \to \mathbb{C},$$

given by

$$\langle \nu, [Z, D] \rangle = \langle \chi(\nu), \mu([Z, D]) \rangle.$$

But $\mu([Z,D]) \notin K_0(\mathcal{A}_G)$.

Solution strategies:

- consider the extension problem for the cyclic cocycles $\chi(\nu) \in HC^{\bullet}(\mathcal{A}_{\mathsf{G}}).$
- Lift the pairing to Z.

proper actions of Lie groupoids

Definition

An action of G \rightrightarrows M is given by a submersion $\mu: Z \to M$ together with

$$G_t \times_{\mu} Z \to Z, \quad (g, z) \mapsto gz,$$

which is associative.

The action is proper if the map

$$G_{t}\times_{\mu}Z \to Z \times Z, \quad (g,z) \mapsto (gz,z).$$

is proper.

Invariant Pseudodifferential Calculus

Let G act on Z with moment map $\mu: Z \to M$

Definition

$$P \in \Psi_{\text{inv}}^k(Z; \mathsf{G})$$
: family $P = \{P_x\}_{x \in M}$ of $\Psi DO's$ on $\mu^{-1}(x)$ such that:

- $x \mapsto P_x$ is smooth,
- P is G-invariant:

$$P_{s(g)} = L_g^* \circ P_{t(g)} \circ L_{g^{-1}}^*.$$

supp(P) is G-compact.

Left multiplication:

$$L_g: \mu^{-1}(s(g)) \to \mu^{-1}(t(g)) \leadsto L_g^*: C^{\infty}(\mu^{-1}(t(g))) \to C^{\infty}(\mu^{-1}(s(g)))$$

Cut-off functions

Definition

A cut-off function on Z is a section $c \in \Gamma_c^{\infty}(Z; \left| \bigwedge^{top} \right| A^*)$ with

$$\int_{s(g)=\mu(z)} c(g^{-1}z) = 1, \quad \text{for all } z \in Z.$$

Choose $\Omega \in \Gamma^{\infty}(M; L)$.

$$au_{\Omega}(K) = \int_{Z} k(z,z) \langle c(z), \pi^* \Omega \rangle, \ k \in \Psi_{\mathrm{inv}}^{-\infty}(Z;\mathsf{G}).$$

 τ_{Ω} is a trace if and only if Ω is invariant.

(cf. H. Wang for the group action case)

The characteristic map

Characteristic map:

$$\chi: H^{\bullet}_{\mathrm{diff}}(\mathsf{G}; L) \to HC^{\bullet}(\Psi^{-\infty}_{\mathrm{inv}}(Z; \mathsf{G}))$$

Defined by:

$$\chi(\varphi)(k_0 \otimes \ldots k_p)$$

$$:= \int_{Z_{\mu}^{(p+1)}} c(z_0) \varphi(z_0, \ldots, z_{2n}) k_1(z_0, z_1) \cdots k_{2n}(z_{2n}, z_0) \pi^* \Omega.$$

index pairing:

$$H^{\bullet}_{\mathrm{diff}}(\mathsf{G};L)\times K_{0}(\Psi^{-\infty}_{\mathrm{inv}}(Z;\mathsf{G}))\to \mathbb{C}.$$

The index theorem for proper actions

D invariant family of differential operators on Z.

$$D ext{ elliptic} \leadsto \operatorname{Ind}(D) \in \mathcal{K}_0(\Psi_{\operatorname{inv}}^{-\infty}(Z;\mathsf{G})).$$

Theorem,

For $\nu \in H^{2k}_{\mathrm{diff}}(\mathsf{G}; L)$, we have

$$\langle
u, \mathsf{Ind}(D)
angle := rac{1}{(2\pi \sqrt{-1})^k} \int_{\mathcal{F}^*} \pi^* \left\langle c, \Phi_{Z}(
u)
ight
angle \operatorname{Td}(\mathcal{F}^* \otimes \mathbb{C}) \operatorname{ch}_{\mathcal{F}}(\sigma(D)).$$

The van Est map

 $\mathcal{F} =$ foliation by the fibers of $\mu : Z \to M$.

van Est map : $\Phi_Z : H^{\bullet}_{\mathrm{diff}}(\mathsf{G}; E) \to H^{\bullet}_{\mathcal{F}}(Z; \mu^* E)^{\mathsf{G}}$

Theorem (Crainic)

The van Est map Φ_Z is an isomorphism in degree $\bullet \leq n$ and injective for

ullet = n + 1, when the G-action is proper and the fibers of the moment map

 $\mu: Z \to M$ are homologically n-connected.

G-invariant cohomology

Lemma

Let $\alpha \in \Omega^{top}_{\mathcal{F}}(Z; \mu^*L)^{\mathsf{G}}$. The integral

$$\int_{\mathcal{Z}} \langle \boldsymbol{c}, \alpha \rangle \,,$$

vanishes on exact forms. The linear map

$$\int_{Z}\langle c,-
angle: H^{top}_{\mathcal{F}}(Z;\pi^*L)^{\mathsf{G}}
ightarrow \mathbb{C}$$

is independent of c.

Ingredients of the proof

- 1 The support of the parametrix $k(z_1, z_2) \in \Psi_{\mathrm{inv}}^{-\infty}(Z; \mathsf{G})$ can be localized to the diagonal in $Z_{\pi} \times_{\pi} Z$. Near this diagonal, the groupoid cocycle defines an invariant differential form.
- 2 Introduce the *asymptotic* G-invariant pseudodifferential calculus. This induces a G-invariant \star -product on T_{π}^*Z , a regular Poisson manifold.
- 3 Compare the trace on the deformation quantization $\mathscr{A}^{\hbar}_{T^*_{\pi}Z}$ agrees with the trace obtained by the Fedosov construction.
- 4 Compute the higher index pairing by taking the limit $\hbar \to 0$, and use the algebraic index theorem for regular Poisson manifolds.

Special cases

- By specializing G, Z and the elements in $H_{\text{diff}}^{\bullet}(G; L)$ we can now recover various well-known index theorems.
- In all these cases, the most interesting aspect is to identify the van Est map in that situation.

Special case: Z = G

 $E \to M$ vector bundle, $D \in \mathcal{U}(A) \otimes \operatorname{End}(E)$.

$$D ext{ elliptic} \leadsto \operatorname{Ind}(D) \in K_0(\mathcal{A}_{\mathsf{G}}).$$

Theorem

Let $\nu \in H^{2k}_{\mathrm{diff}}(\mathsf{G}; L)$. Then

$$\operatorname{Ind}_{\nu}(D)) = \frac{1}{(2\pi\sqrt{-1})^k} \int_{A^*} \pi^* \Phi_{\mathsf{G}}(\nu) \operatorname{Td}^{\pi^! A}(\pi^! A \otimes \mathbb{C}) \rho_{\pi^! A}^* \operatorname{ch}(\sigma(D)).$$

- $f: N \to M$ a surjective submersion, $f^!A$ is the pull-back in the category of Lie algebroids.
- $\Phi_{\mathsf{G}}: H^{\bullet}_{\mathrm{diff}}(\mathsf{G}; L) \to H^{\bullet}_{\mathrm{Lie}}(A; L)$ van Est map.

Example: the pair groupoid

- Pair groupoid $M \times M \rightrightarrows M \rightsquigarrow$ Lie algebroid TM.
- $M \times M$ is proper: $H_{\text{diff}}^k(G; L) = 0 \ k > 0$.
- Only one index (trace) ⇒ Atiyah–Singer.

Discrete group Γ acting freely on \tilde{M} with quotient $\tilde{M}/\Gamma=M$.

- $G_{\Gamma,M} := \tilde{M} \times_{\Gamma} \tilde{M} \rightrightarrows M$, Lie algebroid TM.
- $\bullet \ H^{\bullet}_{\mathrm{diff}}(\mathsf{G}_{\Gamma,M};\mathbb{C}) \cong H^{\bullet}_{\mathrm{grp}}(\Gamma;\mathbb{C}) \cong H^{\bullet}(B\Gamma;\mathbb{C})$
- Covering index theorem:

$$\left\langle \operatorname{Ind}_{\Gamma}(\tilde{D}), \alpha \right\rangle = \frac{1}{(2\pi\sqrt{-1})^k} \int_{T^*M} \psi^* \alpha \operatorname{Td}(T^*M \otimes \mathbb{C}) \operatorname{ch}(\sigma(D))$$

• $\psi: H^{\bullet}(B\Gamma) \to H^{\bullet}(M)$ van Est map.

Homogeneous spaces of Lie groups

- $K \subset G$ compact subgroup of a Lie group. X := G/K.
- $V \in \operatorname{Rep}(K) \leadsto \tilde{V} := G \times_K V$.
- Elliptic G-equivariant differential operator

$$D:\Gamma_c^\infty(X;\tilde{V})\to\Gamma_c^\infty(X;\tilde{V}).$$

Theorem

$$\operatorname{Ind}_{\nu}(D) = \frac{1}{(2\pi\sqrt{-1})^k} \left\langle \Phi_X(\nu), \hat{A}(\mathfrak{g}; K) \operatorname{ch}(\sigma(D)) \right\rangle.$$

• $\hat{A}(\mathfrak{g};K)\mathrm{ch}(\sigma(D))$ characteristic classes in $H^{\bullet}(\mathfrak{g};K)$. Remark

$$T_{[e]}X \cong \mathfrak{g}/\mathfrak{k} \implies \Omega^{\bullet}(TX)^G \cong \bigwedge(\mathfrak{g}/\mathfrak{k})^*.$$

- $\Phi_X : H^{\bullet}_d(G; \Lambda \mathfrak{g}) \to H^{\bullet}(\mathfrak{g}, K; \Lambda^{\text{top}} \mathfrak{g})$ the "van Est map".
- $\langle \ , \ \rangle : H^{\bullet}(\mathfrak{g}, K; \bigwedge^{\text{top}} \mathfrak{g}) \times H^{\bullet}(\mathfrak{g}, K) \to \mathbb{C}$ natural pairing.

G is unimodular: $H_d^0(G; \bigwedge^{\text{top}} \mathfrak{g}) \cong \mathbb{C} \leadsto \text{trace} \leadsto L^2$ -index theorem of Connes–Moscovici.

- G semisimple, unimodular. $K \subset G$ maximal compact, $\operatorname{rank}(G) = \operatorname{rank}(K) \Longrightarrow \dim(G/K) = \text{even}$.
- ullet V_{μ} irrep K with heights weight $\mu \leadsto \mathsf{Dirac}$ operator

Atiyah–Schmid

$$\operatorname{Ind}_{\Omega}(\mathcal{D}_{\mu}) = \prod_{\alpha > 0} \frac{(\mu + \rho_{K}, \alpha)}{(\rho_{G}, \alpha)}$$

- Atiyah and Schmidt showed that for μ nonsingular (i.e., $\langle \mu + \rho_K, \alpha \rangle \neq 0$) $\ker_{L^2}(\not D_\mu)$ is a discrete series representation with formal dimension given by the formula above
- \bullet μ singular corresponds to a "limit of discrete series".