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Introduction: What is topological T-duality?

A relation of twisted cohomology (twisted K-theory).

More concretely, the duality relates a torus bundle with

another one, so that twisted cohomology groups of the

total spaces of these torus bundles are isomorphic.

Originally, the idea came from T-duality in string theory:

P. Bouwknegt, J. Evslin and V. Mathai,

“T-duality: topology change from H-flux”.

Comm. Math. Phys. 249 (2004), no. 2, 383-415.

Nowadays, there are a number of generalizations.

A topological T-duality for circle bundles, following

Bunke and Schick, is as follows:
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Topological T-duality for circle bundles (former half)

.

.

Let X be a finite CW complex, and (E, h) a pair consisting

of a principal circle bundle π : E → X and h ∈ H3(E; Z).
Then, up to isomorphism, there uniquely exists a pair (Ê, ĥ)
consisting of a principal circle bundle π̂ : Ê → X and ĥ ∈
H3(Ê; Z) such that

π∗h = c1(Ê), π̂∗ĥ = c1(E), p∗h = p̂∗ĥ.

((E, h) and (Ê, ĥ) will be called T-dual to each other.)
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p

{{vvv
vvv

p̂

##HHH
HHH

E

π $$III
III

I Ê
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Topological T-duality for circle bundles (latter half)

Recall that h ∈ H3(X; Z) twists topological K-theory:

K∗(X)  Kh+∗(X)

.

.

For T-dual pairs (E, h) and (Ê, ĥ), there is an isomorphism

T : Kh+n(E) −→ Kĥ+n−1(Ê).

(T will be called the T-transformation.)

(E, h)

π ""EE
EE

E (Ê, ĥ)

π̂||yyy
yy

X

A generalization of this duality is my main theorem.
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Topological T-duality for Real circle bundles

.

Main Theorem [G, arXiv:1310.8446]

.

.

.

Let X be a finite Z/2-CW complex, and (E, h) a pair

consisting of a Real circle bundle π : E → X and

h ∈ H3
Z/2(E; Z). Then, up to isomorphism, there

uniquely exists a pair (Ê, ĥ) consisting of a Real circle

bundle π̂ : Ê → X and ĥ ∈ H3
Z/2(Ê; Z) such that

π∗h = cR1 (Ê), π̂∗ĥ = cR1 (E), p∗h = p̂∗ĥ.

For (E, h) and (Ê, ĥ) as above, there are isomorphisms

Kh+n
Z/2 (E) T→ Kĥ+n−1

± (Ê), Kh+n
± (E) T→ Kĥ+n−1

Z/2 (Ê).

What are Z/2-CW complex, Real circle bundle, cR1 and K±?
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What are Z/2-CW complex, Real circle bundle, cR1 and K±?

A Z/2-CW complex is a space with Z/2-action

(Z/2-space), which has a structure like a CW complex.

(For example, a smooth manifold with smooth

Z/2-action gives rise to a Z/2-CW complex.)

A Real circle bundle is a certain principal circle bundle

on a Z/2-space, which arises as the unit circle bundle of

a complex line bundle with ‘real structure’ in the sense

of Atiyah.

cR1 is a certain Chern class of Real circle bundles.

More details will follow.
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What is K±?

K± is a variant of K-theory, defined by

.

.

Kh+n
± (X) = Kh+n+1

Z/2 (X × Ĩ, X × ∂Ĩ),

where Ĩ = [−1, 1], the Z/2-action τ : X × Ĩ → X × Ĩ

is given by τ (x, t) = (τX(x),−t), and h ∈ H3
Z/2(X; Z).

K± was originally introduced by Witten in a context of

string theory.

In a different notation, K± also appears in Rosenberg’s

Künneth theorem for Z/2-equivariant K-theory,

More details will follow.
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.

Main Theorem (again)

.

.

.

Let X be a finite Z/2-CW complex, and (E, h) a pair

consisting of a Real circle bundle π : E → X and

h ∈ H3
Z/2(E; Z). Then, up to isomorphism, there

uniquely exists a pair (Ê, ĥ) consisting of a Real circle

bundle π̂ : Ê → X and ĥ ∈ H3
Z/2(Ê; Z) such that

π∗h = cR1 (Ê), π̂∗ĥ = cR1 (E), p∗h = p̂∗ĥ.

For (E, h) and (Ê, ĥ) as above, there are isomorphisms

Kh+n
Z/2 (E) T→ Kĥ+n−1

± (Ê), Kh+n
± (E) T→ Kĥ+n−1

Z/2 (Ê).
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Related works

If the Z/2-action on X is free, then the main theorem

recovers a result of D. Baraglia.

His result is also generalized by Mathai and Rosenberg,

in a different way.
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Background from string

Superstring theory is a candidate of theory of

everything, in which strings are the fundamental objects.

There are five types of theories

type I, type II (A, B), heterotic (E8 × E8, SO(32)).

These theories are related by various dualities.

For example, IIA theory and IIB theory are originally

formulated on the (Minkowski) spacetime R10.

Then, by T-duality, IIA and IIB are ‘equivalent’, upon

toroidal compactifications along 1-dimension:

IIA on R9 × S1 T-dual←→ IIB on R9 × S1
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D-brane and its charge

D-branes are (at the ‘classical’ level) objects to which

the ends of strings can be attached.

D-branes are charged with respect to background

Ramond-Ramond fields.

K-theory arises as a home of the charges:

.

.

Type I KO(X)
Type IIA K1(X)
Type IIB K0(X)

We can anticipate that, by a string duality, possible

D-branes and hence K-theories would be related.
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From T-duality to topological T-duality

This is the case for the T-duality:

IIA on R9 × S1 T-dual←→ IIB on R9 × S1

For any space X, we have

Kn(X × S1) ∼= Kn(X)⊕Kn−1(X),

so that, at least abstractly,

Kn(X × S1) ∼= Kn−1(X × S1).

An attempt to generalize the isomorphism above to

non-trivial circle bundles on X lead Bouwknegt, Evslin

and Mathai to the idea of topological T-duality.
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Orbifold string theory

Orbifolding is

a recipe producing a theory from a string theory.

to take into account a symmetry of string theory.

Examples of symmetries:

.

.

.

1 An action of a group G on R10.

.

.

.

2 The Z/2-symmetry Ω in type IIB theory, reversing the

orientations of strings.

.

.

.

3 The Z/2-symmetry (−1)FL in type II theory, acting

according to the left moving spacetime fermion number.

Generally, we combine symmetries to orbifold.

(If Ω is included, orbifolding is called orientifolding.)
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Orbifolding and K-theory

Upon orbifolding, home of D-brane charges are modified.

.

.

G-action : K-theory  G-equivariant K-theory,

Ω : K(X)  KR(X),
(−1)FL : Kn(X)  Kn

±(X),

where KR(X) is the K-theory of Real vector bundles,

namely, complex vector bundles with ‘real structure’ in

the sense of Atiyah.

In this context, K± was originally introduced:

E. Witten, “D-branes and K-theory”.

J. High Energy Phys. 1998, no. 12, Paper 19, 41 pp.
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Orbifolding relates string theory

Like dualities, orbifolding happens to relate theories.

.

. . 1 the orbifolding of type IIB theory by Ω is equivalent to

type I theory.

Type IIB on R10 / Ω←→ Type I on R10

.

.

.

2 the orbifolding of type IIB theory by (−1)FL is

equivalent to type IIA theory.

Type IIB on R10 / (−1)FL ←→ Type IIA on R10

The relations are compatible with those of K-theories:

If Z/2 acts on a space X trivially, then

KR(X) ∼= KO(X), Kn
±(X) ∼= Kn−1(X).
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Duality and orbifolding

The compatibility of duality and orbifolding is an issue of

physicists, and is tested in various cases.

In some cases, they are not compatible: S-duality in IIB

theory transforms Ω to (−1)FL, but:

Type IIB on R10 / Ω 6↔ Type IIB on R10 / (−1)FL

‖ ‖
Type I on R10 Type IIA on R10

A compatible case motivated the main theorem.

Let T ` be the `-dimensional torus R`/Z` with the

Z/2-action I`(~x) = −~x.

The orbifolding of IIA compactified on T 2k by I2k is

T-dual to that of IIB compactified on T 2k by (−1)FLI2k.
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Motivating duality and orbifolding

IIA on R10−2k × T 2k/I2k ↔ IIB on R10−2k × T 2k/(−1)FLI2k

This duality is consistent with K-theory: For any space

X with Z/2-action, there are isomorphisms

Kn
Z/2(X × T `) ∼= (Kn

Z/2(X)⊕Kn−1
± (X))⊕2`−1

,

Kn
±(X × T `) ∼= (Kn

±(X)⊕Kn−1
Z/2 (X))⊕2`−1

,

so that, at least abstractly,

Kn
Z/2(X × T `) ∼= Kn−1

± (X × T `).

In view of the ‘usual’ topological T-duality, we can

anticipate the main theorem.
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.

Main Theorem (again)

.

.

.

Let X be a finite Z/2-CW complex, and (E, h) a pair

consisting of a Real circle bundle π : E → X and

h ∈ H3
Z/2(E; Z). Then, up to isomorphism, there

uniquely exists a pair (Ê, ĥ) consisting of a Real circle

bundle π̂ : Ê → X and ĥ ∈ H3
Z/2(Ê; Z) such that

π∗h = cR1 (Ê), π̂∗ĥ = cR1 (E), p∗h = p̂∗ĥ.

For (E, h) and (Ê, ĥ) as above, there are isomorphisms

Kh+n
Z/2 (E) T→ Kĥ+n−1

± (Ê), Kh+n
± (E) T→ Kĥ+n−1

Z/2 (Ê).
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H±

H± is defined in a way similar to K±.

.

Definition

.

.

.

For a space X with Z/2-action, Hn
±(X) = Hn

±(X; Z) is

defined as the following Borel equivariant cohomology:

Hn
±(X) = Hn+1

Z/2 (X × Ĩ, X × ∂Ĩ; Z)

= Hn+1(EZ2 ×Z2 (X × Ĩ), EZ2 ×Z2 (X × ∂Ĩ); Z),

where Ĩ = [−1, 1], the Z/2-action τ : X × Ĩ → X × Ĩ is

given by τ (x, t) = (τX(x),−t), and EZ2 → BZ2 is the

universal Z/2-bundle.



. . . . . .

Introduction Background from string H± K± Point in the proof Example Closing

Basic properties of H± to be explained

H± has a multiplicative structure;

H± constitutes an equivariant cohomology theory;

H± is a cohomology with local coefficients;

Thom isomorphism for Real line bundles;

Classification of Real circle bundles.



. . . . . .

Introduction Background from string H± K± Point in the proof Example Closing

H± has a multiplicative structure

H∗
Z/2(X) =

⊕
nHn

Z/2(X) forms a (graded) ring.

In particular, H∗
Z/2(X) is a module over

H∗
Z/2(pt) = Z[t]/(2t),

where t ∈ H2
Z/2(pt) = Z/2 is the generator.

n 0 1 2 3 4 5 6 7
Hn
Z/2(pt) Z 0 Z2t 0 Z2t2 0 Z2t3 0
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H± has a multiplicative structure

H∗
±(X) is a module over H∗

Z/2(X) and H∗
Z/2(pt).

Further, there is a multiplication

∪ : Hn
±(X)×Hm

± (X)→ Hn+m
Z/2 (X).

Consequently, we get a Z⊕ Z2-graded ring:

H∗(X) := H∗
Z/2(X)⊕H∗

±(X),

which is a module over

H∗(pt) ∼= Z[t1/2]/(2t1/2),

where t1/2 ∈ H1
±(pt) = Z/2 is the generator.

n 0 1 2 3 4 5
Hn
Z/2(pt) Z 0 Z2t 0 Z2t2 0

Hn
±(pt) 0 Z2t1/2 0 Z2t3/2 0 Z2t5/2
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H± constitutes an equivariant cohomology theory

Since H∗
Z/2(X) constitutes a generalized cohomology

theory, so does H∗
±(X). (The homotopy, excision,

exactness and additivity axioms are satisfied.)

Aside the axioms above, there are the exact sequences:

·· → Hn
Z2(X)

f→ Hn(X)→ Hn
±(X) δ→ Hn+1

Z2 (X)→ ··,

·· → Hn
±(X)

f→ Hn(X)→ Hn
Z2(X) δ→ Hn+1

± (X)→ ··,

where f is to ‘forget’ the Z/2-action, and δ = t1/2∪.

n 0 1 2 3 4 5
Hn
Z/2(pt) Z 0 Z2t 0 Z2t2 0

Hn(pt) Z 0 0 0 0 0
Hn
±(pt) 0 Z2t1/2 0 Z2t3/2 0 Z2t5/2
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H± as cohomology with local coefficients

Consider the Z/2-equivariant real line bundle

R1 = X × R on X, whose Z/2-action is

(x, t) 7→ (τX(x),−t).

The Thom isomorphism theorem for R1 gives us:

.

.

There is a natural isomorphism

Hn
±(X) := Hn+1

Z/2 (X × Ĩ, X × ∂Ĩ; Z)

∼= Hn
Z/2(X; Z(1)) := Hn(EZ2 ×Z2 X; Z(1)),

where Z(1) is the Z/2-module whose underlying group is Z
and π1(EZ2 ×Z2 X) acts non-trivially through the homotopy

exact sequence for the fibration X → EZ2 ×Z2 X → BZ2:

π1(X)→ π1(EZ2 ×Z2 X)→ π1(BZ2) = Z2.
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Thom isomorphism for Real line bundles

Recall ‘Real vector bundles’ in the sense of Atiyah:

.

Definition

.

.

.

A complex vector bundle with real structure, or a Real vector

bundle, on a Z/2-space X is a complex vector bundle

π : V → X equipped with a lift τ : V → V of the

Z/2-action on X such that:

τ 2(v) = v, τ (z1v1 + z2v2) = z̄1τ (v1) + z̄2τ (v2)

for all x ∈ X, v, vi ∈ π−1(x) and zi ∈ C.

For example, the trivial Real vector bundle is defined by

X × Cn with its Z/2-action τ (x, z) = (τX(x), z̄).
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Thom isomorphism for Real line bundles

For any Real line bundle π : R→ X, we have

w
Z/2
1 (R) = w

Z/2
1 (R1) ∈ H2

Z/2(X; Z/2).

.

Thom isomorphism

.

.

.

There are natural isomorphisms of H∗
Z/2(X)-modules

Hn
Z/2(X) ∼= Hn+2

± (D(R), S(R)),

Hn
±(X) ∼= Hn+2

Z/2 (D(R), S(R)),

where D(R) and S(R) are the disk and circle bundles of R,

with respect to a Z/2-invariant Hermitian metric on R.

This induces the Gysin sequence for Real circle bundles.
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Thom isomorphism for Real line bundles

.

Definition

.

.

.

A Real circle bundle π : E → X on a Z/2-space X is a

principal circle bundle equipped with a lift τ : E → E of the

Z/2-action on X such that

τ 2(ξ) = ξ, τ (ξu) = τ (ξ)ū

for all ξ ∈ E and u ∈ S1 ⊂ C.

The unit sphere bundle of a Real line bundle is a Real

circle bundle.

Essentially, the notion of Real line bundle is equivalent

to that of Real circle bundle.
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Thom isomorphism for Real line bundles

.

Gysin sequence

.

.

.

For any Real circle bundle π : E → X, there are natural

exact sequences of H∗
Z/2(X)-modules:

·· → Hn−2
± (X)

χR→ Hn
Z2(X) π

∗
→ Hn

Z2(E) π∗→ Hn−1
± (X)→ ··,

·· → Hn−2
Z2 (X)

χR→ Hn
±(X) π

∗
→ Hn

±(E) π∗→ Hn−1
Z2 (X)→ ··,

where χR = χR(E) ∈ H2
±(X) is the Euler class of R.
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Classification of Real circle bundles

It is well-known that complex line bundles (or principal

circle bundles) on a space X are classified by H2(X; Z).

It is also known that Z/2-equivariant line bundles (or

Z/2-equivariant circle bundles) on a Z/2-space are

classified by H2
Z/2(X; Z).

.

Proposition [Kahn, 1987]

.

.

.

Real line bundles are classified by H2
Z/2(X; Z(1)) ∼= H2

±(X).

Consequently, Real circle bundles π : E → X on a

Z/2-space X are classified by cR1 (E) ∈ H2
±(X).

It holds that cR1 (E) = χR(E).
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K±

.

Definition(again)

.

.

.

For a space X with Z/2-action, Kn
±(X) is defined by

Kn
±(X) = Kn+1

Z/2 (X × Ĩ, X × ∂Ĩ),

where Ĩ = [−1, 1], the Z/2-action τ : X × Ĩ → X × Ĩ is

given by τ (x, t) = (τX(x),−t).

K± has properties similar to H±.

K± has a multiplicative structure;

K± constitutes an equivariant cohomology theory;

K± is a cohomology with local coefficients;

Thom isomorphism for Real line bundles;

The similarity and the difference will be explained.
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K± has a multiplicative structure
As in the case of H±, we have a ring.

K∗(X) := K∗
Z/2(X)⊕K∗

±(X),

graded by Z/2⊕ Z/2 due to the Bott periodicity.

On pt, we have

K0
Z/2(pt) = R ∼= Z2, K1

Z/2(pt) = 0,

K0
±(pt) = 0, K1

±(pt) = R/J ∼= Z,

where R = Z[t]/(t2 − 1) is the representation ring of

Z/2, and J = (1 + t) is an ideal in R.

A generator σ ∈ K1
±(pt) satisfies the relations:

tσ = −σ, σ2 = 1− t,

so that there is a ring isomorphism

K∗(pt) ∼= Z[σ]/(σ3 − 2σ).
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K± constitutes an equivariant cohomology theory

K± constitutes a generalized cohomology theory.

There are the exact sequences:

·· → Kn
Z2(X)

f→ Kn(X)→ Kn
±(X) δ→ Kn+1

Z2 (X)→ ··,

·· → Kn
±(X)

f→ Kn(X)→ Kn
Z2(X) δ→ Kn+1

± (X)→ ··,

where f is to ‘forget’ the Z/2-action, and δ is to

multiply the generator σ ∈ K1
±(pt) ∼= R/J ∼= Z.
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K± as cohomology with local coefficients

K± is also a cohomology with local coefficients, known

as twisted K-theory.

In general, we use an element in the cohomology

H1
Z/2(X; Z/2)×H3

Z/2(X; Z)

to twist Z/2-equivariant K-theory K∗
Z/2(X).

The Thom isomorphism theorem for the Z/2-equivariant

(real) line bundle R1 → X provides us:

.

.

Kn
±(X) ∼= K

w
Z/2
1 (R1)+n

Z/2 (X)

More generally, for h ∈ H3
Z/2(X; Z), we have

Kh+n
± (X) ∼= K

w
Z/2
1 (R1)+h+n

Z/2 (X).
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Thom isomorphism for Real line bundles

π : R→ X a Real line bundle, h ∈ H3
Z/2(X; Z).

.

Thom isomorphism

.

.

.

There are natural isomorphisms of K∗
Z/2(X)-modules

Kh+n
Z/2 (X) ∼= K

π∗(W
Z/2
3 (R)+h)+n

± (D(R), S(R)),

Kh+n
± (X) ∼= K

π∗(W
Z/2
3 (R)+h)+n

Z/2 (D(R), S(R)).

In general, W
Z/2
3 (R) ∈ H3

Z/2(X; Z) has the expression:

W
Z/2
3 (R) = t1/2 ∪ cR1 (R).

There is the corresponding Gysin sequence, in which the

push-forward picks up W
Z/2
3 .
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.

Main Theorem (again)

.

.

.

Let X be a finite Z/2-CW complex, and (E, h) a pair

consisting of a Real circle bundle π : E → X and

h ∈ H3
Z/2(E; Z). Then, up to isomorphism, there

uniquely exists a pair (Ê, ĥ) consisting of a Real circle

bundle π̂ : Ê → X and ĥ ∈ H3
Z/2(Ê; Z) such that

π∗h = cR1 (Ê), π̂∗ĥ = cR1 (E), p∗h = p̂∗ĥ.

For (E, h) and (Ê, ĥ) as above, there are isomorphisms

Kh+n
Z/2 (E) T→ Kĥ+n−1

± (Ê), Kh+n
± (E) T→ Kĥ+n−1

Z/2 (Ê).

The idea of the proof is parallel to those in works of

Baraglia, Bunke and Schick.
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The first part is shown by using Leray-Serre spectral

sequences carefully.

The second part constructs the module maps T first.

Kh+n
Z/2 (E)

p∗→ Kp∗h+n
Z/2 (E ×X Ê) (pull-back)

∼=→ Kp̂∗ĥ+n
Z/2 (E ×X Ê) (p∗h = p̂∗ĥ)

p̂∗→ K
ĥ+W

Z/2
3 (π̂∗E)+n−1

± (Ê) (push-forward)
∼=→ Kĥ+n−1

± (Ê). ((−1)∗)

E ×X Ê
p

{{vvv
vvv

p̂

##HHH
HHH

E

π $$III
III

I Ê
ww

π̂zzuuu
uuu

u −1 ∈ S1 ⊂ C

X
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To prove that T is an isomorphism, we use

the assumption that X is a Z/2-CW complex,

the axioms of cohomology theory

to reduce the problem to the case of pt.

Then, it suffices to prove that

T : K∗(S1) −→ K∗(S1)

is an isomorphism. (τ (u) = ū for u ∈ S1 ⊂ C.)

This is directly verified.

K∗(pt) = Z[σ]/(σ3 − 3σ),

K∗(S1) = Z[σ, χ]/(σ3 − 3σ, χ2 − σχ),

T (1) = (1− σ2)χ, T (χ) = 1− σχ.
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Example

Let S1 be the circle with the trivial Z/2-action.

Since H2
±(S1) = Z/2, there are essentially two Real

circle bundles:

π0 : E0 → S1, cR1 (E0) = 0,

π1 : E1 → S1. cR1 (E1) = c 6= 0

There are essentially five pairs on S1:

(E0, 0) (E0, π∗0(t
1/2c)) (E0, h0) (E1, 0) (E1, h1)
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Example

Let S1 be the circle with the trivial Z/2-action.

Since H2
±(S1) = Z/2, there are essentially two Real

circle bundles:

π0 : E0 → S1, cR1 (E0) = 0,

π1 : E1 → S1. cR1 (E1) = c 6= 0

There are essentially five pairs on S1:

(E0, 0) (E0, π∗0(t
1/2c)) (E0, h0) (E1, 0) (E1, h1)\\ [[

oo //
\\
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(E0, 0) (E0, π∗0(t
1/2c)) (E0, h0) (E1, 0) (E1, h1)\\ [[

oo //
\\

K0
Z/2(E0) ∼= R⊕R/J, K1

Z/2(E0) ∼= R⊕R/J,

K0
±(E0) ∼= R⊕R/J, K1

±(E0) ∼= R⊕R/J.

Kh+0
Z/2 (E0) ∼= R/I, Kh+1

Z/2 (E0) ∼= R/J ⊕ I/2I,

Kh+0
± (E0) ∼= R/J ⊕ I/2I, Kh+1

± (E0) ∼= R/I,

where h = π∗0(t
1/2c).

R = Z[t]/(t2 − 1), I = (1− t), J = (1 + t).
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(E0, 0) (E0, π∗0(t
1/2c)) (E0, h0) (E1, 0) (E1, h1)\\ [[

oo //
\\

Kh0+0
Z/2 (E0) ∼= R/I ⊕R/J, Kh0+1

Z/2 (E0) ∼= R,

Kh0+0
± (E0) ∼= R/I ⊕R/J, Kh0+1

± (E0) ∼= R.

K0
Z/2(E1) ∼= R, K1

Z/2(E1) ∼= R/I ⊕R/J,

K0
±(E1) ∼= R, K1

±(E1) ∼= R/I ⊕R/J.

Kh1+0
Z/2 (E1) ∼= R/I, Kh1+1

Z/2 (E1) ∼= R/I,

Kh1+0
± (E1) ∼= R/I, Kh1+1

± (E1) ∼= R/I.
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Closing: a possible topological T-duality

In the main theorem, a Real circle bundle comes as a

T-dual of a Real circle bundle.

It would be possible to generalize the proof to get a
‘Z/2-equivariant topological T-duality in which:

.

.

.

1 a Z/2-equivariant circle bundle comes as a T-dual of an

Z/2-equivariant circle bundle;

.

.

.

2 Z/2-equivariant K-groups of their total spaces are

isomorphic.

In these dualities, ‘Real world’ and ‘equivariant world’

are parallel.

Is there a duality mixing these two parallel worlds?

Real E

π ��:
::

:: Ê

π̂����
��

Real

Z/2-equivariant

X

Z/2-equivariant
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In the main theorem, a Real circle bundles comes as a

T-dual of a Real circle bundle.

It would be possible to generalize the proof to get a
topological T-duality in which:
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.
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1 a Z/2-equivariant circle bundle comes as a T-dual of a

Z/2-equivariant circle bundle;

.
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If there were such a duality, the third cohomology

classes on the total spaces should live in H±:

(E, h) ←→ (Ê, ĥ){
E : Z/2-equiv

h ∈ H3
±(E; Z)

{
Ê : Real

ĥ ∈ H3
±(Ê; Z)

π∗h = cR1 (Ê), π∗ĥ = c
Z/2
1 (h), p∗h = p̂∗ĥ.

KR-theory can be twisted by H3
±. [Moutuou]

There may exist an isomorphism:

T : KRh+n(E) −→ KRĥ+n−1(Ê).
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There may exist an isomorphism:
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T : KRh+n(E) −→ KRĥ+n−1(Ê).

The anticipation is justified by two examples:

The trivial case:
E = X × S1 the trivial Z/2-equivariant circle bundle,

Ê = X × S̃1 the trivial Real circle bundle,

h = 0, ĥ = 0.

KRn(X × S1) ∼= KRn(X)⊕KRn−1(X),

KRn(X × S̃1) ∼= KRn(X)⊕KRn+1(X).

The case where the Z/2-action is free [Baraglia].

Thank you very much.
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Ê = X × S̃1 the trivial Real circle bundle,

h = 0, ĥ = 0.

KRn(X × S1) ∼= KRn(X)⊕KRn−1(X),

KRn(X × S̃1) ∼= KRn(X)⊕KRn+1(X).

The case where the Z/2-action is free [Baraglia].

Thank you very much.


	Introduction
	Back ground
	H
	K
	Point in the proof
	Example
	Closing

