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1 Introduction

A subgroup of a locally compact second countable group G is said to be a
lattice if it is discrete in G and has cofinite measure with respect to the Haar
measure on G. Classically, it is a basic problem to consider whether a lattice
in a Lie group determines its ambient Lie group. More precisely, when I' and
A are lattices in Lie groups G and H, respectively, it is an interesting problem
to study when the existence of an isomorphism between I" and A implies the
existence of an isomorphism between G and H. The Mostow-Prasad-Margulis
rigidity theorem gives a complete answer to this question for semisimple Lie
groups in a more sophisticated form.

In this chapter, by a discrete group we mean a discrete and countable group.
Let us consider the following question: Given two discrete groups, under what
conditions can they be realized as lattices in the same locally compact second
countable group? Suppose that discrete groups I'; A are lattices in a locally
compact second countable group G. We shall observe some consequences of
this situation. Consider the action of I' x A on G given by

(:Ag=792"", veT, AeA, geG.
It is easy to check the following:

e The actions I'(~ I"x {e}) ~ G and A(~ {e} x A) ~ G are both measure-
preserving with respect to the (left) Haar measure m on G. Note that
the existence of a lattice in G implies the invariance of m under right
multiplication by each element of G.

e The action I' ~ G is free and admits a fundamental domain of finite
measure, i.e., a Borel subset F' C G such that m(F) < oo, Uwer ~vF =G,
and m(y1 F N~ F) = 0 for any distinct 71,2 € I'. We can say the same
thing for the action A ~ G.

In a general situation of the above one, Gromov introduced the notion of
measure equivalence as follows.

Definition 1.1 ([23, 0.5.E]). We say that two discrete groups I and A are
measure equivalent (ME) if there exists a measure-preserving action of I' x A
on a standard Borel space (X,m) with a o-finite positive measure such that
both of the actions I'(~ T x {e}) ~ ¥ and A(~ {e} x A) ~ X are essentially
free and admit a fundamental domain of finite measure. The space (X, m)
(equipped with the (I" x A)-action) is then called a ME coupling of T" and A.

A standard Borel space is a Borel space arising from a separable complete
metric space (see [34] for details of standard Borel spaces). An action of a
discrete group on a measure space is said to be essentially free if the stabilizers
of almost all points are trivial.
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It is easy to see that ME defines an equivalence relation among discrete
groups (see Section 2 in [16] or Remark 3.8 in this chapter). In the study
of ME, it is fundamental to classify various discrete groups up to ME and to
determine completely the class consisting of all discrete groups ME to a given
group. We give three typical examples of ME couplings.

Example 1.2. Let G be a locally compact second countable group equipped
with the Haar measure and let I, A be lattices in G. The action of I x A on
G given by

(1 Ng=79A"" vel, A€, geq
defines an ME coupling of I" and A.

Example 1.3. This is a special case of the above example. Let I' be a discrete
group and let A be a finite index subgroup of I'. The action of I' x A on I
given by

(7, A7 =9'A"" 7,7 €T, AeA

defines an ME coupling of I" and A, where the measure on I' is the counting
one.

Example 1.4. Let I' be a discrete group and let N be a finite normal subgroup
of I'. Choose an essentially free, measure-preserving action of I' on a standard
Borel space X with a finite positive measure (e.g., the Bernoulli action I' ~
[11:[0,1] when T is infinite). Then the action of I' x (I'/N) on X x (I'/N) given
by

(v, A) (2, X) = (yo,p(y)NA™Y), yeT, AN ET/N, 2 € X

defines an ME coupling of T and T'/N, where p: I' — T'/N is the quotient
homomorphism. Note that we can find a fundamental domain F for the action
N ~ X since N is finite. It is easy to see that ' x {eN} C T x (I'/N) is a
fundamental domain for the action I'(~T' x {e}) ~» X x (I'/N).

Commensurability up to finite kernels is the equivalence relation for discrete
groups defined by declaring two groups in an exact sequence 1 - A — B —
C — 1 of discrete groups to be equivalent if the third group is finite. It follows
from the last two examples that two commensurable groups up to finite kernels
are ME. In particular, all finite groups are ME. Conversely, it is easy to see
that a discrete group ME to a finite group is also finite.

Measure equivalence can be viewed as a measure-theoretic analogue of
quasi-isometry (QI) between finitely generated groups. It is known that two
finitely generated groups are QI if and only if there exists a continuous (I' x A)-
action on some locally compact space €2 such that both of the actions of
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(=~ T x {e}) and A(~ {e} x A) on Q are properly discontinuous and co-
compact (see 0.2.C in [23]). On the other hand, there are examples of two ME
groups which are not QI, and examples of two QI groups which are not ME.
For example, Z and Z? are ME but not QI (see Theorem 1.8). It is known
that Kazhdan’s property (T) is invariant under ME (see Corollary 1.4 in [17])
and that there exist two finitely generated groups I'1, I's satisfying the follow-
ing (see Section 3.6 in [6]): I'; and 'y are QI; and I'y satisfies property (T),
whereas I's does not satisfy property (T). Hence, I'y and I'y are not ME.

ME rigidity for mapping class groups. In this chapter, we study map-
ping class groups of compact orientable surfaces from the viewpoint of ME,
and consider a locally compact second countable group containing a lattice
isomorphic to mapping class groups.

Let M be a connected compact orientable surface of genus g and with p
boundary components. The mapping class group I'(M) of M is defined to be
the group of isotopy classes of all orientation-preserving diffeomorphisms of M.
Let I'(M)°® be the extended mapping class group of M, i.e., the group of isotopy
classes of all diffeomorphisms of M. The group I'(M)® contains I'(M) as a
subgroup of index 2. Let k(M) = 3g+p—4 be the complexity of M and assume
that k(M) > 0. Let C = C(M) be the curve complex of M, on which T'(M)®
naturally acts (see Definition 2.1). We denote by Aut(C') the automorphism
group of the simplicial complex C. It is known that the kernel of the natural
homomorphism 7: I'(M)® — Aut(C) and the index [Aut(C) : 7(T'(M)°)] are
both finite (see Theorem 2.3). Our first aim in this chapter is to survey the
proof of the following rigidity theorem for I'(M), which completely determines
the class of discrete groups ME to T'(M).

Theorem 1.5 ([36, Theorem 1.1]). Let M be a surface with k(M) > 0. If
a discrete group A is ME to the mapping class group T'(M), then there exists

a homomorphism p: A — Aut(C) such that the kernel of p and the index
[Aut(C) : p(A)] are both finite.

Our second aim is to survey the proof of the following theorem, which
determines all locally compact second countable groups containing a lattice
isomorphic to mapping class groups. The idea of this work relies on Furman’s
paper [18] about the same problem for higher rank lattices. To the best of our
knowledge, there exists no natural topological group containing the mapping
class group as a lattice other than the mapping class group itself. The following
theorem assures this observation. It has already been known that the mapping
class group for a surface with positive complexity is not isomorphic to a lattice
in any semisimple Lie group, by a result due to Kaimanovich and Masur [33].
(They also showed that any sufficiently large subgroup of the mapping class
group is not isomorphic to a lattice in a semisimple Lie group with real rank
at least 2.)
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Theorem 1.6 ([36, Theorem 1.4]). Let M be a surface with k(M) > 0 and
let T' be a finite index subgroup of T'(M)°. Let G be a locally compact second
countable group and let o: I' — G be a lattice embedding, that is, o is an
injective homomorphism such that o(T') is a lattice in G. Then the following
assertions hold:

(i) There exists a continuous homomorphism ®o: G — Aut(C) such that
Do(o()) = w(y) for any v € T, where m: T(M)® — Aut(C) is the
natural homomorphism.

(ii) Let K be the kernel of ®g and let T' act on K by conjugation via o. Let
p: T'x K — G be the homomorphism defined by p(k) =k for k € K and
p(v) = o(y) fory € T. Then the kernel of p and the index [G : p(T x K)]
are both finite.

In particular, G admits infinitely many connected components, and o(T') is
cocompact in G.

This theorem says that there exists no interesting lattice embedding of the
mapping class group into a locally compact second countable group.

Amenability of the action I'(M)® ~ 9C'. This property plays an important
role in the proof of Theorems 1.5 and 1.6. Let M be a surface with x(M) > 0.
It is known that the curve complex C = C(M) is a hyperbolic metric space
in the sense of Gromov, by a result due to Masur and Minsky [43]. See also
Hamenstadt’s proof in Volume I of this handbook [27]. Hence, we can construct
the Gromov boundary C' of C, which is known to be non-empty. Then I'(M)®
acts on 0C' continuously with respect to the topology on dC as the Gromov
boundary of C. It can be shown that OC is a standard Borel space with respect
to the o-field of subsets of C generated by this topology (see Proposition 3.10
in [35]). We refer to [39], [24], [27] for more details of the boundary 0C. The
action T'(M)® ~ OC admits the following remarkable property:

Theorem 1.7 ([35, Theorem 3.29]). Let M be a surface with k(M) > 0 and let
C be the curve complex for M. Let p be a probability measure on the Gromov
boundary OC such that the action of T(M)® on (OC, u) is non-singular. Then
the action T'(M)° ~ (OC, ) is amenable (in a measurable sense).

Here, when we are given a Borel action of a discrete group I' on a Borel
space S equipped with a positive measure v, we say that the action I' ~ (S, v)
is non-singular if v(yA) = 0 for any v € T and any Borel subset A of S with
v(A) = 0. Amenability of group actions on measure spaces was first introduced
by Zimmer [62] as a generalization of amenability of groups. Once it is shown
that some action of a group is amenable, there are many applications to the
study of that group from various aspects (see Section 8). In Section 4, we
discuss the notion of amenable actions of groups and Theorem 1.7. We will
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apply Theorem 1.7 in the proof of Theorem 5.10 to show that IA subgroupoids
are amenable.

Short description of history. The first magnificent result on ME is due
to Ornstein and Weiss. Following Dye’s results [11], [12] on some amenable
groups from the viewpoint of orbit equivalence, Ornstein and Weiss obtained
the following result (see Section 4 for the definition and elementary facts about
amenable groups).

Theorem 1.8 ([52]). An infinite discrete group is ME to Z if and only if it is
amenable. In particular, all infinite solvable groups are ME to each other.

It is natural to consider lattices in various Lie groups from the viewpoint of
ME because of Example 1.2. Based on Zimmer’s cocycle superrigidity theorem
[63], Furman established the following rigidity result for higher rank lattices.

Theorem 1.9 ([16]). Let G be a connected simple Lie group of non-compact
type with finite center and real rank at least 2. Let T' be a lattice in G. If
a discrete group A is ME to T', then there exists a homomorphism p: A —
Aut(AdG) such that kerp is finite and p(A) is a lattice in Aut(AdG).

Note that the kernel of the natural composed map G — AdG — Aut(AdG)
and the index of the image of G in Aut(AdG) are both finite. Thanks to
this result, the class of discrete groups ME to a lattice in G is completely
determined. At present, these two theorems and Theorem 1.5 are the only
results which completely describe the class of discrete groups ME to a given
infinite group. It is known that there exist continuously many discrete groups
ME to a non-abelian free group (see Theorem 2.27 in [48]). Although no
group-theoretic characterization of the class of such groups is known, some
non-trivial examples of groups in that class are known (see [21]).

Gaboriau [20] proved that the sequence {£3,, (') }nen of £2-Betti numbers for
a discrete group I is an invariant for ME in the following sense: If two discrete
groups I and A are ME, then there exists a positive real number ¢ such that
Bn(T) = ¢Bp(A) for all n. This fact leads to big progress in the classification
problem of discrete groups up to ME because this numerical invariant is defined
for all discrete groups and is computable for various discrete groups arising
geometrically.

The theory of ME is deeply linked with the theory of orbit equivalence.
In fact, Ornstein and Weiss’s original theorem is formulated in terms of orbit
equivalence. Moreover, orbit equivalence is closely related to the theory of von
Neumann algebras. There are many noteworthy results around these fields.
We recommend the reader to consult [21], [58], [60] and the references therein
for recent development of these fields.
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Organization of this chapter. In Section 2, we recall fundamentals of map-
ping class groups, groupoids, and ME. It is important to know the construction
of an isomorphism between two discrete measured groupoids from an ME cou-
pling. Thanks to this construction, we can handle the classification problem
of ME as an algebraic problem of groupoids arising from measure-preserving
actions of discrete groups on measure spaces. To analyze the groupoid arising
from an action of the mapping class group, we study its subgroupoids. Many
facts about subgroups of mapping class groups reviewed in this section will
help us to proceed to the analysis of subgroupoids because a groupoid is a
generalization of a group.

In Section 3, we give an outline of the proof of Theorems 1.5 and 1.6.
The main step in the proof is to consider a self ME coupling of the mapping
class group I'(M), i.e., an ME coupling of I'(M) and I'(M). This corresponds
to considering an isomorphism between groupoids arising from two actions of
T'(M). We first explain what we can say about such an isomorphism, which
will be formulated in Theorem 3.6. Here, we give only its statement, and
will explain its proof in subsequent sections. Assuming Theorem 3.6, we show
that any self ME coupling of I'(M) can be reduced to a much simpler self ME
coupling of I'(M). We explain how to deduce the rigidity results in Theorems
1.5 and 1.6 from such a reduction. As another direct application, we prove a
rigidity result in terms of orbit equivalence.

In Section 4, we recall amenability of discrete measured groupoids. This
notion is often utilized in the study of groupoids and plays an important role
in this work.

From Section 5 to Section 7, we study subgroupoids of a groupoid G arising
from a measure-preserving action of I'(M) on a standard Borel space with a
finite positive measure. In Section 5, we classify subgroupoids of G, following
the classification of subgroups of I'(M) due to McCarthy and Papadopoulos
[45]. We introduce two types of subgroupoids of G, which are called IA and
reducible ones, respectively. In Section 6, we recall the definition of normal
subgroupoids of a discrete measured groupoid, and study the normalizers in
G of an TA or reducible subgroupoid. In Section 7, using results shown in the
previous sections, we characterize various reducible subgroupoids in terms of
amenability and normal subgroupoids. This characterization makes it possible
to study an isomorphism between groupoids arising from two actions of I'( M)
and to prove Theorem 3.6.

Finally, in Section 8, we briefly explain other related results shown in the
series of papers [35], [36], [37], [38].

Acknowledgements. The author would like to express his deep gratitude
to Athanase Papadopoulos and Charles Boubel for reading the first version of
this chapter very carefully. Thanks to their valuable comments, this chapter
was greatly improved. This chapter was written during the stay at Max Planck
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Institute for Mathematics in Bonn. The author wishes to thank the institute
for its warm hospitality.

2 Preliminaries

2.1 Mapping class groups

In this subsection, we recall fundamental facts about mapping class groups
and several geometric objects related to them. We refer the reader to [13],
[30], [32] or Sections 3.1, 3.2, 4.3 and 4.5 in [35] and the references therein for
the material of this subsection. Chapter 8 of Volume I of this handbook ([49])
also deals with this material.

Let M = M,, be a connected, compact and orientable surface of type
(g,p), that is, of genus g and with p boundary components. Throughout the
chapter, a surface is assumed to be connected, compact and orientable unless
otherwise stated. Let I'(M) be the mapping class group of M, i.e., the group
of isotopy classes of all orientation-preserving diffeomorphisms of M. The
extended mapping class group T'(M)° of M is the group of isotopy classes of
all diffeomorphisms of M, which contains I'(M) as a subgroup of index 2. Let
k(M) = 3g+p—4 be the complexity of M. We recall two geometric objects, the
curve complex and the Thurston boundary, on which I'(M)® naturally acts.

The curve complex C. This simplicial complex was introduced by Harvey
[28] and plays an indispensable role in this chapter. We recall some funda-
mental properties.

Definition 2.1. For a surface M, let V(C) = V(C(M)) be the set of all non-
trivial isotopy classes of non-peripheral simple closed curves on M. Here, a
simple closed curve on M is said to be non-peripheral if it is not isotopic to
any boundary component of M. Let S(M) denote the set of all non-empty
finite subsets of V' (C') which can be realized disjointly on M at the same time.

When k(M) > 0, we define the curve compler C = C(M) as a simplicial
complex such that the set of vertices is V(C), and the set of simplices is S(M).

When (M) = 0, that is, when M is either of type (1, 1) or (0,4), we define
the curve complex C = C(M) as the one-dimensional simplicial complex such
that the set of vertices is V(C'), the set of edges is defined as follows: A pair
{a, 8} of two distinct elements of V(C) forms an edge if o and S have the
lowest possible intersection number, that is, 1 for M; ; and 2 for Mg 4.

When M = My 3, let C = C(M) be the empty set. For other surfaces, we
do not need to define curve complexes because such surfaces do not appear
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as components of the surface obtained by cutting a surface with non-negative
complexity along disjoint and mutually non-isotopic curves.

We immediately see that the curve complex is locally infinite (if it is non-
empty). Although it is often difficult to treat the curve complex because of
this property, it admits the following remarkable property.

Theorem 2.2 ([43], [47]). If M is a surface with k(M) > 0, then the curve
complex C = C(M) is connected. Moreover, when C is equipped with the
natural simplicial metric, it has infinite diameter and is hyperbolic in the sense
of Gromov.

Let Aut(C) be the automorphism group of the simplicial complex C. Note
that since T'(M)® acts on C simplicially, there is a natural homomorphism
m: T'(M)® — Aut(C). It is natural to ask whether this natural homomor-
phism is an isomorphism or not. The following theorem answers this question
completely in the case of k(M) > 0. We refer to [40], [42], [47] for the case of
k(M) =0.

Theorem 2.3 ([31], [40], [42]). Let M be a surface with (M) > 0.
(1) If M is neither My o nor Ms g, then 7 is an isomorphism.

(i) If M = M, 2, then the image of 7 is a subgroup of Aut(C) with index 5
and ker(m) is the subgroup generated by a hyperelliptic involution, which
is isomorphic to Z/27.

(iii) If M = May, then m is surjective and ker(m) is the subgroup generated
by a hyperelliptic involution, which is isomorphic to Z/27.

(iv) The two simplicial complexes C(Mo5) and C (M) (resp. C(Mog) and
C(Ms,0)) are isomorphic.

The Thurston boundary PMJF. Here, we recall some important facts on
the Thurston boundary. We recommend the reader to consult [13] for details
and proofs of the following facts.

Let M be a surface with k(M) > 0 and let R(M) be the set of all non-
negative real valued functions on V(C), endowed with the product topology.
We denote by PR(M) the quotient space of R(M) \ {0} by the natural diag-
onal action of the multiplicative group R% of all positive real numbers. Let
i: V(C) x V(C) — N be the minimal geometric intersection number among
representatives of two elements of V(C). In particular, i(o,a) = 0 for all
a € V(C). For each a € V(C), we can define an element of R(M) \ {0} by
the function V(C) 3 B8 + i(a, 3). The induced map V(C) — R(M) is then
injective. The closure of R - V(C) in R(M) is denoted by MF = MF(M),
and it is called the space of measured foliations on M. This space MF is
homeomorphic to R®=6+2P, In fact, it is known that each element of MF
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can be identified with a foliation with some singularities on M equipped with
a transverse measure. The way to identify an element of MJF and a measured
foliation is not immediate. The reader should be referred to Exposé 5 in [13]
for this identification.

Moreover, the composed map V(C) — R(M) \ {0} — PR(M) is also
injective. The closure of the image is denoted by PMF = PMF (M), and it
is called the Thurston boundary or the space of projective measured foliations
on M. This space PMF is homeomorphic to the sphere of dimension 6g —
7+ 2p. Tt is known that S(M) can also naturally be embedded into PMF
by using the minimal geometric intersection number i: S(M) x V(C) — N
among representatives of elements of S(M) and V(C). This function ¢ can
be continuously extended to a function MF x MF — R>q which is RY -
homogeneous in the following sense:

i(r F1,reFs) = rirei(Fy, Fy)

for any r1,72 € Ry, and Fy,Fy, € MF. Hence, for two elements Fy, F> €
PMF, whether i(Fy, Fy) =0 or # 0 makes sense. As R(M) is endowed with
the product topology, the group I'(M)® acts continuously on both MF and
PMF, and the equation

i(gF, gF2) = i(F1, 1)
holds for any g € T'(M)° and Fy, F, € MF (or PMF). Let
MIN ={F € PMF :i(F,a) #0 for any a € V(C)}

be the set of all minimal measured foliations on M, which is a T'(M)°-invariant
Borel subset of PMF.

Each point of the Teichmiiller space 7 = 7 (M) also defines an element of
R(M) \ {0}. Indeed, once chosen a hyperbolic metric on M, there is exactly
one geodesic in each free homotopy class of closed, non-peripheral curves on
M. The lengths of these geodesics give a map 7 — R(M) \ {0}. The induced
map 7 — PR(M) is then injective, and PMF forms the boundary of the
image of this map. The disjoint union 7 = 7 U PMF is called the Thurston
compactification of the Teichmiiller space, which is homeomorphic to a closed
Euclidean ball of dimension 6g — 6+ 2p whose boundary corresponds to PMF.

For g € T'(M), let us denote by

Fix(g) = {z € T : gz =z}

the fixed point set of g. Each element g € I'(M) is classified as follows in
terms of its fixed points on 7 (see Exposé 9, §V, Théoréeme and Exposé 11,
§4, Théoreme in [13]):

Theorem 2.4. Let M be a surface with k(M) > 0. Each element g € T'(M)
can be classified into the following three types:
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(i) g has finite order and has a fized point on T .

(ii) g is pseudo-Anosov, that is, Fix(g) consists of exactly two points of

MIN.
(iii) g has infinite order and is reducible, that is, there exists o € S(M) such
that go = o.

Note that these three types are mutually exclusive. We say that F € PMF
is a pseudo-Anosov foliation if F' is a fixed point for some pseudo-Anosov
element. It is known that the set of all pseudo-Anosov foliations is dense in

PMEF.

Dynamics of each element of I'(M) on PMF. This information will
help us to consider the problem of probability measures on PMF which are
invariant for the action of a subgroup of I'(M) (see Subsection 5.1). Let M
be a surface with x(M) > 0. A pseudo-Anosov element g € I'(M) has the
following remarkable dynamics on 7.

Theorem 2.5 ([32, Theorem 7.3.A]). Let M be a surface with k(M) > 0
and let g € T'(M) be a pseudo-Anosov element. Then the two fized points
Fi(g) € MIN of g satisfy the following: If U is an open neighborhood of
Fi(g) in T and if K is a compact subset of T \ {F_(g)}, then there exists
N € N such that g"(K) C U for alln > N.

We call F (g) (resp. F_(g)) the unstable (resp. stable) foliation for g.

We next consider the dynamics of a reducible element. We say that g €
(M) is pure if the isotopy class g contains a diffeomorphism ¢ of M satisfying
the following Condition (P):

We say that a diffeomorphism ¢ of M satisfies Condition (P) if there exists
a closed one-dimensional submanifold ¢ (may be empty) of M such that

e each component of ¢ is neither homotopic on M to a point nor to OM;

e ¢ is the identity on ¢, and it does not rearrange the components of M \ c.
Moreover, ¢ induces on each component of the surface M. obtained by
cutting M along ¢ a diffeomorphism isotopic to either a pseudo-Anosov
or the identity diffeomorphism.

We may assume that ¢ does not have superfluous components, that is, we
cannot discard any component of ¢ without violating Condition (P). Note
that if some component of ¢ is on the boundary of two components on which
the action of ¢ is isotopic to the identity, then the action of ¢ on the union of
these two components is not necessarily isotopic to the identity. There exists
a finite index subgroup of I'(M) consisting of pure elements (see Theorem 2.8

(1))-
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Let g € T'(M) be a pure element and let ¢ be a one-dimensional submanifold
of M satisfying Condition (P) for some diffeomorphism in the isotopy class g.
Let Q1,...,Q, be the components of M, on which ¢ induces a pseudo-Anosov
element, and let F{,... F} F! ... F" € MF be some representatives of the
corresponding unstable and stable foliations. Let aq,...,a,, be the isotopy
classes of the components of ¢ which are also boundary components of some
Q;. Let (1,...,0; be the isotopy classes of the remaining components of c.
For F € MF, let [F] € PMF denote the projection of F onto PMF. Define
two subsets A%, ¥® of PMF by

n m l
A= > miFL+> ajo;+ Y bif| € PMF

i=1 j=1 k=1

n m l
miaajvbkzovzmi+zaj+zbk>0 )
i=1 j=1 k=1

U* = {[F] € PMF :i(F,F') =i(F,[3) =0 for all i,k} .

See Section 2.4 in [30] for the sum of disjoint foliations. These subsets A",
U# are closed in PMF. Moreover, if g is a reducible element of infinite order,
then both A* and ¥® are contained in PMF \ MZN (see Corollary 2.16 in
[30]). The following gives the behavior of the dynamics of a pure reducible
element on PMF.

Theorem 2.6 ([30, Theorem 3.5]). Let M be a surface with k(M) > 0 and let
g € I'(M) be a pure element. Let U be an open subset and let K be a compact
subset of PMF such that A* C U and K C PMF \ W*. Then there exists
N € N such that g"(K) C U for alln > N.

Classification of subgroups of I'(M). Let M be a surface with k(M) > 0.
Using the classification of elements of I'(M) in Theorem 2.4, McCarthy and
Papadopoulos [45] classified subgroups of I'(M) as follows.

Theorem 2.7. Let M be a surface with k(M) > 0. Each subgroup T of T'(M)
can be classified into the following four types:

(i) T is finite.

(ii) There exists a pseudo-Anosov element g € T' such that h{Fy(g)} =
{F1(g)} for any h € T'. In this case, T is virtually cyclic and we say
that T is TIA (= infinite, irreducible and amenable).

(iii) T is infinite and there exists o € S(M) such that go = o for any g € T.

(iv) There exist two pseudo-Anosov elements g1, gs € I such that {F+(g1)} N
{F+(g2)} = 0. In this case, T' contains a non-abelian free subgroup and
1s said to be sufficiently large.
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Note that these four types are mutually exclusive (use Theorem 2.5). A
subgroup of I'(M) is said to be reducible if it fixes some element of S(M).

Some special subgroups of finite index in I'(M). We finally introduce
some finite index subgroups of I'(M) which satisfy nice properties. Since a
discrete group and its finite index subgroup are ME as seen in Example 1.3,
we may consider such special subgroups instead of I'(M) in the problem of ME.
Thanks to the nice properties, many arguments technically get much easier.

For o € S(M), we often denote by M, for simplicity the surface obtained
by cutting M along a realization of curves in ¢ when a realization of ¢ is not
specified. It is well-known that if g € I'(M) satisfies the equation go = o, then
there exist a realization c of o and a diffeomorphism ¢ of M whose isotopy class
is g such that ¢(c) = ¢ (see Theorem 5.2 in [41] for the proof). Then ¢ induces
a diffeomorphism on the surface M. obtained by cutting M along c. When ¢
preserves each component of M., we say that g preserves each component of
M, . This definition depends only on the isotopy classes o and g, and does not
depend on the choice of ¢ and ¢. Likewise, we often identify an isotopy class
and some representative of it for simplicity of the notation if no serious problem
occurs. For an integer m, let T'(M;m) be the subgroup of I'(M) consisting of
all elements which act trivially on the homology group H;(M;Z/mZ). This
subgroup has the following notable properties (see Theorem 1.2 and Corollaries
1.5, 1.8, 3.6 in [30]).

Theorem 2.8. Let M be a surface with k(M) > 0 and let m > 3 be an integer.
Then the following assertions hold:
(i) T(M;m) is a torsion-free subgroup of finite index in T'(M) and consists
of pure elements.
(ii) If g € T(M;m) and F € PMUF satisfy g"F = F for some n € Z \ {0},
then gF = F.
(iii) If g € T(M;m) and o € S(M) satisfy g"c = o for some n € Z \ {0},
then ga = « for any o € o, and g preserves each component of M, and
preserves each component of the boundary of M.

2.2 Discrete measured groupoids

This subsection is a short review of the notion of a discrete measured groupoid.
We refer to [4], [5] and Chapter XIII, §3 in [59] for more details.

Measure theory. We first recall some basic terminology in measure theory.
A Borel space X is a set equipped with a distinguished o-field of subsets of
X. A subset in the o-field is called a Borel subset. A map f: X — Y between
Borel spaces X and Y is said to be Borel if f~1(A) is a Borel subset of X for
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any Borel subset A of Y. In this chapter, we always assume a Borel space to
be standard. A Borel space is standard if as a Borel space, it is isomorphic to a
Borel space associated with a separable complete metric space. The following
facts are known:

Theorem 2.9. (i) If a Borel space X is a countable union of Borel subsets
of X which are standard as a Borel space, then X is standard.

(ii) Any Borel subset of a standard Borel space is standard as a Borel space.

(iil) Any two standard Borel spaces with the same cardinality are isomorphic
as a Borel space.

(iv) Let X,Y be standard Borel spaces and let f: X — Y be a Borel map such
that f=1(y) is countable for each y € Y. Then there exists a countable
Borel partition X = ||, X, satisfying the following: Let f, denote the
restriction of f to X,,. The image f,(X,) is a Borel subset of Y, and
the map fn: Xn — fn(X,) is a Borel isomorphism.

We refer to 13.4, 15.6 and 18.14 in [34] for Assertions (ii), (iii) and (iv),
respectively. The reader should consult [34] for more details of standard Borel
spaces. By a standard measure space we mean a standard Borel space X
equipped with a o-finite positive measure p. If p is finite, i.e., if u(X) < oo,
then we say that (X, u) is a standard finite measure space.

Let p be a positive measure on a Borel space X. We say that a Borel
subset A of X is (u-)null (resp. conull) if u(A) =0 (resp. u(X \ A) =0). A
property of points of X which holds for all x outside some p-null Borel subset
of X is said to hold for (u-)almost every (or a.e.) x € X. A point x € X with
w({z}) > 0 is called an atom for the measure space (X, p). Two measures u
and v on a Borel space X are said to be equivalent if the following holds: For
a Borel subset A of X, p(A) =0 if and only if v(A) = 0.

Let (X, u), (Y,v) be Borel spaces with a positive measure. By a measure
space isomorphism f: (X, u) — (Y,v) we mean a Borel isomorphism f: X’ —
Y’ between conull Borel subsets X’ C X and Y’ C Y such that f.u and v are
equivalent.

Groupoids. A groupoid is a generalization of a group. Given a set X, a
groupoid G on X is, roughly speaking, the set of arrows whose end and initial
points are in X satisfying several conditions. In the following definition, the
maps 7,5: G — X assign to an arrow in G its end and initial points in X,
respectively.

Definition 2.10. If two non-empty sets G, X are equipped with two maps
r,s: G — X and the following operations, then G is called a groupoid on X:

(i) We put
G® = {(m,72) €GxG:s(m) =r(1)})
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There is a map G 3 (y1,72) — 7172 € G satisfying the two equations
r(717y2) = r(71) and s(vy172) = s(72), and satisfying the associative law.
The last condition means that the equation (v172)7ys = v1(727y3) holds
for all (v1,72), (72,73) € .

(ii) There is a map X > = — e, € § satisfying the following equations:
r(ez) = s(eg) = x; ye, = for any v € G with s(v) = z; and e,y =~/
for any v’ € G with r(7') = x. It is easy to see that for each z € X, e,
is an unique element of G satisfying these equations.

(iii) There is a map G > v — v~ ! € G satisfying the following equations:
r(y7h) = s(7); () = r(); 7T = engyy; and vy = ey Tt s
easy to see that for each v € G, v~ ! is an unique element of G satisfying
these equations.

In the above notation, X is called the unit space, and X is identified with the
set of all units of G via the map x — e,. The maps r,;s: G — X are called the
range, source maps, respectively. For (y1,7v2) € G@, the element v17, € G is
called the product of two elements 71, v2. We refer to e, as the unit on z € X
and refer to y~! as the inverse of v € G.

Consider a subset H C G satisfying the following three conditions:

o If (71,72) € G N (H x H), then 172 € H.
o If vy € H, then v~ ! € H.
e ¢, € Hforall x € X.

This subset H admits the structure of a groupoid on X induced from the one
for G. This groupoid H on X is called a subgroupoid of G.

We say that a groupoid is Borel if all the associated spaces and maps are
Borel. When we consider a Borel groupoid G on a standard Borel space, we
always assume G to be also standard as a Borel space.

Notation. Let G be a groupoid on the unit space X with the range and source
maps r,s: G — X, respectively. We denote by
I:Goy—~leg.

the inverse map. We write G = r~1(x) and G, = s~!(z) for z € X. Note that
G* = I(G,,) for each x € X. We say that G is discrete when G* is countable
for each z € X. For z,y € X, we write

Gy ={reg:r(v)=xs07) =y}

It is easy to see that for each x € X, G admits the structure of a group
induced from the structure of a groupoid on G. This group GZ is called the
isotropy group on z € X.
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Example 2.11. Groups. Let G be a group. Then G can be seen as a groupoid
on the set consisting of a single point. Conversely, any groupoid on the set
consisting of a single point is a group.

Example 2.12. Equivalence relations. Let X be a non-empty set. Let R be
an equivalence relation on X, i.e., a subset of X x X satisfying the following
three conditions:

o (z,z) e R for all z € X;
o If (x,y) € R, then (y,z) € R;
o If (x,y), (y,2) € R, then (z,z) € R.
Define two maps r,s: R — X and the operations of products and inverses by
r(z,y) =z, s(zy) =y, (@y)(y.2)=(22), (@97 =)
Then R is a groupoid on X. If each equivalence class for R is at most count-
able, then R is a discrete groupoid.

Measures on discrete Borel groupoids. If we are given a discrete Borel
groupoid and a positive measure on the unit space, then we can define a natural
measure on the groupoid as follows.

Definition 2.13. Given a discrete Borel groupoid G on a Borel space X, we
say that a o-finite positive measure p on X is quasi-invariant for G if the two
measures i and It on G are equivalent. Here, the measure /i is defined by

A(A) = /X S xa()dpa),

YEG.

for a Borel subset A of G, where x 4 is the characteristic function on A. We say
that p is invariant for G if I.ji = fi. A discrete Borel groupoid G equipped with
a quasi-invariant measure g on the unit space X is called a discrete measured
groupoidon (X, ). Given a discrete measured groupoid G on (X, 1), we always
equip G with the measure [i defined above. This measure i is a o-finite positive
measure on G.

Notation. Let G be a discrete measured groupoid on a standard measure
space (X, p). If A is a Borel subset of X, then we denote by GA the saturation
of A, which is the Borel subset of X defined by

GA={r(v)eX:v€G,s(y) e A} ={s(v) e X :y € G,r(y) € A}

It can be shown that GA is a Borel subset of X and that u(GA) = 0 when
H#(A) =0 (use Theorem 2.9 (iv)). If GA = A, then A is said to be G-invariant.
Note that if X’ is a conull Borel subset of X, then X'\ G(X \ X’) is a conull
G-invariant Borel subset of X contained in X'.
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Definition 2.14. Let G be a discrete measured groupoid on a standard mea-
sure space (X, pu). If A is a Borel subset of X with positive measure, then the
Borel subset

{reg:r(v),s(y) € A}

has the natural structure of a groupoid on A induced from G. This groupoid
is called the restriction of G to A and is denoted by (G)a.

Definition 2.15. Let G, H be discrete measured groupoids on standard
measure spaces (X, u), (Y,v), respectively. By a groupoid homomorphism
f: G — H we mean a Borel map f: (G)a — H for some conull G-invariant
Borel subset A of X satisfying the following two conditions:

e f.u and v are equivalent;

e f preserves the operation of products, i.e., the equation f(vy172) =
F(11)f(72) holds for all (y1,72) € ((G)a)™.

When X is identified with the set of all units of G, the map f: (G)a — H
induces a Borel map f: A — Y.

We do not distinguish two groupoid homomorphisms fi, fo: G — H such
that f1 = f2 on (G) 4 for some conull G-invariant Borel subset A of X.

Remark 2.16. For i € {1,2,3}, let G; be a discrete measured groupoid on a
standard measure space (X;, ;). Let f: G1 — Ga and g: Go — G5 be groupoid
homomorphisms. For ¢ € {1,2}, take a conull G;-invariant Borel subset A; of
X; such that f; is defined on (G;)a,. It is easy to see that the Borel subset
AL = (AN 1 (A))\ G (A1 \ f1(A2)) of X7 is conull and G;-invariant. The
composition of the two Borel maps f: (gl)A; — Gy and g: (G2) 4, — G35 is then
defined. It is clear that this composition defines a groupoid homomorphism
from G; into G3. We denote it by go f: Gy — Gs.

Definition 2.17. Let G, H be discrete measured groupoids on standard mea-
sure spaces (X, u), (Y, v), respectively. A groupoid homomorphism f: G — H
is called an isomorphism if there exists a groupoid homomorphism g: H — G
such that the compositions go f: G — G and f o g: H — H coincide with the
identity homomorphisms on G and on H, respectively. In this case, G and H
are said to be isomorphic.

Though we often need to take G-invariant Borel subsets of X in many
situations in this chapter, we do not always mention it for simplicity of the
notation.

As seen in Example 2.12; an equivalence relation on a set defines a groupoid
on the set. We next introduce an equivalence relation on a Borel space which
induces a discrete measured groupoid on the Borel space.
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Definition 2.18. Let (X, i) be a standard measure space. Let R be a Borel
subset of X x X such that

e R defines an equivalence relation on X as in Example 2.12;

e for each = € X, the equivalence class R, = {y € X : (y,x) € R} of z is
at most countable.

Then R is a discrete Borel groupoid on X with respect to the structure in-
troduced in Example 2.12. If p is quasi-invariant for this groupoid, then R
is called a discrete measured equivalence relation (or simply an equivalence
relation) on (X, ).

Definition 2.19. Let G be a discrete measured groupoid on a standard mea-
sure space (X, ). It is easy to see that

R=A{(r(7),s(v)) e X x X : y € G}

has the structure of a discrete measured groupoid on (X, i) such that

T(.’Iﬁ,y) =, s(x,y) =Y (m,y)(y,z) = (.’1?,2’), ($>y)_1 = (y,x)

This groupoid is called the quotient equivalence relation of G. Note that if the
isotropy group GZ is trivial for a.e. x € X, then G and its quotient equivalence
relation R are isomorphic via the following isomorphism:

Gy (r(7),s(7) €R.

In this case, G is said to be principal.

We give one typical example of discrete measured groupoids appearing in
this chapter. We recommend the reader to see [5] for other examples of discrete
measured groupoids.

Example 2.20. Group actions. Let G be a discrete group and assume that
G admits a non-singular action on a standard measure space (X, ), which
means that p(A) = 0 if and only if u(gA) = 0 for any g € G and for any Borel
subset A C X. The direct product G x X then has the structure of a groupoid
such that

r(g,x) =gz, s(g,x) =Z, (97 hl‘)(h,$) = (gh,x), (9756)71 = (gilagz)'
This groupoid is often written as G x (X,u) or G x X. Since the action
G ~ (X, p) is non-singular, p is quasi-invariant for G x X.

It is easy to see that p is invariant for the action G ~ (X, ) if and only if
it is an invariant measure for the groupoid G x X. For a Borel subset A C X,
the saturation (G'x X)A is equal to the saturation GA = {J . gA.

The quotient equivalence relation

R={(gz,z) e X xX:9€ G,z € X}
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of G x X admits the structure of a discrete measured groupoid on (X, u)
as seen in Definition 2.19. This R can also be seen as a discrete measured
equivalence relation on (X, u) arising from the equivalence relation declaring
that two points of X are equivalent if and only if they are in the same G-orbit.

Note that the action G ~ (X, u) is essentially free, that is, the stabilizer
of almost every point z € X is trivial if and only if G x X is principal.

In this chapter, we mainly treat groupoids isomorphic to subgroupoids
of a groupoid arising from a measure-preserving action of a discrete group
on a standard finite measure space. In Section 4, we however treat discrete
measured groupoids arising from non-singular actions of discrete groups which
are never measure-preserving (see Theorems 4.20 and 4.21).

Conjugacy and orbit equivalence. Given two actions G ~ (X, u) and
H ~ (Y,v), when are the two associated groupoids isomorphic? We shall
give two equivalence relations for non-singular actions of discrete groups on
measure spaces, called conjugacy and orbit equivalence. It is shown that when
two actions are both essentially free, they are orbit equivalent if and only if
the associated groupoids are isomorphic.

Definition 2.21. Let ', A be discrete groups and let (X, 1), (Y, ) be standard
measure spaces. Consider non-singular actions I' ~ (X, p) and A ~ (Y, v).
The two actions are said to be conjugate if there exist an isomorphism F': ' —
A and a measure space isomorphism f: (X, u) — (Y, v) such that

f(yz) = F(y)f(z) for any v € T and a.e. z € X.

More precisely, this means that we can take conull Borel subsets X’ € X and
Y’ C Y and a Borel isomorphism f: X’ — Y’ satisfying the following: the
two measures f,u and v are equivalent; and for any v € I and a.e. z € X/, yx
belongs to X’ and the equation f(yx) = F(v)f(x) holds.

Orbit equivalence is a weaker equivalence relation than conjugacy.

Definition 2.22. Let T', A be discrete groups and let (X, ), (Y, v) be standard
measure spaces. Consider non-singular actions I' ~ (X, p) and A ~ (Y, v).
The two actions are said to be orbit equivalent (OE) if there exists a measure
space isomorphism f: (X, u) — (Y,v) such that

fTz) =Af(z) for ae. z € X.

More precisely, this means that we can take conull Borel subsets X’ € X and
Y’ € Y and a Borel isomorphism f: X’ — Y’ satisfying the following: the
two measures f,u and v are equivalent; and for a.e. x € X', 'z is contained
in X’ and the equation f(I'z) = Af(z) holds. It is easy to see that this
f induces an isomorphism between the two quotient equivalence relations of
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I'x X and A x Y, which is defined by (z,y) — (f(x), f(y)). Conversely, if
an isomorphism between the two quotient equivalence relations of I' x X and
A x Y is given, then the associated map f between their unit spaces satisfies
the above condition of OE.

If the action A ~ (Y, v) is essentially free, then we can define a Borel map

a:T'x X — A sothat f(yz) = ay,z)f(x)
for y € ' and a.e. z € X. This map « satisfies the following cocycle identity

a(v1, ver)a(ye, ) = a(y1y2, )

for any 1,72 € I' and a.e. z € X. Thus, « is a groupoid homomorphism from
I' x X into A. We call a the OF cocycle associated with f.

The reader can check that when the actions I' ~ (X, pu) and A ~ (Y, v)
are both essentially free, they are OE via f if and only if the two groupoids
I'x X and A X Y are isomorphic under the groupoid homomorphism (v, z) —
(a(y,x), f(z)) associated with f.

We next introduce a slightly weaker equivalence relation than OE, called
weak orbit equivalence (WOE). It is known that two discrete groups are mea-
sure equivalent (ME) if and only if the two groups admit ergodic, measure-
preserving and essentially free actions which are WOE (see Corollary 2.34).

Definition 2.23. Let I', A be discrete groups and let (X, 1), (Y, v) be standard
measure spaces. Consider non-singular actions I' ~ (X, p) and A ~ (Y, v).
The two actions are said to be weakly orbit equivalent (WOE) if there exist
Borel subsets A C X, B C Y and a Borel isomorphism f: A — B satisfying
the following three conditions:

(i) TA= X, AB =Y up to null sets;
(ii) The two measures f.(u]4) and v|p are equivalent;
(iii) f(TzNA)=Af(z)N B for a.e. x € A.

As in the case of OE, this f induces an isomorphism between the two quotient
equivalence relations of (I'x X)4 and (AxY)pg. Conversely, if an isomorphism
between the two quotient equivalence relations of (I' x X )4 and (A x Y)p for
Borel subsets A, B of X satisfying Condition (i) is given, then the associated
map f between their unit spaces A and B satisfies Conditions (ii), (iii).

Groupoids of infinite type. In most sections of this chapter, we study a
groupoid G associated with a measure-preserving action of a discrete group I
on a standard finite measure space and study its subgroupoids. In particular,
we mainly study its subgroupoids of infinite type. When the unit space of G
consists of a single atom and G is then isomorphic to I', subgroupoids of G of
infinite type correspond to infinite subgroups of I'. Before defining the notion
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of groupoids of infinite type, we introduce recurrence of a discrete measured
equivalence relation. Recall that a discrete measured equivalence relation can
be seen as a discrete measured groupoid (see Definition 2.18).

Definition 2.24. Let R be a discrete measured equivalence relation on a
standard finite measure space (X, ) with an invariant measure p for R. We
say that R is recurrent if a.e. equivalence class for R is infinite, that is, for a.e.
z € X, theset R, ={y € X : (y,z) € R} is infinite.

Let R be a discrete measured equivalence relation on a standard finite
measure space (X, ) with an invariant measure p for R. It is known that if
R is recurrent and A is a Borel subset of X with positive measure, then the
restriction (R) 4 is also recurrent (see the proof of Lemma 2.5 in [2]). Moreover,
it is shown that there exists an essentially unique Borel partition X = A; U A,
such that

o (R)a, is recurrent;

e (R)a, admits a fundamental domain, i.e., there exists a Borel subset B
of Ay such that for a.e. x € As, (R)a,2N B consists of exactly one point,
where (R) .,z denotes the equivalence class for (R)4, containing x.

See Lemma 2.12 in [2] for the proof of this fact. The reader can check that
RA; = A and RAs = A, up to null sets. It is easy to treat an equivalence re-
lation which admits a (Borel) fundamental domain because the space of orbits
of the equivalence relations can be identified with its fundamental domain.
The above fact means that any equivalence relation can be divided into an
easy part and a non-trivial part. Hence, it is often enough to consider only
recurrent equivalence relations in the study of equivalence relations. We refer
to Section 2 in [2] for fundamental properties of discrete measured equivalence
relations, where the recurrence of discrete measured equivalence relations such
that p is not necessarily invariant is also discussed. The notion of groupoids
of infinite type is defined as follows.

Definition 2.25. Let G be a discrete measured groupoid on a standard finite
measure space (X, u) with an invariant measure p for G. Then we say that G
is of infinite type if there exists a Borel partition X = X; Ll X5 such that

o the isotropy group G? is infinite for a.e. z € Xy;

e the quotient equivalence relation of (G)x, is recurrent.

By definition, if G is of infinite type, then (G) 4 is also of infinite type for
any Borel subset A C X with positive measure. The next proposition shows
that a measure-preserving action of an infinite discrete group on a standard
finite measure space always gives rise to a groupoid of infinite type.
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Proposition 2.26. Let I' be an infinite discrete group and suppose that I’
admits a measure-preserving action on a standard finite measure space (X, ).
Then the associated groupoid I' x X is of infinite type, and thus so is the
restriction (I' x X) 4 for any Borel subset A C X with positive measure.

Proof. Let R be the quotient equivalence relation of I' x X. Choose a Borel
partition X = A; U A such that (R)a, is recurrent and (R)a, admits a
fundamental domain B C A (see the comment right after Definition 2.24).
Both A; and A are then invariant under the action I' ~ (X, ). For a.e.
x € Ay, the orbit I'z consists of only finitely many points because the action
I' ~ (X, p) is measure-preserving and p(Az) < oo. Therefore, the stabilizer of
a.e. r € A, is infinite. O

2.3 ME and isomorphism of groupoids

In this subsection, we construct from an ME coupling of discrete groups I
and A an isomorphism of groupoids associated with some measure-preserving
actions of I' and A on standard finite measure spaces. This construction was
essentially given in Section 3 in [17]. Thanks to this construction, we can
reduce the problem of ME to an algebraic problem of groupoids arising from
group actions.

Let (X,m) be an ME coupling of discrete groups I" and A, i.e., (X,m) is a
standard Borel space with a o-finite positive measure, and there is a measure-
preserving action I'x A ~ (3, m) such that both of the actions I'(~ T'x {e}) ~
(2,m) and A(~ {e} xA) ~ (£, m) are essentially free and admit a fundamental
domain of finite measure (see Definition 1.1). Choose fundamental domains
Y C ¥ for the action I' ~ %, and X C ¥ for the action A ~ 3. Remark
that we have a natural measure-preserving action of I' on X equipped with
the restricted finite measure p of m to X because X can be identified with the
quotient space ¥/A as a Borel space. Similarly, we have a natural measure-
preserving action of A on Y with a finite measure v. In order to distinguish
from the original actions of I" and A on X, we denote the actions I' ~ X and
A~Y by ~v-x, Ay, respectively, using a dot.

Lemma 2.27. In the above notation, one can choose X and Y so that A =
X NY satisfies the following two conditions:

o I'- A= X up to null sets when A is regarded as a subset of X ;
e A- A=Y up to null sets when A is regarded as a subset of Y.

Proof. Let S be the set of all Borel subsets B C ¥ such that m(y; BAv2B) =0

for all distinct 1,72 € T', and m(A BAXB) = 0 for all distinct Ay, Ao € A.
Here, CAD denotes the symmetric difference of two sets C' and D. If we find
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A € S such that the equation (I' x A)A = ¥ holds up to null sets, then choose
fundamental domains X C 3 for the action A ~ X, and Y C X for the action
I' ~ ¥ such that A C X and A C Y. The above two conditions are then
satisfied for these X and Y. Hence, we will find A € S satisfying the equation
(T x A)A =3 up to null sets.

Put M = supgcgm(B). Then M < co. Since we can always take fun-
damental domains of the actions of I' and A on ¥ whose intersection has
positive measure, the number M is positive. Let {B,}nen be a sequence of
elements of S such that m(B,) — M as n — oo. Put A; = B; and define
Ap = (B \ (T x A)A,—1) U A,_1 for n > 2 inductively. Then A,, € S and
A=, A, is also in S. It is easy to see that m((I' x A)B,, \ (I' x A)A,) = 0.
In particular, m((I' x A)B,, \ (I' x A)A) = 0 for all n.

We claim that (I' x A)A = ¥ up to null sets. If ¥\ (I x A)A had positive
measure, then it would be an ME coupling of I' and A. There exists a Borel
subset B C X\ (TI" x A)A which is in S as a Borel subset of ¥ and has positive
measure. Take n € N so that M — m(B,,) < m(B). Then BU B,, € S and
m(BU B,,) = m(B) +m(B,) > M, which is a contradiction. O

In what follows, suppose that X and Y satisfy the conditions of Lemma
2.27. Let G =T x (X, ) (resp. H = A x (Y,v)) be the groupoid associated
with the action I' ~ X (resp. A ~Y). We can define a Borel map

a:T'x X — A sothat v -z =a(y,z)yz € X

for any v € I" and a.e. x € X because X is a fundamental domain of the action
A ~ 3. Similarly, we can define a Borel map

B:AXY =T sothat \-y=p\yAyeY
for A€ Aand ae. y €Y.

Lemma 2.28. The map a: I'x X — A is a cocycle, that is, the cocycle identity

a(n,72 - @)a(ye, z) = a1y, z)
is satisfied for each v1,7v2 € T and a.e. x € X. The map B: A xY — T also

satisfies a similar identity.

This cocycle identity implies that a is a groupoid homomorphism from
I'x X into A. We call « (resp. ) the ME cocycle associated with X (resp. Y).

Proof. This follows from the following equality:

(v, 72 - )a(yz, 2)nrer = a(y, vz 2)n(e - 2) =7 (2-2) = () @
for 71,72 € I' and « € X, where the right hand side is in X. O
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Let p: X - Y and ¢q: Y — X be the Borel maps defined by
plz) =TzNY, q(y) =AynX

for x € X and y € Y. Note that both p and ¢ are the identity on A = X NY.
Then we can show that

p(y-2) =a(v,z) px), g9 y)=B\y)- aly)

foranyy e, A€ Aand ae. x € X,y € Y as follows: Since v-2 = a(y, z)yz,
there exists a unique ; € I such that

p(y-x) =mnaly,z)r €Y. (2.1)
Let 9,73 € I' be unique elements such that p(xz) = vz € Y and

a(y,z) - p(z) = y30(7, 7)727 € Y. (2.2)

Comparing (2.1) and (2.2), we see that 71 = 7372 since Y is a fundamental
domain of the action I' ~ 3. This proves the claim.
Define groupoid homomorphisms

g (g)A > (Wax) = (04(%@»10(95)) € (H)A7
g: (H)A > ()‘ay) = (ﬂ()‘ay)7Q(y)) € (g)A

Note that 8(a(v, z),z) = v for any v € " and a.e. x € A with v-z € A because
vya(y,z)x =7 -x € A CY. Similarly, a(B(\,y),y) = A for any A € A and a.e.
y € A with X -y € A. Therefore, we obtain the following

Proposition 2.29. In the above notation, the groupoid homomorphisms
f1(G)a— H)a, g: (H)a— (G)a
satisfy go f =id and f o g =id.

This is a construction of an isomorphism between two (restrictions of)
groupoids generated by actions of I' and A from an ME coupling of I and A.
In particular, if we can show that I' and A admit no actions which generate
isomorphic groupoids (even after restricting to any Borel subsets with positive
measure), then this implies that T' and A are not ME. Therefore, when we
consider the problem of ME, it is effective to study algebraic properties of
groupoids arising from specific groups. Such a groupoid I' X X often behaves
like the group I'. More precisely, suppose that I' admits some “nice” action
on a space S. The action is given by a homomorphism I' — Aut(S). The
projection I' x X — T" is a groupoid homomorphism. We can then view the
groupoid homomorphism I x X — I — Aut(S) as an action of I' x X on S,
and we observe that this action of I' x X often gives rise to phenomena similar
to the ones for the action of I on S. This idea greatly helps us to study the
groupoid I X X (see also the beginning of Section 5).



Measurable rigidity of mapping class groups 25

Return to the situation before Proposition 2.29 and consider the action of
I'x A on X x A defined by

(v, Nz, ) = (v 2, a(y, 2) A7), veT, LN €A, reX.

It is easy to check the following lemma, which means that we can reconstruct
an ME coupling from the cocycle a.

Lemma 2.30. In the above notation, the Borel map ¥ — X X A defined
by \x — (z,\71) for z € X and X\ € A is Borel isomorphic and (I x A)-
equivariant.

Note that Proposition 2.29 implies that the two actions of I' on X and
A on'Y are WOE (see Definition 2.23). Conversely, the following theorem is
known. This states that given WOE actions of I' and A, we can construct the
corresponding ME coupling of T and A.

Definition 2.31. For simplicity, by a standard action of a discrete group we
mean an essentially free, measure-preserving Borel action of that group on a
standard finite measure space.

Theorem 2.32 ([17, Theorem 3.3]). Suppose that two discrete groups T’ and
A admit ergodic standard actions on (X, u) and (Y, v), respectively, which are
WOE. Then we can construct an ME coupling (X,m) of T' and A such that
the T-actions on X and on A\X (resp. the A-actions on'Y and on I'\X) are
conjugate.

In particular, if the two actions T' ~ (X, pu) and Y ~ (Y,v) are OF via
a Borel isomorphism f between conull Borel subsets of X and Y, then we
can construct the above ME coupling (X, m) so that the ME cocycle associated
with some fundamental domain of the A-action on X, which is identified with
X wunder the above conjugacy of the I'-actions on X and on A\X, is equal to
the OFE cocycle associated with f.

Remark 2.33. In the case of WOE, we can also define an associated WOE
cocycle and prove a statement similar to the latter assertion in Theorem 2.32
(see Theorem 3.3 in [17]).

Corollary 2.34. Two discrete groups are ME if and only if they admit ergodic
standard actions on standard finite measure spaces which are WOE.

Proof. The “if” part follows from Theorem 2.32. We prove the “only if” part.
Let (3, m) be an ME coupling of discrete groups I" and A. Let I' ~ (X, i) be
a standard action. For example, the Bernoulli action I' ~ [][0, 1] given by

V(mg)gef‘ = (x'y‘lg)geFa yel, (xg)gef‘ € H[07 1]
r
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is standard (see Section 2 in [38]). The action of I' x A on ¥ x X given by
(1, N (z,2") = (v, \)z,y2"), Y€, e\, z€X,2’ € X

defines an ME coupling of T and A such that the action T x A ~ (X x X, m x p)
is essentially free. By utilizing the ergodic decomposition for the action I'xA ~
(X x X,m x u), we can construct an ME coupling (X9, mg) of I' and A such
that the action I' x A ~ (3¢, mg) is essentially free and ergodic (see Lemma
2.2 in [16]). Thus, the two actions ' ~ A\X and A ~ T'\X( are both ergodic
and standard. Proposition 2.29 implies that the two actions are WOE. O

3 ME rigidity for mapping class groups

In this section, we state two key theorems for the proof of the ME rigidity result
of the mapping class group I'(M). The first one, Theorem 3.1, is reduction
of a self ME coupling of I'(M) (i.e., an ME coupling of I'(M) and itself) to
a simpler self ME coupling of I'(M). This reduction is a very important step
for the proof of measurable rigidity. As stated in Proposition 2.29, a self ME
coupling of T'(M) gives rise to an isomorphism between groupoids arising from
two measure-preserving actions of I'(M). The second key theorem 3.6 states a
certain important property of such an isomorphism. The proof of this theorem
will be explained in subsequent sections. In Subsection 3.1, assuming Theorem
3.6, we show Theorem 3.1. To establish ME rigidity from these theorems, we
need one more step, which is explained in Subsection 3.2. In Subsection 3.3,
we give another immediate application of the reduction of self ME couplings.
We prove an OE rigidity result for ergodic standard actions of the mapping
class group.

3.1 Reduction of self ME couplings of mapping class
groups

We first give an outline to prove Theorem 1.5, an ME rigidity result for the
mapping class group, and give three steps (1), (2), (3) for the proof. This
outline is similar to Furman’s one for the proof of Theorem 1.9, an ME rigidity
result for higher rank lattices. Step (2) is devoted to the first key theorem 3.1
noted above. Here is the most important and difficult step. We give three steps
(a), (b), (c) for the proof of this theorem. Some of the steps are formulated in
terms of groupoids arising from actions of mapping class groups, and it seems
complicated for beginners of groupoids. Before giving an explicit formulation
of these steps, we explain how the steps are formulated when the unit spaces
of the groupoids consist of a single atom, i.e., when the groupoids are groups.
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Under this assumption, these steps are formulated in terms of groups, which
is much easier to understand.

We shall give three steps (1), (2), (3) for the proof of Theorem 1.5. Let M be
a surface with k(M) > 0. Let (X, m) be an ME coupling of the mapping class
group I' = T'(M) and a discrete group A. Let C = C(M) be the curve complex
of M and let Aut(C) be its automorphism group. Let 7: T'(M)° — Aut(C)
be the natural homomorphism.

(1) Let © be the quotient space of ¥ x A x ¥ by the (A x A)-action on
¥ x A x X given by
(A1 A2) (@, A, y) = (A, AT Aoy), A A2, AEA, 2,y €S
We define a (I" x I')-action on ¥ x A x ¥ by

(71772)(1:7)‘ay) = (’71337)\»72y)a Y1572 S F7 A€ A7 x,y e X.

This (I' x I')-action then induces a (I" x I')-action on . It is easy to
check that (2 is a self ME coupling of ', i.e., an ME coupling of I" and T".

(2) We construct an almost (I' x T')-equivariant Borel map ®:  — Aut(C),
ie.,
O((71,72)2) = m(11) @(2)7(72) !
for any 71,72 € I' and a.e. z € Q.

(3) Using the map ®, we construct a representation p of the group A on
Aut(C). Moreover, this homomorphism p: A — Aut(C) has finite kernel,
and p(A) is a finite index subgroup of Aut(C'). This proves Theorem 1.5.

In this subsection, details of Step (2) are discussed. We explain Step (3) in
Subsection 3.2. Step (2) is a consequence of the following theorem.

Theorem 3.1 ([36, Corollary 5.9]). Let M be a surface with k(M) > 0. Let
Ty and Ty be finite index subgroups of T'(M)® and suppose that there is an ME
coupling (Q,w) of T'y and T'y. Then there exists an almost (T'y xT'a)-equivariant
Borel map ®: Q — Aut(C), i.e.,

D((71,72)2) = 7(1)@(2)w(72) "
for any v1 € 'y, v9 €9 and a.e. z € Q.
This theorem means that all ME coupling of I'y and I's can be reduced

to the simpler ME coupling Aut(C) of T'; and T's on which T'y x 'y acts as
follows:

(v1,72)9 = m(1)gm(12) ", 71 €T1, 72 € T2, g € Aut(C).

By a technical lemma (see Lemma 5.8 in [36]), if we can construct an
almost (T} x I'})-equivariant Borel map ®: Q — Aut(C) for some finite index
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subgroups I'; of T'; for ¢ € {1,2}, then ® is in fact an almost (I'; x I'p)-
equivariant. It follows that in the proof of Theorem 3.1, we may assume that
both I'; and I'y are finite index subgroups of I'(M;m) with an integer m > 3
(see Theorem 2.8 for the subgroup I'(M;m) of I'(M)). In what follows in
this subsection, we always assume this condition (because the key theorem,
Theorem 3.6, is proved under this assumption). To state an outline of the
proof of Theorem 3.1, we fix the notation as follows.

Notation. We refer to the following assumption as (e):

e Let M be a surface with (M) > 0 and let m > 3 be an integer. Let
I'; and T'y be finite index subgroups of I'(M;m). Let (2,w) be an ME
coupling of I'y and T’y

e Take fundamental domains X; C  for the I's-action on 2, and X5 C
for the I'1-action on 2. Recall that the natural actions I'y ~ X7 and
I's ~ Xy are denoted by (v, ) — v -z by using a dot. By Lemma 2.27,
we can choose X7, X5 so that Y = X; N X, satisfies that for ¢ € {1,2},
I'; - Y = X, up to null sets when Y is regarded as a subset of X;.

e Fori € {1,2}, set G' =T; x X; and let p;: G* — T; be the projection,
which is a groupoid homomorphism. By Proposition 2.29, there exists a
groupoid isomorphism

f(Ghy — (G®)y.
Note that f is the identity on the unit space Y.

e Fori € {1,2} and a € V(C), let D!, be the intersection of I'; with the
subgroup of I'(M) generated by the Dehn twist t, € I'(M) about «. Let
G!, be the subgroupoid of G' generated by the action of D?, i.e.,

Gi={(v,2)€G :yeDi, z € X;}.

An outline of the proof of Theorem 3.1 is as follows.

(a) f preserves subgroupoids generated by Dehn twists up to a countable
Borel partition (see Theorem 3.6 for a precise statement).

(b) Using Step (a), we construct a Borel map ¥: Y — Aut(C) associated
with f.

(c) The Borel map ¥ 3 x — ¥(z)"! € Aut(C) can be extended to an
almost (I'; x I'g)-equivariant Borel map ®: X; x I's — Aut(C). Here,
Y is identified with the Borel subset ¥ x {e} of X; x I's. Note that
(T1 x o) (Y x {e}) = X1 x 'y up to null sets and that X; x I'y can be
identified with © as an ME coupling of I'; and I'y (see Lemma 2.30).

In what follows, we explain an explicit statement of Step (a) and details of
Steps (b) and (c).
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Ivanov’s argument. Before discussing details of Steps (a), (b) and (c), we
study these steps in the degenerate case, that is, in the case where both X; and
X, consist of a single atom. In this case, our groupoids G' and G? degenerate
into the groups I'y and I's, respectively. Therefore, the argument for these
steps gets much easier and clearer.

In the above argument, we obtained an isomorphism between the two re-
stricted groupoids (I'; x X7)y and (I'y X X2)y arising from an ME coupling of
finite index subgroups I'; and T’y of the mapping class group. What happens
if we assume that each of X; and X5 consists of a single atom? In this case,
we obtain a group isomorphism f: 'y — I's. Conversely, if f: 'y — I's is an
isomorphism, then the action of I'y x I'; on I's given by

(v.2)y = fn)re ', m €T, 72,7 €T

defines an ME coupling of I'y and 'y such that {e} is a fundamental domain
for both of the actions of I'y and I'y on I's, and the isomorphism between I'y
and I'y given in Proposition 2.29 is equal to f. Ivanov showed the following
theorem about an isomorphism between finite index subgroups of the mapping
class group.

Theorem 3.2 ([32, Theorem 8.5.A]). Let M be a surface with k(M) > 0
and M # Mo, Mso. Let T'y and T's be finite index subgroups of T'(M)°. If
f:T1 — Ty is an isomorphism, then there exists a unique g € T'(M)° such
that f(+) = g7g~" for any v € I,

Outline of the proof. The first step of the proof is to show that f maps
sufficiently high powers of Dehn twists into powers of Dehn twists. Namely,
for each a € V(C), there exist non-zero integers N, M and § € V(C) such
that tY € Ty, té” € 'y and f(t)) = tg/[. This fact is a consequence of the
following theorem, which characterizes a non-trivial power of a Dehn twist
algebraically.

Theorem 3.3 ([32, Theorem 7.5.B]). Let M be a surface with k(M) > 0
and let m > 3 be an integer. Let G be a finite index subgroup of T'(M;m).
An element g € G is a non-trivial power of some Dehn twist (i.e., there are
n € Z\ {0} and o € V(C) such that g = t2) if and only if the center of the
centralizer of g in G is isomorphic to Z and is not equal to the centralizer of
g in G.

Note that in the notation of Theorem 3.3, if ¢ = 7 for n € Z \ {0} and
a € V(C), then
e the centralizer Cg(g) of ¢g in G is equal to the stabilizer of « in G, i.e.,
{h € G:ha=a}l;
o the center of Cg(g) is equal to G N (t,), where (t,) is the subgroup of
(M) generated by t,.
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Return to the proof of Theorem 3.2. It follows from Theorem 3.3 that
the isomorphism f: I'y — TI's induces a map ¢: V(C) — V(C) determined
by f(tY) = tﬁa) for o € V(C) and some non-zero integers N, M. Such an
element p(«) is uniquely determined by the following fact.

Lemma 3.4. Let M be a surface with k(M) > 0. For a,3 € V(C) and
(k,1) € Z*\ {(0,0)}, if tk = tlﬁ, then o = 8 and k = [.

For the proof of Lemma 3.4, we use the following lemma, which is shown
by using the dynamics of Dehn twists on the Thurston boundary.

Lemma 3.5 ([36, Lemma 5.3]). Let M be a surface with k(M) > 0.
(i) If two curves o, B € V(C) satisfy i(a, B) = 0, then the subgroup of T'(M)
generated by the Dehn twists to, tg € I'(M) about them is a free abelian
group of rank 2. In particular, it is amenable.

(ii) On the other hand, if i(a, B) # 0, then the subgroup of T'(M) generated
by to and tF' is a non-abelian free group of rank 2 for all sufficiently
large n,m € N.

Proof of Lemma 3.4. Suppose that t& = tg for a, 0 € V(C) and (k,l) €
Z2\ {(0,0)}. It is enough to prove that a = 8 because any Dehn twist is
an element of infinite order. If i(«, 8) # 0, then it would contradict Lemma
3.5 (ii). Thus, i(a,8) = 0. When x(M) = 0, two distinct elements of V(C)
always have non-zero geometric intersection number. This shows that a = .
Suppose that k(M) > 0. If « # (3, then there would exist v € V(C) such that
i(a,v) =0 and i(8,v) # 0. This also contradicts Lemma 3.5. O

Return to the proof of Theorem 3.2. Since f is an isomorphism, it is easy
to see that the map ¢: V(C) — V(C) is a bijection. By using Lemma 3.5,
one can show that ¢ induces an automorphism of the curve complex C', which
comes from some g € T'(M)® by Theorem 2.3. Namely, for each o € V(C),

there exist non-zero integers N, M such that f(t)) = té\/([ o)+ Note that
-1 _
gtag™ = tg, for a € V(C) and g € T'(M)°?, (3.1)

where ¢ is 1 if g € T'(M), and —1 otherwise (see Lemma 4.1.C in [32]). Let
~ € T'y. For each o € V(C), we have

FOtNy™) = FFEDF )™ = Nty F) T =15 0o
for some non-zero integers N, M and € € {£1}. On the other hand,
f(’}/tg ’771) = f(t'gyaN )= tg/(l'yoe)

for some non-zero integers N’, M’ and ¢’ € {£1}. These equations imply
that f(7)g(a) = g(ya) by Lemma 3.4, and thus f(v)8 = g(vg~'(3)) for any
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B € V(C). By Theorem 2.3, f(v) = gyg~* for any v € I';. Uniqueness of g
satisfying this equation follows from the fact that the center of I'y is trivial
(use the equation (3.1) and Theorem 2.3). This proves Theorem 3.2. O

To sum up, Ivanov’s proof of Theorem 3.2 is outlined as follows. Steps
(A), (B) correspond to our Steps (a), (b), respectively. We use the notation
of Theorem 3.2.

(A) Characterize Dehn twists algebraically, and show that the isomorphism
f:T1 — T's preserves Dehn twists.

(B) Define a bijection ¢: V(C) — V(C) by the equation f(t)) = tfy(a) for
each a € V(C) and some non-zero integers N, M. Show that ¢ defines
an element of Aut(C). Let g € T'(M)° ~ Aut(C) be the corresponding
element.

(C) By a direct calculation, show the equation f(y) = gyg~* for all v € T';.

The case of groupoids. Return to our situation. Our Step (a) corresponds
to Ivanov’s Step (A) and is stated explicitly as follows.

Theorem 3.6. Under Assumption (o), for each o € V(C), there exist a
countable Borel partition Y = | ]Y,, and B3, € V(C) such that

F(Go)v,) =(G3,) s(v) for each n.

As explained in Step (a), this equation means that f preserves subgroupoids
generated by Dehn twists after taking some countable Borel partition of Y.

Remark 3.7. Note that if a countable Borel partition Y = | |Y,,, and 3), €
V(C) also satisfy the equation in Theorem 3.6 and if Z = f(¥,, NY,,) has
positive measure for some n and m, then (G )z = (g[%m/) z. It follows from
Proposition 2.26 that there exist non-zero integers N, M and x € Z such that
(ty ,x) = (t%ﬂ/,x) € (95)z = (ggm,)z, which implies that 8, = G, by
Lemma 3.4.

The subsequent sections of this chapter will be devoted to the proof of
Theorem 3.6. In Section 7, our plan of the proof will be presented. In this
section, assuming Theorem 3.6, we proceed to Step (b).

About Step (b). Assuming Theorem 3.6, we construct the map ¥ in Step (b).
We use the notation in Assumption (e). Let U: Y x V(C) — V(C) be the
Borel map defined by

U(z,a) =0, if z€Y,

for a € V(C), where Y = | |Y,, and (3, are chosen for a as in Theorem 3.6.
By Remark 3.7, this definition does not depend on the choice of the countable
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Borel partition of Y. It can be shown that the map ¥(z,-): V(C) — V(C)
is a bijection (because f is an isomorphism), and moreover ¥(z,-) defines an
automorphism of the curve complex C for a.e. z € Y. Namely, ¥(z,-) satisfies
the following two conditions for a.e. x € Y:

o If a, 5 € V(C) satisty i(cr, 3) = 0, then ¢(V(x, o), ¥(z, ) = 0;
o If a, 5 € V(C) satisty i(«, 3) # 0, then ¢(V(x, o), ¥(z, 5)) # 0.

This fact can be shown by utilizing Lemma 3.5 and some elementary facts
about amenable discrete measured groupoids. (In Section 4, amenability of
a discrete measured groupoid will be introduced, which is an isomorphism
invariant of discrete measured groupoids.)

Therefore, we can define a Borel map ¥: Y — Aut(C) by ¥(z) = ¥U(x,)
for x € Y. Using the equation (3.1) in Ivanov’s proof, we can show that this
map VU satisfies the following equality:

T(r(9)) =m0 pa(f(8))T(s(d))m 0 p1(8) ",

or equivalently,

U(y-a)=mopa(f(y,2)¥(x)m(y)~" (3-2)

for a.e. § = (v,7) € (G')y (see Lemma 5.5 in [36]), where m: ['(M)® —
Aut(C) is the natural homomorphism. Note that ¥, 7o pa(f(0)) and 7o p1(9)
correspond to g, f(vy) and v in Ivanov’s argument, respectively. Thus, the
equation (3.2) corresponds to his conclusion g = f(y)gy~*.

About Step (c). Recall that the action of I'y x I's on X7 x I'y was defined by

(v1,72)(2,7) = (1 - 2, (v, )77 ), 7 €T, y2,7 €T, 2 € Xy

(see Lemma 2.30). Here, a: T'; X X7 — T'p is the ME cocycle associated with a
fundamental domain X of the I';-action on Q. Note that pso f = a on (G')y
(see the definition of f introduced right before Proposition 2.29). Recall that
the equation (I'y x I'9)(Y x {e}) = X; x I's holds up to null sets. Therefore,
we define a Borel map ®: X; x I'y — Aut(C) by

D((71,72)(z,€)) = m(y1) ¥ () w(r2) "

for vy € 'y, 79 € 'y and x € Y. If it is well-defined, then it is easy to see that
® is almost (I'; x I'y)-equivariant. Take v1,7] € T'1, ¥2,7, € 'y and 2,2’ € Y
satisfying the equality

(’717 72)('7"7 e) = <7£a Wé)(xl? 6)-
This equality implies that

(z,€) = (v "9, v2 "8) (@ e) = (v ') - 2/, ey e, ) (v ') ™).
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Hence, (77 '4}) -2’ = x € Y. By using the equation (3.2) and the equation
p20 f=aon (Gl)y, we see that

U(z) = V(v ') - a') = mo po(f(vy "5, 2) W (a ) m(vyy 'y0) 7!

=moal(y 7,2 )R )m(h 1) T = (g ) R (@) T T
This implies that 7(71)¥(z) " 17(y2) "t = 7(7})¥(z')"tn(v5) "1 and that the
map P is well-defined. This shows Step (c).

Therefore, the remaining problem is to show Theorem 3.6, which will
be explained in the subsequent sections. The first Step (A) for Ivanov’s
proof is to show that the isomorphism f: I'y — I's preserves powers of Dehn
twists. To prove this, he characterized a power of a Dehn twist algebraically
as in Theorem 3.3. In our case, to prove that the groupoid isomorphism
f:(GY)y — (G?)y preserves subgroupoids generated by Dehn twists as in
Theorem 3.6, we characterize such a subgroupoid algebraically in terms of
discrete measured groupoids. However, we cannot expect a characterization
similar to that of Theorem 3.3 because there is no notion corresponding to
centralizers and centers in the theory of discrete measured groupoids. In the
subsequent sections, we give a characterization of a subgroupoid generated
by a Dehn twist from another point of view. This is formulated in terms of
amenable, non-amenable subgroups and normal subgroups (see Propositions
7.7 and 7.8). Since amenability of a discrete measured groupoid and normality
of a subgroupoid are invariant under isomorphism of groupoids, subgroupoids
generated by Dehn twists are preserved by f thanks to this characterization.

In Sections 4, 5 and 6, we introduce many notions necessary for the formu-
lation of this characterization. In Section 7, the characterization is given.

3.2 Deriving ME rigidity from reduction of self ME
couplings

As an application of Theorem 3.1, we prove Theorems 1.5 and 1.6.

ME rigidity. The process to deduce ME rigidity from reduction of self ME
couplings has already been developed by Furman [16], and Monod and Shalom
[48]. We review their techniques here. Recall the following two operations to
construct a new ME coupling from a given ME coupling.

An opposite coupling. Let (3X,m) be an ME coupling of discrete groups T’
and A. Then an ME coupling (X,7) of A and T is defined as follows: As a
measure space, (X,7) = (X,m). The action of A x T on (X,71) is defined via
the canonical isomorphism between I' x A and A x T.
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A composed coupling. If (X, m) is an ME coupling of discrete groups I' and
A and if (,n) is an ME coupling of discrete groups A and A, then an ME
coupling ¥ x © of I' and A is defined to be the quotient space of ¥ x by
the diagonal A-action, equipped with the induced action of T" x A.

Remark 3.8. By using the above two associated couplings, we see that ME
is an equivalence relation among discrete groups (see Section 2 in [16]). Note
that a discrete group I' is itself an ME coupling of I" and I'" as in Example 1.3.

Let M be a surface with k(M) > 0 and let I' = T'(M) be the mapping
class group. Let (X, m) be an ME coupling of I and an unknown group A.
Construct the self ME coupling

Q:ZXAAXAS

of T. We denote by [z, \,y] € Q the projection of (z,\,9) € £ x A x X. By
applying Theorem 3.1, we obtain an almost (I' x I')-equivariant Borel map
®: Q — Aut(C), ie.,

((71,72)2) = 7(711)@(2)m(72) "

for any 71,72 € I’ and a.e. z € Q, where m: I'(M)® — Aut(C) is the natural
homomorphism. From this map, we want to construct a representation p of
the unknown group A on Aut(C). We first consider the following special case.

Example 3.9 ([16, Example 5.1]). Let G be a locally compact second count-
able group and let I and A be lattices in G. Then G equipped with its Haar
measure is an ME coupling of I and A as in Example 1.2. Define a Borel map

O:GxpaAxpG—G

by ®([z,\,y]) = 2Ay~!. This map is (I' x I')-equivariant. Observe that the
map

A <I>([;1;7)\’y])<p([;p7e,y])*1 = (xAyfl)(nyl)fl =gzt

does not depend on y, and defines a representation of A on G for a fixed x.

From this observation, in our case, we can also expect that the map
A= @([z, A y) ([, e,y]) 7 (3.3)
does not depend on y, and defines a representation of A on Aut(C) for a.e.
x € . In fact, we can show these claims by using the following notable fact.
Theorem 3.10 ([36, Theorem 2.6]). Let C' be the curve complex of a surface
M with k(M) > 0. Let T be a finite index subgroup of Aut(C). Then the set

{v97~! € Aut(C) : v €T}
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is infinite for any g € Aut(C) \ {e}.

We do not here present how to use this theorem. It can be shown that the
kernel of the representation

pe: A — Aut(0)7 pw(/\) = (b([x’)‘vy})(b([x’evy])_l

and the index [Aut(C) : p(A)] are both finite, which implies Theorem 1.5. To
construct this representation, we do not use special properties of the mapping
class group other than the one in Theorem 3.10. In fact, this construction can
be applied to a more general setting (see Theorem 6.1 in [36]).

Lattice embeddings of mapping class groups. We briefly give an outline
of the proof of Theorem 1.6. We explain only the construction of ®( in the
statement. The reader is referred to Section 8 in [36] for more details.

Let M be a surface with k(M) > 0 and let T be a finite index subgroup of
L(M)°. Let G be a locally compact second countable group and let o: T' — G
be a lattice embedding, i.e., an injective homomorphism such that the image
o(T") is a lattice in G. As in Example 1.2, G is a self ME coupling of '
(via 0). By Theorem 3.1, there exists an almost (I' x I')-equivariant Borel
map ®: G — Aut(C). By using Theorem 3.10 and the fact that the self ME
coupling G of T' is not only a measure space but a group, we can show that
®(g192) = P(91)P(g2) for a.e. (g1,92) € G x G. Recall the following theorem.

Theorem 3.11 ([63, Theorems B.2, B.3|). If Hy, Hsy are locally compact sec-
ond countable groups and f: Hy — Hs is a Borel map such that f(hh') =
f()f(R) for a.e. (h,h') € Hy x Hy, then there exists a continuous homomor-
phism fo: Hy — Hs such that f and fo are equal a.e. on Hy.

It follows that there exists a continuous homomorphism ®q: G — Aut(C)
such that ® and ®( are equal a.e. on G. It is easy to check that K = ker®
admits a finite invariant measure. Therefore, K is compact. After several easy
observations, we see that this ®( is a desired homomorphism.

3.3 OE rigidity

In this subsection, we briefly give another application of Theorem 3.1. We
prove a rigidity result for ergodic standard actions of mapping class groups in
terms of OE.

Corollary 3.12. Let M be a surface with (M) > 0 and M # My o, Mao. Put
P=A=T(M)°. LetT' ~ (X,u) and A ~ (Y,v) be ergodic standard (i.e.,
measure-preserving and essentially free) actions on standard finite measure
spaces. If the two actions are OF, then they are conjugate.



36 Yoshikata Kida

Proof. Since the two actions are OE, there exists a measure space isomorphism
f+ (X, ) — (Y,v) such that

f(Tz) =Af(x) for ae xz € X.

One can then construct the OE cocycle a: I' x X — A associated with f by
the equation

f(yx) = a(y,z)f(z) forv €T and a.e. x € X.

By Theorem 2.32, we can construct an ME coupling (©2,m) of I and A such
that the ME cocycle associated with some fundamental domain of the A-action
on {2, which can be identified with X, is equal to a. In what follows, we denote
the action I’ ~ X by (v,z) — 7 - x, using a dot.

By Theorem 3.1, there exists an almost (I' x A)-equivariant Borel map
®: Q — G, where G = I'(M)® and Aut(C) are identified via the natural
isomorphism 7: I'(M)® — Aut(C) (see Theorem 2.3). Let p: X — G be the
Borel map defined by ¢(x) = ®(z) for z € X. Then

o(v-z)aly, z)p(x) " = B(y- z)a(y, z)P(x) "

=0 (ya(y, z)z)a(y, 2)@(x) " =@ (2)@(z) "' =7

for any v € I and a.e. € X. Define a Borel map f,: X — Y by f.(z) =
w(x)f(z) for z € X. Then for any v € I' and a.e. z € X,

fo(v-2) =0y 2)f(v 2) = p(v- )y, ) f(2)
=vp(z)f(z) =1 fo(2).

Since the actions I' ~ (X, p) and A ~ (Y, v) are both essentially free and f is
a measure space isomorphism, the above equation implies that f,: X — Y is
a measure space isomorphism. O

Remark 3.13. We can show the following much stronger rigidity theorem
than Corollary 3.12.

Theorem 3.14 ([37, Theorem 1.1]). Let M be a surface with k(M) > 0.
If an ergodic standard action of a finite index subgroup T' of T'(M)® and an
ergodic standard action of a discrete group A are WOE, then the two actions
are virtually conjugate.

See Definition 1.3 in [37] for the definition of virtual conjugacy. In particu-
lar, the conclusion of this theorem implies that I' and A are commensurable up
to finite kernel. We refer to [17], [19], [37], [48], [55], [56], [60] for other rigidity
results in terms of OE. See also the fourth remark in Section 8. These rigidity
theorems and Theorem 3.14 sharply contrast with the following theorem due
to Ornstein and Weiss.
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Theorem 3.15 ([52]). Let G and G2 be infinite amenable groups and suppose
that G; admits an ergodic standard action on a standard finite measure space
(Xi, ;) fori € {1,2}. Then the two actions are OF.

It is known that amenability of the acting group is preserved under OE.
More precisely, let G; ~ (X;, ;) be an ergodic standard action of a discrete
group G; for i € {1,2}. If the two actions are OE and G is amenable,
then G, is also amenable (see Theorem 4.18 (i), (ii)). Therefore, Theorem
1.8 is a consequence of Corollary 2.34 and Theorem 3.15. Connes, Feldman,
and Weiss [10] proved a generalization of Theorem 3.15 in terms of discrete
measured equivalence relations (see Theorem 4.17).

It is well-known that there are many non-conjugate ergodic standard ac-
tions of Z as follows. Let I' be a discrete group and let (Xg, 119) be a standard
probability space, i.e., a standard Borel space with a probability measure. We
assume that (X, g) may contain an atom, whereas (Xy, po) does not consist
of a single atom. The Bernoulli action of T" associated with (X, 1o) is the
action of I' on the product space (Xo, uo)" = [1r(Xo, po) given by

'Y(xg)gel“ = (x'yflg)QEF, AS r, (xg)gel“ € X(I;

It is a natural question to understand when Bernoulli actions of Z arising from
two different standard probability spaces are conjugate. Kolmogorov and Sinai
introduced a conjugacy invariant for actions of Z, called entropy, and showed
that the entropy of Bernoulli actions of Z can be computed in terms of (Xg, o)
and assumes all non-negative values. In particular, there exist continuously
many conjugacy classes of ergodic actions of Z. As the culmination of the
study on this conjugacy problem, Ornstein [50], [51] proved that entropy is
a complete invariant for Bernoulli actions of Z, that is, two Bernoulli actions
of Z which have the same entropy are conjugate. Moreover, this theory of
entropy was extended to the setting of Bernoulli actions of infinite amenable
groups by Ornstein and Weiss [53].

4 Amenable discrete measured groupoids

In the study of discrete measured groupoids, amenability is one of the most
important notions like amenability of groups. One can construct a discrete
measured groupoid from a non-singular action of a discrete group on a stan-
dard measure space (see Example 2.20). If the groupoid associated with a
non-singular action of a discrete group is amenable, then the action is said to
be amenable. This notion was first introduced by Zimmer [62]. One advan-
tage of studying amenability of a group action is that (the groupoid arising
from) an amenable action of a group behaves like an amenable group even
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if the acting group is non-amenable. We can thus apply various techniques
for amenable groups to study a non-amenable group via its amenable action.
Another advantage of the study of amenable groupoids is that under a certain
condition, we can easily decide whether a groupoid is amenable or not. Since
amenability is invariant under isomorphism of groupoids, this property is often
used to distinguish two groupoids.

In this section, we recall the definition of amenable discrete measured
groupoids and some of their fundamental properties. References for the mate-
rial of this section is [4], [5] and Chapter 4 in [63]. We recommend the reader
to consult [54] for applications of amenable actions of groups.

As discussed in Section 3, our final goal is to prove Theorem 3.6. For
this purpose, we analyze various subgroupoids of the groupoid arising from a
measure-preserving action of the mapping class group. It will be often nec-
essary to prove amenability of some subgroupoids. To prove it, we make use
of the amenability (in a measurable sense) of the action of the mapping class
group on the boundary 9C of the curve complex C. This fact will be explained
at the end of this section. We note here that in this chapter, this amenability
of the boundary action will be used only in the proof of Theorem 5.10.

Amenable groups. We first recall the notion of amenability of discrete
groups. Although we can proceed to most parts of this section under the
assumption that a group is locally compact and second countable, we always
assume that a group is discrete for simplicity. We refer to Section 4.1 in [63]
for amenability of locally compact second countable groups. Although there
are many equivalent definitions of amenability of groups, we recall only the
definition which motivated Zimmer to define amenability of a group action.

Let G be a discrete group. Let A be a non-empty compact convex subset
in the closed unit ball of E*, where E is a separable Banach space and its
dual E* is equipped with the weak*-topology. Suppose that G acts on E by
isometric isomorphisms and that A is invariant for the induced action of G on
E*. Such an action of G is called an affine action on A.

Definition 4.1. Let G be a discrete group. We say that G is amenable if for
every affine action of G on a space A like above, there exists a fixed point,
that is, a € A such that ga = a for any g € G.

Example 4.2. We refer to Section 4 in [63] for the proof of the following facts.

(i) Finite groups and abelian groups are both amenable.

(ii) Let 1 = A — B — C — 1 be an exact sequence of discrete groups.
Then A and C are both amenable if and only if B is amenable. Hence,
all solvable groups are amenable.
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iii) If G is a discrete group and {H;};cs is a directed set of amenable sub-
g
groups of G, then the union [ J,;.; H; is also amenable. For example, the
following groups are amenable:

e The direct product ®,enH,,. Here, H,, is an amenable group.

e The infinite symmetric group Go, = |J,,cy &n. Here, &, is the
symmetric group on n letters, and &,, is identified with the sub-
group of &,,41 fixing the (n + 1)-st letter.

(iv) Non-abelian free groups are typical examples of non-amenable groups.
Therefore, every group containing a non-abelian free subgroup is non-
amenable.

Example 4.3. Let G be an amenable group and suppose that G acts on
a separable compact space K continuously. We denote by M (K) the space
of all probability measures on K with the weak*-topology, on which G acts
continuously. Note that M (K) is a weak*-closed, convex subset of the closed
unit ball of C'(K)*, where C'(K) is the Banach space of C-valued continuous
functions on K with the sup norm. By the definition of amenability, there
exists 4 € M (K) such that gu = p for any g € G.

If G is an infinite amenable subgroup of the mapping class group I'(M)
for a surface M with k(M) > 0, then it follows from Theorem 2.7 that there
exists a non-empty finite subset S C PMF such that g§ = S for any g € G.
More explicitly, if G is IA, then we put S = {F1(g)} for some pseudo-Anosov
element g € G. If G is reducible, then there exists o € S(M) fixed by all
elements of G, and we put S = {o}. The uniformly distributed probability
measure on S is then a fixed point for the action of G on M (PMF). Therefore,
in this case, we can explicitly find an invariant probability measure on PMF
for each amenable subgroup of T'(M).

Amenable groupoids. Zimmer [62] defined amenability of a group action as
an analogue of Definition 4.1. The following definition of an amenable discrete
measured groupoid is introduced in Chapter 4 of [4], which is a generalization
of Zimmer’s definition. A precise definition of amenable discrete measured
groupoids is somehow complicated. After giving it, we recall several funda-
mental facts. The readers unfamiliar with this notion are recommended to
consult [5], where a survey of amenability of groupoids is given.

When we defined amenability of groups, we considered an action of it on
a separable Banach space. In the definition of amenability of groupoids G, it
is necessary to consider measurable bundles over the unit space of G whose
fiber is an object appearing in the definition of amenability of groups. We first
introduce an object on which a groupoid acts, called a measurable Banach
bundle. A reference for the material in the following Definitions 4.4 and 4.6 is
Chapter IT in [15]. In the first definition, we shall recall basic terminology in
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measure theory. Recall that we refer to a standard Borel space X equipped
with a o-finite positive measure p as a standard measure space. If pu(X) < oo,
then we say that (X, u) is a standard finite measure space.

Definition 4.4 ([15, IL.1]). Let (X, u) be a standard measure space. We
denote by B the set of all Borel subsets of X.

(i) A subset A of X is p-null if there exists a countable family {A,}, of
elements of B such that A C |J,, A, and p(A4,) =0 for all n.

(ii) A subset A of X is u-measurable if the symmetric difference AAB is
p-null for some B € B.

(iii) A property of points of X which holds for all 2 outside some p-null subset
of X is said to hold for u-almost every (or p-a.e.) x.

(iv) A map f: X — Y into a standard Borel space Y is pu-measurable if
f~1(A) is p-measurable for any Borel subset A of Y.

The following lemma is an easy exercise. For the proof, note that the o-
field of Borel subsets of a standard Borel space is generated by countably many
Borel subsets of it as a o-field.

Lemma 4.5. Let (X,pu) be a standard measure space. If ¢: X — Y is a
u-measurable map into a standard Borel space Y, then there exist a Borel
map ¥: X — Y and a Borel subset X' of X such that p(X \ X') = 0 and
o(x) =¢(x) for all x € X'.

We next introduce the notion of measurable Banach bundles over a stan-
dard measure space (X, u). Suppose that for each x € X, we are given a
Banach space E,. We refer to a function f on X such that f(z) € E, for each
x € X as a vector field on X. We will define measurability of such a vector
field. We equip the complex field C with the structure of a standard Borel
space associated with the usual topology of C.

Definition 4.6 ([15, IL.4]). In the above notation, a u-measurable structure for
the family {E,}.cx is a non-empty family M of vector fields on X satisfying
the following four conditions:

(i) If f,g € M, then the vector field  — f(z) + g(x) is also in M.
(ii) If f € M and a map ¢: X — C is p-measurable, then the vector field
x +— ¢(z)f(z) is also in M.
(iii) If f € M, then the function x — || f(z)|| is p-measurable, where || - || is
the norm on E,.

(iv) Suppose that f is a vector field on X such that there exists a sequence
{gn} of elements of M such that g,(z) — f(z) in E; as n — oo for
p-a.e. ¢ € X. Then f € M.
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The family {E,}.cx endowed with this structure M is called a measurable
Banach bundle over (X, u), and is denoted by E. We refer to an element of
M as a measurable section for the bundle FE.

In the next definition, we introduce the notion of separability for a mea-
surable Banach bundle.

Definition 4.7 ([4, Definition A.3.4]). Let E = ({E, }zex, M) be a measur-
able Banach bundle over a standard measure space (X, u). We say that F is
separable if there exists a sequence {g, }, of elements of M such that the set
{gn(z)}n is total in E, for p-a.e. x € X, that is, the set of all finite C-linear
combinations of elements in {g,(z)}, is dense in FE,.

Remark 4.8. Let E = ({E;},ex, M) be a measurable Banach bundle over
a standard measure space (X, p1).

(i) Let (Y,v) be a standard measure space and suppose that we are given
a Borel map 7: Y — X such that m,v and p are equivalent. The set
N ={fomr: f € M} generates a v-measurable structure 7*M for the
family {E,)}yey. We denote by 7*E the corresponding bundle over
(Y,v) and call it the pull-back of E by . If E is separable, then so is
m*E (see Example (3) of Appendix A in [4]).

(ii) Consider the family {E?},cx of the duals. We denote by M* the set of
all vector fields ¢ for this family such that the function z — {(p(z), f(x))
is p-measurable for all f € M. The following fact is known (see Lemma
A.3.7 in [4]): If E is separable, then E* = ({E*},cx, M*) is a measur-
able Banach bundle.

(iii) When F is separable, we denote by L°°(X, E*) the space of all ¢ €
M* such that the function = — ||p(z)|| belongs to L*(X), and we
denote by [|¢||s the u-essential supremum for this function. It is known
that L (X, E*) is a Banach space with respect to the norm || - ||, (see
Proposition A.3.9 in [4]).

We next define an action of a discrete measured groupoid on a measurable
Banach bundle.

Definition 4.9 ([4, Definition 4.1.1]). Let G be a discrete measured groupoid
on a standard measure space (X, p). A measurable G-bundle over (X, p) is a
pair (E,L), where E = ({Ey}zex, M) is a measurable Banach bundle over
(X, ), and L is a linear isometric representation of G on E. Namely,

e for each v € G, L gives an isometric isomorphism L(7): Egyy — Epy);

e L preserves products, i.e., L(v172) = L(v1)L(72) for all (y1,72) € G*;
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e [ is measurable in the sense that for each f € M, the vector field
v = L(v)f(s(v)) for the family {E,(y)},eg is in r*M, where r: G — X
is the range map.

Remark 4.10. In Definition 4.9, assume that E is separable. The pair
(E*, L*) defined by the following equation then gives a measurable G-bundle
over (X, u), and we call it the dual G-bundle of the G-bundle E:
(L*(y)e*,e) = (e*, L(y Ne) fory €@, e* € Ely: € € By
The next definition introduces the notion corresponding to convex, weak*-
closed subsets contained in the closed unit ball of the dual of a separable
Banach space appearing in the definition of amenability of groups.

Definition 4.11 ([4, Definitions 4.2.1, 4.2.5]). Let (X, u) be a standard mea-
sure space.

(i) Let E = ({Ey}zex, M) be a separable measurable Banach bundle over
(X, u). Suppose that for each x € X, we are given a subset A, of the
closed unit ball of the dual EZX. We refer to the family A = {A,}rex
as a measurable field for the dual E* if there exists a sequence {1y, },, of
elements of L (X, E*) such that A, is the closed convex hull of the set
{tn(2)}y for prae. z € X.

(ii) Let G be a discrete measured groupoid on (X, ) and let (E,L) be a
separable measurable G-bundle over (X, u). A measurable field A =
{As}zex for the dual E* is called a G-field if L*(v)As) = Ay for
f-a.e. v € G, where [i is the measure on G introduced in Definition 2.13.

Finally, we define amenability of discrete measured groupoids as follows.

Definition 4.12. A discrete measured groupoid G on a standard measure
space (X, ) is amenable if the following holds: For any separable measurable
G-bundle (E, L) over (X, 1) and for any G-field A = {A; }.cx for the dual E*,
there exists p € L°°(X, E*) such that

o o(x) € A, for prae. z € X;
o L*(7)e(s(v)) = ¢(r(v)) for fra.e. v €G.
When the discrete measured groupoid arising from a non-singular action of a

discrete group on a standard finite measure space is amenable, we say that the
action is amenable.

Note that in Zimmer’s definition of amenable actions of groups, only con-
stant Banach bundles (i.e., bundles {E, },cx such that E, is the same for all
x € X) are considered instead of general Banach bundles as above. However,
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Zimmer’s definition is equivalent to the above one. The proof of this fact is
given in Theorem 4.2.7 in [4] and Section 3 in [3].

Compared with the definition of amenability of groups in Definition 4.1, the
second condition for ¢ in Definition 4.12 can be phrased by saying that ¢ is a
fixed point for the action L of the groupoid G on E. In general, given a group
G and a space S, we refer to a homomorphism G — Aut(S) as an action of G
on S. Hence, given a groupoid G, we should refer to a groupoid homomorphism
G — Aut(S) as an action of G on S. We next define a fixed point for such
an action of a groupoid. However, for a standard Borel space S, we know
no natural Borel structure on Aut(S), the group of Borel automorphisms of
S. Hence, we consider nothing but the following special action of a groupoid
when the groupoid admits a Borel structure. In what follows, a groupoid
homomorphism from a discrete measured groupoid G into a discrete group I
is always assumed to be Borel as a map from G into T.

Definition 4.13. Let G be a discrete measured groupoid on a standard mea-
sure space (X, u). Let S be a standard Borel space. Suppose that we are
given a Borel action of a discrete group I" on S and a groupoid homomor-
phism p: G — I'. Then a Borel map p: X — S satisfying the equation

p(M)e(s(7) = p(r(v)) forae yeg

is called an invariant Borel map for G. We say that ¢ is p-invariant for G
when we specify p.

More generally, if A is a Borel subset of X and if a Borel map ¢: A — §
satisfies the above equation for a.e. v € (G) 4, then we say for simplicity that
v is inwvariant for G although we should say that ¢ is invariant for (G) 4.

Given an action of a groupoid, we often use amenability of the groupoid
to obtain an invariant Borel map for the action as shown in the following
proposition. Recall that for a separable compact space K, we denote by M (K)
the space of probability measures on K. This space is a convex, weak*-closed
subset contained in the closed unit ball of the dual of C'(K), the Banach space
of C-valued continuous functions on K with the sup norm.

Proposition 4.14. Let G be a discrete measured groupoid on a standard mea-
sure space (X,u). Let T' be a discrete group and suppose that T' acts on a
separable compact space K continuously. Let p: G — T' be a groupoid ho-
momorphism. If G is amenable, then there exists a p-invariant Borel map
v: X — M(K), i.e., a Borel map satisfying the equation

p(M)e(s(7)) = p(r(v)) for ae. v€G.

Here, the action I' ~ M(K) is given by the induced one from the action
I'K.
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Proof. We put E, = C(K) for all z € X. We define a p-measurable structure
M for the family {E,},.cx as the one generated by the constant vector fields
x> eforall e € C(K). Then E = ({Ey}zex, M) is a separable measurable
Banach bundle. For v € G, we define an isometric isomorphism L(v): Eyy —
Ey(y) by L(v)e = p(y)e for e € Ey). The pair (E, L) is then a G-bundle.
Since the family A = {A,}sex given by A, = M(K) defines a G-field for
E*, we get ¢ € L*(X,E*) such that ¢(z) € M(K) for p-a.e. x € X, and
L*(v)e(s(y)) = @(r(y)) for fi-a.e. v € G. This equation is equivalent to
p(Me(s(7)) = ¢(r(v)). The proposition follows from Lemma 4.5. O

Example 4.15. Let ' be a discrete group and suppose that I' admits a non-
singular action on a standard measure space (X, u). We denote by G the
associated groupoid I' x X. Then

p:G—T, (g,2)—yg

defines a groupoid homomorphism. Suppose that we are given a separable
compact space K on which I' acts continuously. It follows from Proposition
4.14 that if S is an amenable subgroupoid of G, then there exists a Borel map
v: X — M(K) such that p(g,z)p(z) = ¢(gx), that is, gp(z) = ¢(gx) for a.e.
(g,z) €S.

We give fundamental properties of amenable discrete measured groupoids.

Theorem 4.16. Let G be a discrete measured groupoid on a standard measure
space (X, ).

(i) G is amenable if and only if its quotient equivalence relation

{r(v),s(7) e X x X : v € G}

is amenable and for a.e. x € X, the isotropy group GF ={y € G :r(y) =
s(y) = x} is amenable.

(ii) Any subgroupoid of an amenable discrete measured groupoid is amenable.

(iii) Let A C X be a Borel subset with positive measure. If G is amenable,
then so is the restricted groupoid (G)a. If GA = X up to null sets, then
the converse also holds.

For Assertion (i), we refer to Corollary 5.3.33 in [4]. Assertion (ii) follows
from hyperfiniteness of amenable equivalence relations shown in [10] and As-
sertion (i). The former part of Assertion (iii) can be shown by using Assertion
(ii) because (G) 4 is identified with the subgroupoid (G)a U{e, : x € X \ A} of
G, where e, € G denotes the unit on x. The latter part can also be proved di-
rectly by using this identification. The following is one of the most highlighted
theorems about principal discrete measured groupoids, and it is a generaliza-
tion of Theorem 3.15. Recall that G is said to be principal if the isotropy group
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GZ is trivial for each z € X. A principal groupoid is isomorphic to its quotient
equivalence relation.

Theorem 4.17 ([10]). For i € {1,2}, let G; be ergodic principal discrete
measured groupoids on a standard finite measure space (X;, ;). Fori € {1,2},
we suppose that u; is invariant for G; and that p; has no atom, that is, there
exists no point x € X; with p;({x}) > 0. Then G1 and G are isomorphic.

Here, a discrete measured groupoid G on (X, p) is said to be ergodic if the
following holds: If a Borel subset A C X satisfies the equation GA = A up
to null sets, then either u(A) = 0 or u(X \ A) = 0. In the next theorem, we
particularly consider a groupoid arising from a group action.

Theorem 4.18. Let (X, pn) and (Y,v) be standard finite measure spaces.

(i) Let G be a discrete group and suppose that we have a non-singular action
of G on (X, ). Let G be the associated groupoid. If G is amenable, then
G is amenable.

(ii) Conversely, in Assertion (i), if the action G ~ (X, p) is measure-
preserving and G is amenable, then G is amenable.

(iii) Let G be a discrete group and suppose that we have non-singular actions
G~ (X,p) and G ~ (Y,v). If there exists a G-equivariant Borel map
f: X =Y such that fou = v and if the action G ~ (Y,v) is amenable,
then the action G ~ (X, p) is also amenable.

Assertion (i) follows from Propositions 4.2.2 and A.3.9 in [4]. For Asser-
tions (ii) and (iii), we refer to Proposition 4.3.3 in [63] and [3], respectively.
This subsection will end with several examples of amenable discrete measured
groupoids.

Example 4.19. Groupoids admitting fundamental domains. Let G be a dis-
crete group. Then the action of G on G by left multiplication is amenable,
where a measure p on G is given by f € ¢1(G) such that f(g) > 0 for each
g € G. More generally, suppose that G admits a non-singular action on a
standard finite measure space (X, pu) and suppose that the action admits a
fundamental domain, that is, there exists a Borel subset F' C X such that
(U e F) = u(X) and Gz N F consists of a single point for a.e. z € X. Then
the action G ~ (X, u) is amenable. Note that if G is infinite and G admits
an essentially free, measure-preserving action on a standard finite measure
space, then there exists no Borel fundamental domain for the action. A dis-
crete measured equivalence relation which admits a fundamental domain is
also amenable.

The following is an example of amenable actions of non-amenable groups.
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Theorem 4.20 ([1], [4, Appendix B]). Let T' be an infinite hyperbolic group in
the sense of Gromov. Let pu be a probability measure on the Gromov boundary
OI' such that the action of T' on (OT', u) is non-singular. Then the action
'~ (0T, u) is amenable.

In the proof of this result, approximately invariant means for (the groupoid
arising from) the boundary action of I' are constructed. Recall that for a
discrete group G, a sequence { f,, }nen in £1(G) is called approzimately invariant
means for G if

e for each n, fo(g) > 0forall g€ G and 3 ; fulg) = 1;
o for each g € G, 3, . | fulg™ h) — fu(h)] — 0 as n — oo.

It is well-known that a discrete group G is amenable if and only if G admits
approximately invariant means. We can also define approximately invariant
means for a discrete measured groupoid as an analogue of the above definition
(see Chapter 3 in [4]), and we can show that a discrete measured groupoid
is amenable if and only if there exist such means for it (see Theorem 4.2.7
in [4]). When we are given a group action and we want to show that it is
amenable, we often prove that it admits approximately invariant means, for it
is often difficult to prove the fixed point property in Definition 4.12 directly
for concrete examples of group actions.

In Example 3.8 of [5] and Example 2.2 of [54], approximately invariant
means for the boundary action of non-abelian free groups are constructed
explicitly. This construction can be generalized to the case of hyperbolic groups
by using the uniform thinness of all geodesic triangles on their Cayley graphs.
Since the curve complex C for a surface M with k(M) > 0 is hyperbolic (see
Theorem 2.2), this proof motivates the following theorem. We denote by 0C
the Gromov boundary of C. It is known that OC is a non-empty standard
Borel space (see Proposition 3.10 in [35]). We refer to [39], [24], [27] for details
of the boundary 9C.

Theorem 4.21 ([35, Theorem 3.29]). Let M be a surface with k(M) > 0 and
let C' be the curve complex for M. Let u be a probability measure on the Gromov
boundary OC such that the action of T(M)® on (OC, u) is non-singular. Then
the action T(M)° ~ (0C, p) is amenable.

Since C'is hyperbolic, we expect a construction of approximately invariant
means for the action of I'(M)® on JC' similar to the one for hyperbolic groups
noted above. However, we can not apply the construction directly because C'
is locally infinite. To avoid this difficulty, we use the finiteness property of
tight geodesics on the curve complex established by Masur and Minsky [44],
and Bowditch [9]. A tight geodesic is a geodesic in C' with a special property.
Roughly speaking, the finiteness property of tight geodesics says that the set of
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tight geodesics behaves like the set of geodesics on a locally finite hyperbolic
graph. Thanks to this property, we can construct approximately invariant
means for the action of I'(M)® on OC as in the case of hyperbolic groups.
Geometric properties of the curve complex we use in the proof of Theorem
4.21 are only the hyperbolicity and this finiteness property. We omit the proof
of Theorem 4.21 and note here that the finiteness property of tight geodesics
will also be used in the construction of several natural Borel maps associated
with the curve complex (see Remark 5.9).

In Section 5, we will use the following corollary, which is an immediate
consequence of Theorem 4.21. We denote by 0,C' the quotient space of C' x C'
by the coordinate exchanging action of the symmetric group on two letters.

Corollary 4.22 ([35, Lemma 4.32]). Let M be a surface with k(M) > 0. Let
i be a probability measure on 92C such that the action of T'(M)® on (0=C, )
is non-singular. Then the action T'(M)® ~ (02C, ) is amenable.

5 Two types of subgroupoids: IA and reducible ones

Let M be a surface with (M) > 0 and let m > 3 be an integer. Let I be a fi-
nite index subgroup of I'(M;m) (see Theorem 2.8 for the subgroup I'(M;m) of
T'(M)). Let G be the discrete measured groupoid on a standard finite measure
space (X, p) which arises from a measure-preserving action I' ~ (X, u). The
final goal of Sections 5, 6 and 7 is to prove Theorem 3.6. This theorem states
that any isomorphism between such groupoids arsing from actions of mapping
class groups preserves subgroupoids generated by actions of Dehn twists. To
characterize such subgroupoids algebraically in terms of groupoids, we intro-
duce two types of subgroupoids of G. The first one is called TA subgroupoids,
which correspond to IA (= infinite, irreducible and amenable) subgroups in
the classification theorem of subgroups of mapping class groups (see Theorem
2.7). The second one is called reducible subgroupoids, which correspond to
infinite reducible subgroups.

Let p: G — T be the groupoid homomorphism given by (g, z) — g for g € T
and z € X. We denote by M(PMF) the space of probability measures on
the Thurston boundary PMF. Each element v € G then acts on M(PMF)
via p. We can regard this assignment as the action of G on M(PMF). We
define the above two classes of subgroupoids S of G in terms of Borel maps
v: X — M(PMJF) which is p-invariant for S, i.e., p(v)p(s(v)) = ¢(r(7)) for
a.e. v € §. These p-invariant Borel maps play a role of fixed points for the
action of G on M(PMUF) (see Definition 4.13 and the comment right before
it).
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In Subsection 5.1, we characterize IA and reducible subgroups in terms of
their fixed points in M (PMUF). This will help us to understand the motiva-
tion of the definition of TA and reducible subgroupoids. In Subsection 5.2, we
analyze TA subgroupoids and study properties of Borel maps into M (PMUF)
which are p-invariant for them. It is shown that IA subgroupoids are in fact
amenable as groupoids. In Subsection 5.3, we study reducible subgroupoids
S and give the definition of canonical reduction systems for §. This is an
essentially unique Borel map into S(M) which is p-invariant for S and which
satisfies nice properties. This system is a generalization of canonical reduc-
tion systems for reducible subgroups introduced by Birman, Lubotzky, and
McCarthy [8], and Ivanov [30].

5.1 TA and reducible subgroups

Let M be a surface with k(M) > 0 and let ' be an infinite subgroup of
T'(M). Recall that T is said to be IA if there exists a pseudo-Anosov element
g € T such that {Fy(g)}, the set of its pseudo-Anosov foliations, is fixed by
all elements of I'. In this case, I' is virtually cyclic. If there exists o € S(M)
fixed by all elements of I', then I' is said to be reducible. In the next two
propositions, we characterize these two classes of subgroups in terms of their
fixed points on the space M (PMUF) of probability measures on the Thurston
boundary PMF. We say that v € M (PMF) is invariant for a subgroup T" of
(M) if gv = v for each g € T.

Proposition 5.1. Let M be a surface with k(M) > 0 and let T be an infinite
subgroup of T'(M). Then the following assertions hold:

(i) The subgroup T is IA if and only if there exists an invariant measure
v € M(PMF) for T such that v(MIN) = 1.

(ii) IfT is IA, then any invariant measure v € M(PMUF) for T satisfies that
v({Fi(g)}) =1 for some pseudo-Anosov element g € T

Proof. The “only if” part of Assertion (i) has already been seen in Example
4.3. Assertion (ii) follows from the dynamics of pseudo-Anosov elements on
PMF (see Theorem 2.5).

We may assume that I' is a subgroup of I'(M;m) for an integer m > 3
to prove the “if” part of Assertion (i). Recall that I'(M;m) consists of pure
elements and is torsion-free (see Theorem 2.8). Let v € M(PMF) be an
invariant measure for I' such that v(MZN) = 1.

Assume that I' contains a reducible element g of infinite order. Let A* and
U be the subsets of PMF associated with g as in the comment right before
Theorem 2.6. We can choose a non-empty closed one-dimensional submani-
fold ¢ of M which satisfies Property (P) for g and does not have superfluous
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components. Note that both ¥* and A" are contained in PMF \ MZN . Let
{U,}n be a sequence of open subsets of PMF such that U,, D U, for each
n, and A" = (), U,. It follows from v(A") = 0 that v(U,) \, 0. Let K be any
compact subset of PMF\ ¥*. By Theorem 2.6, for each n, there exists N such
that gV K C U,, and thus v(K) = v(¢VK) < v(U,). Therefore, v(K) = 0.
Since PMF \ ¥*® can be expressed as a countable union of compact subsets,
this implies that v(PMUF \ ¥*) = 0, which is a contradiction.

Thus, I does not contain a reducible element of infinite order, and it con-
sists of pseudo-Anosov elements and the trivial element. If g is a pseudo-
Anosov element of T', then by the dynamics of g on PMF (see Theorem 2.5),
the support of v is contained in {F4 (g)}. Since v is invariant for I, this implies
that I' is an IA subgroup. O

Proposition 5.2. Let M be a surface with k(M) > 0 and let T be an infinite
subgroup of T(M). Then T is reducible if and only if there exists an invariant
measure v € M(PMF) for T such that v(PMF \ MIN) = 1.

Proof. The “only if” part has already been seen in Example 4.3. To prove
the “if” part, let v € M(PMF) be an invariant measure for I such that
v(PMF \ MIN) = 1. It follows from Theorem 2.7 that I' is either IA,
reducible or sufficiently large. By Proposition 5.1 (ii), T' is not TA. If T were
sufficiently large, then there exist pseudo-Anosov elements gi,92 € I' such
that {F1(g1)} N{Fx(g2)} = 0. Theorem 2.5 implies that any sufficiently large
subgroup admits no invariant probability measure on PMF. Therefore, I' is
reducible. O

We next define IA and reducible subgroupoids, which is motivated by the
above two propositions. We often use the following notation in what follows.

Notation. We refer to the following assumption as (*): Let M be a surface
with k(M) > 0 and let m > 3 be an integer. Let I' be a finite index subgroup
of I'(M;m). Suppose that I admits a measure-preserving action on a standard
finite measure space (X, u). We denote by G the associated groupoid I'x (X, p1).
Let p: G — T be the groupoid homomorphism defined by (g, x) — g.

Propositions 5.1 and 5.2 imply that there exists no infinite subgroup of
I'(M) which admits an invariant measure v € M(PMF) such that 0 <
v(MZIN) < 1. The following is a generalization of this fact.

Theorem 5.3. Under Assumption (), let Y be a Borel subset of X with
positive measure and let S be a subgroupoid of (G)y of infinite type. Suppose
that there is an invariant Borel map ¢: Y — M(PMF) for S. Then there
exists a Borel partition Y =Y, LYy such that

e o(z)(MIN) =1 for a.e. x € Yy;
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o () (PMF\MIN)=1 for a.e. x €Y.

Recall that a Borel map ¢: Y — M(PMUF) is (p-)invariant for S if the
equation p(y)p(s(7)) = ¢(r(y)) holds for a.e. v € S.

Remark 5.4. In Theorem 5.3, let us assume that there is another invariant
Borel map ¢: Y — M(PMUF) for S. It is easy to check that 1 also satisfies

o Y(x)(MIN) =1 for ae. z € Yy;
o Y(x)(PMF\ MIN) =1 for ae. x €Y.

for the same Y] and Y5 as in the theorem. (Consider the invariant Borel map
(¢ +)/2 for S and apply the theorem.)

By this remark, the two subgroupoids (S)y, and (S)y, should be distin-
guished, and it is natural to define the following two classes of subgroupoids.

Definition 5.5. Under Assumption (x), let Y be a Borel subset of X with
positive measure and let S be a subgroupoid of (G)y of infinite type.

(i) We say that S is JA (= irreducible and amenable) if there is an invariant
Borel map ¢: Y — M(PMF) for S such that p(z)(MIN) =1 for a.e.
zeY.

(ii) We say that S is reducible if there is an invariant Borel map ¢: Y —

M(PMF) for S such that p(x)(PMF\ MIN) =1 for ae. z €Y.

It follows from Remark 5.4 that the classes of IA and reducible subgroupoids
are mutually exclusive. The definition of reducible subgroupoids is also moti-
vated by the following lemma.

Lemma 5.6. Under Assumption (x), letY be a Borel subset of X with positive
measure and let S be a subgroupoid of (G)y of infinite type. Then the following
two conditions are equivalent:

(i) S is reducible.

(ii) There exists an invariant Borel map Y — S(M) for S.

It is clear that Assertion (ii) implies Assertion (i) because there is a T'(M)°-
equivariant embedding ¢: S(M) — PMF \ MIN. To prove the converse
implication, we construct a Borel map H: PMF \ MIN — S(M) which is
equivariant for the action of I'(M)® and satisfies H o = id (see Subsection 4.2
in [35]).
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5.2 TA subgroupoids

The following lemma is the first important observation about invariant Borel
maps for TA subgroupoids. It is known that there exists a natural I'(M)°-
equivariant map m: MZN — OC, which is continuous and surjective (see
[39]). We can define a Borel structure on the set M(OC) of all probability
measures on OC by using a Borel section of m: MIN — 9C, i.e., a Borel
map s: 0C — MIN such that m o s = id (see the comment right before
Proposition 4.30 in [35]). For a technical reason, we study invariant Borel
maps into M (0C') for IA subgroupoids instead of ones into M (PMF).

Lemma 5.7. Under Assumption (x), letY be a Borel subset of X with positive
measure and let S be a subgroupoid of (G)y of infinite type. Then the following
assertions hold:

(i) S is IA if and only if there exists an invariant Borel map ¢: Y — M(9C)
for S.

(i) If S is IA and p: Y — M(0C) is an invariant Borel map for S, then
supp(p(z)) consists of at most two points.

Here, for a measure v, we denote by supp(v) the support of v. It is easy to
see the “only if” part of Assertion (i) by using the map 7: MIN — 9C.

We denote by 0,C' the quotient space of 9C x OC by the coordinate ex-
changing action of the symmetric group on two letters. Then 0,C can be
viewed as a Borel subset of M(9C) by regarding each element of 9>C as an
atomic measure on JC such that each atom has measure 1 or 1/2. We denote
by M(MZN) the Borel subset of M(PMF) consisting of all measures v such
that v(MZN) = 1. We can prove the following lemma by using Lemma 5.7.

Lemma 5.8. Under Assumption (x), let Y be a Borel subset of X with positive
measure and let S be a subgroupoid of (G)y of infinite type. If S is IA, then
there exists an essentially unique invariant Borel map po: Y — 02C for S
satisfying the following condition: If Y' C Y is a Borel subset with positive
measure and ¢: Y' — M(9C) is an invariant Borel map for S, then

supp(p(z)) C supp(po(z)) for a.e. z €Y.

This unique invariant Borel map plays an important role when we study
the normalizer of an IA subgroupoid (see Lemma 6.7).

Remark 5.9. In the proof of Propositions 5.1 and 5.2, it was important to
observe the dynamics of each element of the mapping class group on PMF.
However, we cannot consider the dynamics of each element of a groupoid
because powers 7" of an element v of a groupoid do not make sense in general.
Hence, we cannot apply a similar argument in the proof of Theorem 5.3 and
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Lemma 5.7. As a different approach, by using the finiteness properties of tight
geodesics in the curve complex (see Theorem 4.21 and the comment around
it), we construct the following natural Borel maps: Put

6C = {(a,b,c) € (AC)* :a #b+# c # a}

and define an action of I'(M)® on 6C by g(a,b,c) = (ga, gb, gc). Let F'(C)
be the set of all non-empty finite subsets of V(C) whose diameters are at
least three, on which I'(M)° naturally acts. We can then construct a I'(M)°-
equivariant Borel map

MS: 5C — F'(C)

(see Section 4.1 in [35]). A remarkable property of the set F'(C) is that the
stabilizer of each element of F'(C) is finite (see Lemma 10 in [7]). Moreover,
in the proof of Theorem 5.3, we construct a I'(M)®-equivariant Borel map

G: 9,C x V(C) — F'(C),

where the action of I'(M)® on 02C x V(C) is given by g(a,z) = (ga, gz) (see
Lemma 4.40 in [35]). In this chapter, we do not further mention the proof of
these facts.

As observed in Proposition 5.1, if an infinite subgroup I' of T'(M;m) has
an invariant measure v € M(PMUF) such that v(MZN) = 1, then I' is IA
and in particular, I' is amenable. Hence, we can expect any IA subgroupoid &
to be amenable, which is in fact shown in the following theorem. In the proof
of this theorem, we use the amenability of the action I'(M)® on OC shown in
Theorem 4.21 and Corollary 4.22. We give the proof of this theorem to show
how to use this amenable action of the mapping class group.

Theorem 5.10. Under Assumption (x), let Y be a Borel subset of X with
positive measure and let S be a subgroupoid of (G)y of infinite type. If S

is IA, then S is amenable. Equivalently, if there is an invariant Borel map
Y — O5C for S, then S is amenable.

Note that S is IA if and only if there exists an invariant Borel map Y — 0,C
for S (see Lemma 5.7 (ii)). Let ¢: Y — 02C be an invariant Borel map for S.
An important point of the proof is to construct a standard Borel space S on
which T" acts so that

e S is isomorphic to a subgroupoid of I' x S;

e we can construct a ['-equivariant Borel map S — 9>C by using ¢.

If we can construct such a space S, then the theorem follows from Theorem
4.16 (ii), Theorem 4.18 (iii) and Corollary 4.22.

Proof of Theorem 5.10. We identify S with the groupoid on (X, ) defined by
the union {e; € G : z € X \ Y} US. Extend ¢ to the map from X defined
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by p(z) = ag for x € X \ 'Y, where ag € 02C is some fixed point. We denote
by the same symbol ¢ the extended map. The extended map ¢ is then also
invariant for S.

Consider the action of I" on X x I' given by

g(z,g1) = (z,0197") forz e X, g, g1 €T.
The equivalence relation Ry on X x I' defined by

(5(7),9) ~ (r(7),p(v)g) foryegG, gel

admits a fundamental domain F; = X X {e}, i.e., a Borel subset F; of the
unit space X x I' such that Rz N F consists of exactly one point for a.e.
xr € X xT', where Rix denotes the equivalence class containing z. Let Ro be
the equivalence relation on X x I' given by

(5(7),9) ~ (r(7),p(7)g) forye S, geT.

Since R is a subrelation of R, we can show that R also admits a fundamental
domain F5 C X x I" (use Lemma 2.12 in [2]). Let S be the quotient space of
X xT by Ro, which is identified with F5 as a measure space via the projection
X xI' = S. Note that the action of I' on X x I induces an action of I" on S.
Denote the projection of (z,g) € X x I onto S by [z,g] € S. Then S can be
identified with a Borel subgroupoid

H={(p(7),[s(7),¢e]) eI'x S:v €S}

of I' X S via an isomorphism

S37(p(7),[s(7),¢€]) € H.

Using the invariant Borel map ¢: X — 0,C for S, we construct a Borel map
¢': S — 9,C by the formula [x,g] — g~ l¢(z). Then ¢ is well-defined and
I-equivariant. By Theorem 4.18 (iii) and Corollary 4.22, the groupoid I' x S
is amenable. Since H is a subgroupoid of I' x .S, it is also amenable. O

5.3 Reducible subgroupoids

We shall recall Assumption (x): Let M be a surface with (M) > 0 and let
m > 3 be an integer. Let I' be a finite index subgroup of I'(M;m). Suppose
that I' admits a measure-preserving action on a standard finite measure space
(X, ). We denote by G the associated groupoid I" x (X, u). Let p: G — T be
the groupoid homomorphism defined by (g, ) — g.

Let Y be a Borel subset of X with positive measure and let S be a sub-
groupoid of (G)y of infinite type. Suppose that S is reducible. By Lemma
5.6, we can construct an invariant Borel map ¢: Y — S(M) for S, i.e.,
p(7)p(s(y)) = p(r(y)) for a.e. v € S. In general, there are many such maps ¢.
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The aim of this subsection is to construct an invariant Borel map ¥ — S(M)
for S with some nice properties, called the canonical reduction system (CRS)
for §. This is a generalization of the canonical reduction system (CRS) for
a reducible subgroup, introduced by Birman, Lubotzky, and McCarthy [8],
and Ivanov [30]. It is shown that the CRS exists essentially uniquely for each
reducible subgroupoid. This uniqueness will be useful when we study the
normalizer of a reducible subgroupoid (see Lemma 6.8).

We shall recall the definition and some fundamental facts of the CRS for a
subgroup of the mapping class group. Let M be a surface with x(M) > 0 and
let m > 3 be an integer. We first define the CRS for a subgroup of T'(M;m).

Definition 5.11. Let M be a surface with k(M) > 0 and let m > 3 be an
integer. Let T be a subgroup of T'(M;m).

(i) An element o € V(C) is called an essential reduction class for T' if the
following two conditions are satisfied:

e ga=qa for any g € I';
o If 8 € V(C) satisfies i(a, §) # 0, then there exists g € " such that
9B # b.

(ii) The canonical reduction system (CRS) for T is defined to be the set of
all essential reduction classes for I'. We denote by o(T") the CRS for T'.

It is easy to check that o(T') € S(M) U {@}. Tt can be shown that if A is
a finite index subgroup of I', then o(A) = o(T"). Therefore, we can define the
CRS for a general subgroup I' of I'(M) as the CRS for I' N T'(M;m), which is
independent of m. We refer to Chapter 7 in [30] for more details. Note that if
T is finite, then o(T') = @) because o({e}) = 0. The following is a fundamental
fact on the CRS for an infinite subgroup of I'(M).

Theorem 5.12 ([30, Corollary 7.17]). An infinite subgroup T of T'(M) is
reducible if and only if o(T) is non-empty.

In the next theorem, we give a geometric meaning of CRS’s. We introduce
the following notation.

Notation. Let M be a surface with x(M) > 0 and let m > 3 be an integer.
Let T" be a subgroup of I'(M;m) and assume that each element of I' fixes
o € S(M). By Theorem 2.8 (iii), there is a natural homomorphism

po: I — HF(Q),
Q

where @ runs through all components of M, the surface obtained by cutting
M along a realization of o. For each component Q of M, let pg: I' — I'(Q)
be the composition of p, and the projection onto I'(Q).
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Theorem 5.13 ([30, Theorem 7.16]). Let M be a surface with k(M) > 0 and
let T' be a subgroup of T'(M). Then there exists a unique o € S(M) U {0}
satisfying the following three conditions, and then o is in fact the CRS for T':

(i) All elements of T fiz o.

(ii) Let m > 3 be an integer and put Ty = TNT(M;m). For each component
Q of M, the quotient group pg(L'o) cannot be infinite reducible.

(iii) o € S(M) is the minimal one satisfying the above Conditions (i), (ii)
(for some/any m).

Example 5.14. We present some examples of reducible subgroups whose CRS
can be computed. Let M be a surface with k(M) > 0.

(i) Let 0 € S(M) and let D, be the subgroup of I'(M) generated by all
Dehn twists about curves in ¢, which is isomorphic to a free abelian
group of rank |o|. Then o(D,) = 0.

(ii) Let g € T'(M) be a pure element and take a closed one-dimensional
submanifold ¢ (may be empty) of M such that Condition (P) is satisfied
for ¢ and some representative of g (see the comment right after Theorem
2.5). If we denote by o € S(M) U {0} the isotopy class of ¢, then o is
the CRS for the cyclic subgroup of T'(M) generated by g.

(iii) Take o € S(M). If we denote by I'y = {g € T'(M) : go = o} its
stabilizer, then o(I';) = 0.

In the same manner, we can define the canonical reduction system for a
reducible subgroupoid as an invariant Borel map into S(M) satisfying some
special properties. In the following definition, a purely p-invariant pair corre-
sponds to an essential reduction class. We shall recall Assumption (%): Let M
be a surface with (M) > 0 and let m > 3 be an integer. Let I' be a finite
index subgroup of I'(M;m). Suppose that I' admits a measure-preserving ac-
tion on a standard finite measure space (X, pt). We denote by G the associated
groupoid T x (X, ). Let p: G — T be the groupoid homomorphism defined

by (g,7) — g.

Definition 5.15. Under Assumption (%), let Y C X be a Borel subset with
positive measure and let S be a subgroupoid of (G)y of infinite type. Let A
be a Borel subset of Y with positive measure and let a € V/(C).

(i) We say that the pair (a, A) is p-invariant for S if there exists a countable
Borel partition A = |, A, of A such that for each n, the constant map
A, — {a} is invariant for S, i.e., p(y)a = a for a.e. v € (S) a4,

(ii) Suppose that («, A) is p-invariant for S. The pair (a, A) is said to be
purely p-invariant for S if (5, B) is not p-invariant for S for any Borel
subset B of A with positive measure and any 8 € V(C) with i(«, 3) # 0.

(In [35], we refer to such a pair as an essential p-invariant one for S.)
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Remark 5.16. In the notation of Definition 5.15, it is easy to see the following;:

(i) If (o, A) is a p-invariant pair for S, then so is the pair (a, B) for any
Borel subset B of A with positive measure. The same statement is true
for purely p-invariant pairs for S.

(ii) For each n € N, let A,, be a Borel subset of Y with positive measure. If
(o, Ay) is a p-invariant pair for S, then so is the pair (a, U, cp An). The
same statement is true for purely p-invariant pairs for S.

Theorem 5.17 ([35, Theorem 4.50]). Under Assumption (x), let Y C X be
a Borel subset with positive measure and let S be a subgroupoid of (G)y of
infinite type. If S is reducible, then there exists a purely p-invariant pair for

S.

In the notation of Theorem 5.17, for o € V(C), let M,, be the set of all
Borel subsets A of Y such that either u(A) = 0 or the pair (a, A) is purely
p-invariant for S. Put mq = sup 4¢ o, #(A). By Remark 5.16 (ii), there exists
an essentially unique Borel subset Y, of Y such that u(Y,) = m,. Theorem
5.17 implies the equation ¥ = UaEV(C) Y, up to null sets if S is reducible. By
the definition of purely p-invariant pairs, if «, 5 € V(C) satisfy p(YoNY3) > 0,
then i(a, B) = 0. We then define a Borel map ¢: Y — S(M) by the formula

o) ={aeV(C):zeY,}
for x in a conull Borel subset of Y.

Definition 5.18. The map ¢: Y — S(M) constructed above is called the
canonical reduction system (CRS) for a reducible subgroupoid S.

The following theorem states that the invariance and the uniqueness of the
CRS for a reducible subgroupoid.

Theorem 5.19 ([35, Lemma 4.53]). Under Assumption (x), let Y C X be
a Borel subset with positive measure and let S be a subgroupoid of (G)y of
infinite type. Suppose that S is reducible. Then the CRS ¢: Y — S(M) for S
is an essentially unique invariant Borel map for S such that

o if o € S(M) satisfies u(p=(0)) > 0 and if a € o, then (a, (o)) is a
purely p-invariant pair for S;

o if (a, A) is a purely p-invariant pair for S, then
WA\ o t{o € S(M):a € o})) =0.
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6 Normal subgroupoids

Feldman, Sutherland, and Zimmer [14] introduced the notion of normal sub-
relations of discrete measured equivalence relations. We define the notion of
normal subgroupoids as its generalization, which is also a generalization of the
notion of normal subgroups. It will be shown that if a subgroup of the map-
ping class group is IA (resp. infinite and reducible), then so is its normalizer.
We prove a similar statement in the setting of groupoids. These facts will be
used repeatedly in Section 7.

6.1 Generalities

Let G be a discrete group and let H be a subgroup of G. We refer to the
subgroup Ng(H) = {g € G : gHg~! = H} as the normalizer of H in G. If
N¢(H) = G, then H is called a normal subgroup of G.

Let G be a discrete measured groupoid on a standard measure space (X, u)
and let r,s: G — X be the range, source maps, respectively. Let S be a
subgroupoid of G. (We mean by a subgroupoid of G a Borel subgroupoid of G
whose unit space is the same as the one for G.) We denote by Endg(S) the set
of all Borel maps ¢: dom(¢) — G from a Borel subset dom(¢) of X such that

o s(p(x)) = x for a.e. € dom(e);

o for a.e. 7 € (G)dom(g), the following equivalence holds: v € S if and only
if ¢(r(7))76(s(7)) ! € S.
If X consists of a single atom, i.e., if G and S are groups, then Endg(S) is
equal to the normalizer Ng(S) of S in G.

Remark 6.1. Let ¢ € Endg(S). Note that the groupoid homomorphism
(8)dom(e) 27— d(r(7))vd(s(v)) " € G does not define an isomorphism onto
its image when the map dom(¢) 3 = — r(¢(x)) € X is not injective. Hence,
we use the symbol “End”.

Definition 6.2. Let G be a discrete measured groupoid on a standard measure
space (X, ). A subgroupoid S of G is said to be normal in G if the following
condition is satisfied: There exists a countable family {¢,} of elements of
Endg(S) such that for a.e. v € G, we can find ¢, in the family such that
r(y) € dom(¢,,) and ¢, (r(y))y € S. In this case, we write S < G, and we call
{¢n} a family of normal choice functions for the pair (G, S).

Example 6.3. Normal subgroups. Let G be a discrete group and let H be
a subgroup of G. When we regard G as a groupoid, Endg(H) = Ng(H) as
noted above. It is easy to see that H is normal in G in the sense of Definition
6.2 if and only if we can choose all representatives of G/H from Ng(H), that
is, G = Ng(H). This means that H is a normal subgroup of G.
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Lemma 6.4. Suppose that we are given a non-singular action of a discrete
group G on a standard measure space (X, ). We denote by G the associated
groupoid. Let H be a normal subgroup of G and let S be the subgroupoid of G
associated with the action H ~ (X, ). Then S is normal in G.

Proof. For g € G, let ¢4: X — G be the Borel map defined by ¢4(z) = (g, x).
We show that ¢4 € Endg(S). Let (h,x) € G. If (h,x) € S, then

g (h)(h, x)dg(2) ™" = (g, ha)(h,2) (9,97 w) = (ghg™', g7 '2) €S

since H is a normal subgroup of G. Conversely, if (ghg~!, g 'x) € S, then

ghg™' € H, which implies that h € H and (h,z) € S. Thus, ¢, € Endg(S).
Since ¢4-1(9x)(g,7) = e, € S for (g,x) € G, {¢g}gec is a family of normal

choice functions for the pair (G, S). O

We omit the proof of the following lemma.

Lemma 6.5 ([36, Lemma 2.13]). Let G be a discrete measured groupoid on a
standard measure space (X, ). Let S be a normal subgroupoid of G. If A is a
Borel subset of X with positive measure, then (S)a is normal in (G)a.

6.2 Normalizers of IA and reducible subgroupoids

Let M be a surface with k(M) > 0 and let N be an infinite subgroup of
I'(M). If N is IA, then there exists a pseudo-Anosov element g € N such that
{F1(g)}, the set of pseudo-Anosov foliations of g, is fixed by all elements of
N. If N is reducible, then N fixes an element of S(M). The CRS o(N) for N
is a special element of S(M) fixed by N (see Subsection 5.3). By using these
special fixed elements of N, we show the following

Proposition 6.6. Let M be a surface with k(M) > 0 and let T be an infinite
subgroup of T'(M). Suppose that T' contains an infinite normal subgroup N.

(i) If N is IA (resp. reducible), then so is T.
(ii) If N is reducible, then o(N) C o(T).

Proof. We first assume that N is IA. By Theorem 2.7, there exists a pseudo-
Anosov element g € N such that h{Fy(g)} = {F+(g)} for any h € N. Let
v € I. Then v~ 'gy{Fy(9)} = {Fi(9)} since v~ gy € N. Thus, gy{Fi(9)} =
v{F+(g)}. On the other hand, the fixed point set on PMF for g consists of
exactly the two points Fiy(g). Hence, v{F1(g9)} = {F+(g)}. This means that
every v € I fixes {F1(g)} and that I" is IA by Theorem 2.7.
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We next assume that N is reducible. For v € T, the equation yo(N) =
o(yNy~1) = o(N) holds. The first equation follows by definition. Thus, T is
reducible. By the definition of essential reduction classes for I', we see that
o(N) Co(T). O

In this subsection, we prove a result similar to the above proposition in
the framework of groupoids. We recall Assumption (%): Let M be a surface
with k(M) > 0 and let m > 3 be an integer. Let I be an infinite subgroup of
I'(M;m). Suppose that I" admits a measure-preserving action on a standard
finite measure space (X, pu). Let G be the associated groupoid T' x (X, p).
Define a cocycle p: G — T by (g,z) — g.

Using the uniqueness of the invariant Borel maps for IA and reducible
subgroupoids constructed in Subsections 5.2 and 5.3, we show that if a sub-
groupoid 7 of G contains an IA (resp. reducible) subgroupoid as a normal
one, then 7 is also TA (resp. reducible). We give only the proof of Lemma 6.7,
where TA subgroupoids are dealt with. The proof of Lemma 6.8 for reducible
ones is not given here. We refer to Lemma 4.60 in [35] for the proof, in which
we assume that the action I' ~ (X, u) is essentially free. However, one can
show Lemma 6.8 along the same line as in Lemma 4.60 in [35].

Lemma 6.7. Under Assumption (x), letY C X be a Borel subset with positive
measure and let S be a subgroupoid of (G)y of infinite type. Suppose that S
is IA. Let T be a subgroupoid of (G)y with S < T. Let po: Y — 02C be the
essentially unique Borel map constructed in Lemma 5.8. Then g s tnvariant
for T. In particular, T is IA by Lemma 5.7 (i).

Proof. Let r: T — Y be the range map. Take g € End7(S). Recall that g is
a Borel map from a Borel subset dom(g) of Y into 7 such that

e s(g(x)) =« for a.e. z € dom(g);

e for a.e. 7 € (7 )dom(g), the following equivalence holds: v € § if and only
if g(r(7))vg(s(7)) "' € S.

It is enough to show that p(g(x) ™ )¢o(r(g(x))) = po(x) for a.e. x € dom(g).
By applying Theorem 2.9 (iv) to the composition r o g: dom(g) — Y, we get
a countable Borel partition dom(g) = ||, Y5 satisfying the following: Let g,
denote the restriction of g to Y,,. The image r o g,(Y},) is a Borel subset of Y,
and the map 7o g,: Y, — rog,(Y,) is a Borel isomorphism. Moreover, each
gn 18 an element of Endr(S). We may therefore assume that g € Endr(S)
satisfies that o g(dom(g)) is a Borel subset of Y and the map rog: dom(g) —
r o g(dom(g)) is a Borel isomorphism.

We define a Borel map h from dom(h) = r o g(dom(g)) into 7 by h(y) =
g((rog)~t(y))~" for y € dom(h). It is easy to see that h € Endr(S).
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We put ¢4(x) = p(
and put = r(vy) and

(x)~ 300(7’( g(x))) for z € dom(g). Take v € (S)dom(q)

Y
s(y). Then the equation

:sie
Il

p(7)g(y) = p(7)p(g(y) " )eo(r(g(y)))
= p(g(z) ") p(g(2)p(7)p(g(y) " )eo(r(9(y)))
= p(g(x) " Npo(r(g(x))) = 1he(x)

holds since g(x)yg(y)~" € S and ¢y is invariant for S. The map 1, is thus
invariant for (S)gom(g). By Lemma 5.8, we have

supp(vy(z)) C supp(po(x)) for a.e. z € dom(g).

By considering h instead of g, we have

supp(p(h(y) ™ po(r(h(y)))) C supp(yo(y)) for a.e. y € dom(h).

By putting y = r o g(z) in the above two inclusions, we get the equation
thg(x) = @o(z) for a.e. x € dom(g). Therefore, ¢ is invariant for 7. O

Lemma 6.8. Under Assumption (%), let Y C X be a Borel subset with positive
measure and let S be a subgroupoid of (G)y of infinite type. Suppose that S is
reducible. Let T be a subgroupoid of (G)y with S QT . Let po: Y — S(M) be
the CRS for S (see Definition 5.18). Then g is invariant for T. In particular,
T is reducible.

7 Characterization of reducible subgroupoids

In this section, we prove Theorem 3.6. This theorem states that any iso-
morphism between groupoids associated with measure-preserving actions of
mapping class groups preserves subgroupoids generated by Dehn twists. To
prove it, we characterize such subgroupoids algebraically in terms of discrete
measured groupoids. As in the previous sections, we first investigate the case
of groups. We give a complete proof in the case of groups, and give only some
comments about the case of groupoids. Most theorems in the case of groupoids
can be shown by an idea similar to the one in the case of groups.

Classification of components into three types. We first consider the
action of a reducible subgroup on each component of the surface obtained by
cutting along the CRS for the subgroup. We recall the following notation.

Notation. Let M be a surface with k(M) > 0 and let m > 3 be an integer.
Let T be a reducible subgroup of I'(M;m) and assume that each element of T’



Measurable rigidity of mapping class groups 61

fixes o € S(M). By Theorem 2.8 (iii), there is a natural homomorphism

po: ' — HF(Q),
Q

where @) runs through all components of M,, the surface obtained by cutting
M along a realization of o. For each component Q of M, let pg: I' — I'(Q)
be the composition of p, and the projection onto I'(Q).

In the following theorem, we consider the quotient groups pg(I') when o is
the CRS for ' (see also Theorem 5.13).

Theorem 7.1 ([30, Lemma 1.6, Corollary 7.18]). Let M be a surface with
k(M) >0 and let m > 3 be an integer. Let T' be an infinite reducible subgroup
of T'(M;m) and let o € S(M) be the CRS for T. If Q is a component of M,,
then the following assertions hold:

(1) po(T) is torsion-free.

(i) po(I') either is trivial or contains a pseudo-Anosov element of I'(Q).

If po(T) is trivial, infinite amenable or non-amenable, then we say that Q
is T, IA or IN for T, respectively. Theorem 7.1 implies that any component )
of M, is either T, TA or IN, and the following assertions hold:

(A) Qis T for T if and only if pg(T) is trivial.
(B) @Q is IA for T if and only if po(T') is an IA subgroup of I'(Q).
(C) QisIN for I if and only if pg(T') is a sufficiently large subgroup of I'(Q).

Remark 7.2. These three types of () can be characterized in terms of fixed
points for the action of pg(I') on the space M(PMF(Q)) of probability mea-
sures on PMF(Q) as follows:

(a) Q is T for T if and only if either @ is a pair of pants (= Mp3) or
po(g)a = a for any g € ' and for any/some a € V(C(Q)).

(b) Q is TA for T if and only if the following three conditions are satisfied:
e () is not a pair of pants;
e po(g)a # a for any g € T'\ {e} and for any/some o € V(C(Q));

e There exists p € M(PMUF(Q)) such that po(g)u = p for any g € T’
and p(MIN(Q)) = 1.

(¢) @ is IN for I if and only if the following two conditions are satisfied:

e () is not a pair of pants;
e There exists no fixed point for the action of pg(I') on M(PMF(Q)).
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In the setting of groupoids, motivated by the above characterization, we can
define three types of components of the surface obtained by cutting M along
the CRS for a reducible subgroupoid S. They are defined in terms of invariant
Borel maps into M (PMF(Q)), etc. for S. We refer to Theorems 5.6, 5.9 and
Section 5.2 in [35] for a precise definition of them.

As an application of Theorem 7.1, we give a criterion for amenability of
reducible subgroups.

Proposition 7.3. Let M be a surface with k(M) > 0 and let m > 3 be an
integer. Let T' be a reducible subgroup of T'(M;m) and let o € S(M) be the

CRS for T'. Then T is amenable if and only if each component of M, is either
T or IA forT.

Theorem 7.1 (ii) implies the “only if” part because the quotient group
po(I') is amenable for each component @ of M, if I' is amenable. The “if”
part follows since the intersection of the kernels of pg for all components @
of M, is amenable by the following proposition (see Lemma 2.1 (1) in [8] or
Corollary 4.1.B, Lemma 4.1.C in [32]).

Proposition 7.4. Let M be a surface with k(M) > 0. Let G be a reducible
subgroup of I'(M) and let 0 € S(M) be an element such that go = o for any
g € G. Let p: G — T'(M,) be the natural homomorphism into the mapping
class group of the disconnected surface M, obtained by cutting M along a
realization ¢ of o. Then the following assertions hold:

(i) kerp is contained in the subgroup D, of T'(M) generated by Dehn twists
about curves in o.

(ii) All elements of D, belong to the center of kerp.

Characterization of some subgroups. Let M be a surface with x(M) > 0.
The following is our plan to characterize subgroups of I'(M) generated by Dehn
twists.

(I) Characterize reducible subgroups of I'(M) in terms of amenability and
normal subgroups.

(IT) Describe maximal reducible subgroups of T'(M;m) explicitly, where m >
3 is an integer.

(IIT) Describe an infinite amenable normal subgroup N of a maximal reducible
subgroup in Step (IT). In fact, such a subgroup N is contained in the
subgroup generated by the Dehn twist about some element of V(C).

One important observation for Step (I) is the following lemma. This gives a
sufficient condition for a subgroup to be reducible.
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Lemma 7.5. Let M be a surface with k(M) > 0. Let G be a non-amenable
subgroup of T'(M) and let N be an infinite normal subgroup of G. If N is
amenable, then G is reducible.

Proof. It follows from Theorem 2.7 that N is either IA or reducible. By
Proposition 6.6 (i), if N is IA (resp. reducible), then so is G. Since G is
non-amenable, G must be reducible. O]

Remark 7.6. When (M) = 0, there exists no non-amenable reducible sub-
group of I'(M). This fact implies that we cannot characterize reducible sub-
groups of I'(M) as in Propositions 7.7 and 7.8.

We characterize infinite reducible subgroups in the next two propositions.
Although it is not necessary to characterize infinite amenable reducible sub-
groups for our purpose (because maximal reducible subgroups in Step (II) are
always non-amenable), we give it for completeness.

Proposition 7.7. Let M be a surface with k(M) > 0 and let T be an infinite
amenable subgroup of T'(M). Then the following two assertions are equivalent:

(i) T s reducible.
(ii) There exist four subgroups Ty, TV, T and A of T satisfying the following:
(a) Ty is a finite index subgroup of T';
(b) IV is amenable and Ty < I”;
(¢) T is infinite and T < T”;
(d) A is non-amenable and T" <1 A.

Proof. We first show that Assertion (ii) implies Assertion (i). It follows from
Lemma 7.5 that I and A are both reducible. By Theorem 2.7, I must be
either TA or reducible since I is amenable. If IV were IA, then there would
exist a finite index subgroup of IV which is cyclic and generated by a pseudo-
Anosov element. This contradicts the assumption that I contains the infinite
reducible subgroup I'””. Thus, I'” is reducible and so are both I'g and T".

We next show that the converse holds. Put Iy = I' N T'(M;3) and let
o € S(M) be the CRS for I'y. Note that for each T component @ of M, for
Ty, the quotient pg(T) is trivial by Theorem 7.1 (ii). For each IA component
R of M, for Ty, let {F'£} be the pair of pseudo-Anosov foliations in PMF(R)
such that

pr(g){F{} = {F{} for any g € T\.

Let I be the subgroup of T'(M; 3) consisting of all g € T'(M; 3) satisfying the
following three conditions:
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® go = 0,

o po(g)a = a for all @ € V(C(Q)) and all T components @ for I'g which

is not a pair of pants;

o pr(9){FE} = {FE} for all TA components R for ['g.

Then I'g < I'V. Moreover, the CRS for IV is ¢ and a component of M, is T
(resp. TA) for I if and only if so is for T'g. In particular, I is amenable since
there is no IN component for I'y and thus for I'V (see Lemma 7.3).

In general, given 7 € S(M), we denote by D, the subgroup of I'(M)
generated by Dehn twists about curves in 7. If |o| < x(M) + 1, then put
I = D, NT(M;3). This subgroup is infinite. Let A be the stabilizer of o
in I'(M;3), i.e., A = {g € T'(M;3) : go = o}. Since there is a component of
M, which is not a pair of pants, A is non-amenable. (Recall that when we cut
M along curves in 7 € S(M) and get the surface M., all components of M.,
are pairs of pants if and only if |7| = k(M) + 1.) Moreover, I'” is a normal
subgroup of A by Proposition 7.4 (ii). These I', A satisfy the conditions of
Assertion (ii).

If o] = k(M) + 1, then we see that I'' = D, NT'(M;3). Choose ag € 0.
Let o/ = o\ {ao} and put IV = D,» NT'(M; 3). This subgroup is infinite and
satisfies I' < I". If we define A to be the stabilizer of ¢’ in I'(M;3), then
these subgroups satisfy the conditions of Assertion (ii). O

Proposition 7.8. Let M be a surface with k(M) > 0 and let T be a non-
amenable subgroup of T(M). Then the following two assertions are equivalent:

(i) T is reducible.

(ii) There exist two subgroups T, T of T'(M) satisfying the following:
(a) I <TIV;
(b) T is infinite amenable and I < TV.

Proof. We first show that Assertion (ii) implies Assertion (i). It follows from
Lemma 7.5 that IV and I are both reducible. Thus, so is T

We next show that the converse holds. Let o € S(M) be the CRS for I
Let TV be the stabilizer of o, i.e., IV = {g € (M) : go = o}. Then IV contains
I. Let T be the subgroup of T'(M) generated by Dehn twists about curves in
0. By Proposition 7.4 (ii), we see that I < I". O

Corollary 7.9. Let M be a surface with k(M) > 0. Let T'1, T'y be finite index
subgroups of T(M). If f: Ty — Ty is an isomorphism and A is an infinite
reducible subgroup of T'1, then f(A) is an infinite reducible subgroup of Ta.

Notation. Let M be a surface with (M) > 0. Given a subgroup I' of I'(M)
and o € S(M), we denote by

I'v={g9el':g90=0}
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the stabilizer of ¢ in I'. When o consists of only one element o € V(C'), we
denote I', by I',, for simplicity.

In the next lemma, we explicitly describe maximal reducible subgroups.

Lemma 7.10. Let M be a surface with k(M) > 0 and let m > 3 be an
integer. Let T be a finite index subgroup of T'(M;m) and let « € V(C). Then
the following assertions hold:

(i) Ty is a maximal reducible subgroup of T, that is, if A is a reducible
subgroup of T' with Ty, < A, then A =T,,.

(ii) Conwversely, any reducible subgroup of T is contained in T, for some
aeV(C).

Proof. Assertion (ii) follows from Theorem 2.8 (iii). We prove Assertion (i).
One can show that « is the only class in V(C) fixed by all elements of T',.
In fact, if 8 € V(C) satisfies i(a, 3) # 0, then some power of the Dehn twist
about « is in T',, and does not fix § (see Theorem 2.6). Suppose that 5 € V(C)
satisfies a # [ and i(a, 3) = 0. Let M, be the surface obtained by cutting M
along a realization of . Let @ be a component of M, such that 5 € V(C(Q)).
Since I is a finite index subgroup of I'(M;m), the component @ is IN for T,.
Hence, pg(T's) does not fix 5. This proves the claim. Assertion (i) then follows
because A fixes some curve in V(C'), which has to be « by this claim. O

Finally, we give an algebraic characterization of subgroups generated by
Dehn twists.

Lemma 7.11. Let M be a surface with k(M) > 0 and let m > 3 be an integer.
Let T' be a subgroup of finite index in I'(M;m) and let o € V(C). We denote
by D,, the intersection of T' with the subgroup of T'(M) generated by the Dehn
twist about ov.

(i) Let N be an infinite amenable subgroup of Ty with N < T,. Then N is
contained in D,,.

(ii) Conversely, any subgroup of Dy, is amenable and is a normal one of Ty,.

Proof. Assertion (ii) follows from Proposition 7.4 (ii). We show Assertion (i).
When (M) = 0, Proposition 7.4 (i) implies that T, = D, and Assertion (i)
follows. We assume that (M) > 0. Let 0 € S(M) be the CRS for N. Note
that the CRS for T',, is {a} (see Example 5.14 (iii)). By Proposition 6.6 (ii),
we see that o C {a}, which means that ¢ = {a}. By Proposition 7.4 (i), it
is enough to show that each component of M, is T for N, which follows from
the next Lemma 7.12. O
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Lemma 7.12. Let M be a surface with k(M) > 0 and let m > 3 be an integer.
Let T be a subgroup of T'(M;m) and let N be an infinite normal subgroup of
I'. Suppose that N is reducible and let o € S(M) be the CRS for N. (Note
that o C o(T") by Proposition 6.6 (ii).) If a component Q of M, is IA for N,
then Q is a component of My and it is IA for I.

Proof. Recall that o is fixed by I' by Proposition 6.6 (ii). If @ were not a
component of M), then there would exist o € o(I') \ o such that a €
V(C(Q)) since o C o(T'). Then « is fixed by all elements of N. This contradicts
the assumption that @ is IA for N. Thus, @ is a component of M, ). Since
po(N) is TA and is a normal subgroup of pg(I'), we see that pg(T") is also TA
by Proposition 6.6 (i). O

Corollary 7.13. Let M be a surface with k(M) > 0 and let m > 3 be an
integer. Let T'1, T'y be finite index subgroups of T'(M;m) and let f: Ty — Ty
be an isomorphism. Fori € {1,2} and o € V(C), let D, be the intersection
of Ty with the cyclic subgroup of T'(M) generated by the Dehn twist about c.
Then for each o € V(C), there exists 3 € V(C) such that f(D}) = D%.

Proof. Fori € {1,2} and a € V(C), we denote by I'!, the stabilizer of o in T;.
Let o € V(C). By Lemma 7.10 (i), T'}, is a maximal reducible subgroup of T'y.
It follows from Corollary 7.9 that f(T'}) is also a maximal reducible subgroup
of T'y. Thus, there exists 3 € V(C) such that f(T}) = I‘% by Lemma 7.10
(ii). Since D} is a normal subgroup of I'}, we see that f(D}) is also a normal
subgroup of I'3. By Lemma 7.11 (i), f(D}) < D3. Considering f~!, we see
that there exists o’ € V(C) such that D < f(D},). Since D} and D}, has
non-trivial intersection, we obtain the equality a = o/ by Lemma 3.4. O

By using this corollary in place of Theorem 3.3 in Ivanov’s argument in
Subsection 3.1, we can show Theorem 3.2, which states that any isomorphism
between finite index subgroups of the extended mapping class group I'(M)®
with k(M) > 0 and M # My o, Ms is equal to the inner conjugation by a
unique element of I'(M)°.

The case of groupoids. We first restate Theorem 3.6. Recall the following
notation.

Notation. We refer to the following assumption as (e):

e Let M be a surface with (M) > 0 and let m > 3 be an integer. Let
I'; and 'y be finite index subgroups of I'(M;m). Let (£,w) be an ME
coupling of I'y and T’y

e Take fundamental domains X; C € for the I's-action on 2, and X5 C
for the I'j-action on Q. Recall that the natural actions I'y ~ X7 and
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'y ~ Xy are denoted by (v, ) — v -z by using a dot. By Lemma 2.27,
we can choose X7, X5 so that ¥ = X; N X5 satisfies that for ¢ € {1,2},
I'; - Y = X; up to null sets when Y is regarded as a subset of Xj.

e For i € {1,2}, set G' =T; x X; and let p;: G* — T; be the projection,
which is a groupoid homomorphism. By Proposition 2.29, there exists a
groupoid isomorphism

f(Ghy — (G®)y.
Note that f is the identity on the unit space Y.

e Fori € {1,2} and a € V(C), let D? be the intersection of I'; with the
subgroup of I'(M) generated by the Dehn twist ¢, € I'(M) about . Let
G¢, be the subgroupoid of G' generated by the action of D, i.e.,

G, ={(v,2x) G :ye D, veX;}

Theorem 3.6. Under Assumption (), for each a € V(C), there exist a
countable Borel partition Y = | |Y,, and B3, € V(C) such that

F(Go)v,) =(G3,) sy for each n.

This theorem states that f preserves subgroupoids generated by Dehn
twists up to a countable Borel partition. When each of X; and X5 consists of
a single atom, this theorem reduces to Corollary 7.13. To prove Theorem 3.6,
we characterize subgroupoids generated by Dehn twists algebraically in terms
of discrete measured groupoids. Our plan is the following:

(1) We characterize reducible subgroupoids algebraically. It follows that the
isomorphism f in Assumption (e) preserves reducible subgroupoids.

(2) By Step (1), f preserves maximal reducible subgroupoids. We explicitly
describe such subgroupoids.

(3) A subgroupoid generated by a Dehn twist can be characterized alge-
braically as an amenable normal subgroupoid of infinite type of some
maximal reducible subgroupoid. This implies Theorem 3.6.

Note that the above steps correspond to the ones for the proof of Corollary
7.13 given right before Lemma 7.5. In this final part of Section 7, we give only
precise statements and some comments for the above steps. Most statements
can be proved along the same line as in the case of groups. We refer to Section
4 in [36] for the proof of them.

About Step (1). We shall recall Assumption (x): Let M be a surface with
k(M) > 0 and let m > 3 be an integer. Let I' be a finite index subgroup of
['(M;m). Suppose that I' admits a measure-preserving action on a standard
finite measure space (X,p). Let G be the associated groupoid I' x (X, u).
Define a groupoid homomorphism p: G — T by (g,z) — g.
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Proposition 7.14 ([36, Proposition 4.1]). Under Assumption (x), letY C X
be a Borel subset with positive measure and let S be a subgroupoid of (G)y of
infinite type. Suppose that S is amenable. Then the following two assertions
are equivalent:

(i) S is reducible.

(ii) For any Borel subset A of Y with positive measure, there exist a Borel
subset B of A with positive measure and the following three subgroupoids

S, 8" and T of (G)p:
(a) &' is amenable and (S)p < &’;
(b) 8" is of infinite type and S"” < S§';

c) T is non-amenable and S" < 7T.
(c)

Proposition 7.15 ([36, Proposition 4.2]). Under Assumption (x), letY C X
be a Borel subset with positive measure and let S be a subgroupoid of (G)y of
infinite type. Suppose that (S)y is not amenable for any Borel subset Y’ of
Y with positive measure. Then the following two assertions are equivalent:

(i) S is reducible.

(ii) For any Borel subset A of Y with positive measure, there exist a Borel
subset B of A with positive measure and the following two subgroupoids

S" and 8" of (G)p:
(a) (S)p <S';
(b) 8" is an amenable subgroupoid of infinite type and §" <1 S’.

Along the same line as in the proof of Propositions 7.7 and 7.8, these
propositions are proved by using invariant Borel maps developed in Section 5.
Thanks to these algebraic characterizations, we obtain the following corollary.

Corollary 7.16. Under Assumption (e), let A be a Borel subset of Y with
positive measure and let S* be a subgroupoid of (G')a of infinite type. Then
St is reducible if and only if the image f(S') is reducible.

About Step (2). Under Assumption (), let Y C X be a Borel subset with
positive measure. For a Borel map ¢: Y — V(C), we write

S ={7€ @)y : p(V)p(5(7)) = w(r(7))}-

This subgroupoid can be viewed as the stabilizer of ¢ in (G)y. As in the case
of groups, we can show that S, is a maximal reducible subgroupoid in (G)y,
and conversely that any reducible subgroupoid is contained in S, for some .
Thus, we obtain the following
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Corollary 7.17. Under Assumption (e), let Ay be a Borel subset of Y1 with
positive measure and let p1: A1 — V(C) be a Borel map. Put Ay = f(A1).
Then there exists a Borel map @z: Ay — V(C) such that f(S}) = S2,, where

S, = {7 € (G)a : pi(ei(s(7) = @ilr(1)} for i € {1.2}.

About Step (3). Under Assumption (x), let Y C X be a Borel subset with
positive measure and let ¢: Y — V(C) be a Borel map. As in Lemma 7.11, if
§ is an amenable subgroupoid of S, of infinite type with § <1 S, then we can
show that there exists a countable Borel partition Y = | |Y,, of Y satisfying
the following two conditions:

(i) The map ¢ is constant a.e. on Y,,. Let o, € V(C) be its value on Yj,.
(i) (S)y, < (Ga,)v, < (S,)y, for each n.

Here, for a € V(C'), we denote by G, the subgroupoid of G generated by the
intersection D,, of I with the cyclic subgroup of I'(M) generated by the Dehn
twist about a.

In what follows, we prove Theorem 3.6. Under Assumption (o), let o €
V(C) and let ¢1: Y — V(C) be the constant map with value a. Since S}
is the subgroupoid generated by the action of the stabilizer of « in I'y, we
see that (G))y < (S},)y by Lemma 6.5. By Corollary 7.17 and the above
fact, there exist a Borel map ¢5: Y — V(C) and a countable Borel partition
Y =| |V, of Y satisfying the following two conditions:

(i) The map ¢y is constant a.e. on Y,,. Let 3, € V(C) be its value on Y,,.
(il) F(GM)v.) < (G3, ) rva) < (S2,)5(v,) for each n.

By considering f~1, we can show that f((Gl)y,) = (ggn)f(yn) for each n. This
proves Theorem 3.6.

8 Concluding remarks

We present some comments about other related results shown in the series of
papers [35], [36], [37], [38].

1. Classification of mapping class groups up to ME. For i € {1,2},
let M; be a surface of type (g, pi), that is, of genus g; and with p; boundary
components. When are the mapping class groups I'(M; ) and T'(Ms) ME? Note
that for a surface M of type (g,p), the mapping class group I'(M) is finite if
and only if k(M) = 3g+p—4 < 0 and (g,p) # (1,0). We may exclude
these cases. If (g,p) = (1,0), (1,1), then I'(M) is isomorphic to SL(2,Z). If
(9,p) = (0,4), then there exists a finite index subgroup of I'(M) isomorphic to
PSL(2,7Z) (see Section 7 in [29]). In particular, if (g,p) = (1,0),(0,4), (1,1),
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then I'(M) is ME to SL(2,Z) and is hyperbolic in the sense of Gromov. It
follows from Theorem 1.5 that if k(M) > 0 and if a discrete group A is ME to
I'(M), then they are commensurable up to finite kernels. Thus, if k(M) > 0,
then I'(M) and SL(2,Z) are not ME since I'(M) is not hyperbolic. Hence, if we
classify the case k(M) > 0, then we obtain a complete classification. Thanks to
Theorem 1.5, this remaining problem is reduced to a simple algebraic problem
of mapping class groups. By Theorem 2 in [57], we obtain the following

Theorem 8.1 ([36, Theorem 1.2]). Let M and M? be distinct surfaces of
type (g1,p1), (g2,p2), respectively, such that kK(M*Y), k(M?) > 0 and g1 < g.
Suppose that T'(M*') and T'(M?) are ME. Then we have the following only two
possibilities: ((g1,p1), (92,p2)) = ((0,5), (1,2)), ((0,6), (2,0)).

In Chapters 5 and 6 in [35], we obtain a weaker classification result by a
complete different approach, using tools developed in Sections 5 and 6.

Gaboriau [20] proved that the sequence {3, (') }nen of £2-Betti numbers for
a discrete group I is an invariant for ME in the following sense: If two discrete
groups I' and A are ME, then there exists a positive real number ¢ such that
Bn(T) = ¢B,(A) for all n. Combining this with results due to Gromov [22] and
McMullen [46], we can calculate the £2-Betti numbers of mapping class groups
as follows: If M is a surface with x(M) > 0, then

Brvny+1(L(M)) >0 and B,(I'(M)) =0 for n# k(M) + 1.

Therefore, the value k(M) is invariant under ME. The reader is referred to
Appendix D in [35] for more details, in which explicit values of 3, (a1 (I'(M))
are also discussed.

2. Exactness of mapping class groups. We defined amenability of a group
action in a measurable sense in Section 4. We can also define amenability of
a group action in a topological sense. A discrete group is said to be exact if it
admits an amenable action on some compact Hausdorff space in a topological
sense (see [4], [54] for the definition). It is widely expected that the class
of exact groups is huge. Indeed, all amenable groups, hyperbolic ones and
linear ones are exact. Exactness is closed under taking subgroups, extensions,
direct unions and amalgamated free products. Moreover, exactness has many
equivalent conditions in terms of geometry of Cayley graphs and operator
algebras, and has many applications to various research fields, the study of
the Baum-Connes conjecture and the classification of group von Neumann
algebras. We recommend the reader to consult [54], [61] and the references
therein for more details.

As a byproduct of Theorem 4.21, we can show that if M is a surface with
#(M) > 0, then the action of I'(M)® on its Stone-Cech compactification is
amenable in a topological sense (see Theorem C.5 in [35]). Hence, I'(M)® and
all its subgroups are exact. Note that the action of I'(M)® on PMUF is not
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amenable because there exist non-amenable stabilizers and note that 0C' is
not compact (see Proposition 3.8 in [35]). Hamenstédt [26] also proved that
I'(M)® is exact by constructing an explicit compact space on which I'(M)®
admits an amenable action in a topological sense.

3. Direct products of mapping class groups. We can also prove an ME
rigidity result for finite direct products of mapping class groups.

Theorem 8.2 ([36, Theorem 1.3]). Let n be a positive integer and let M; be
a surface with k(M;) > 0 for all i € {1,...,n}. If a discrete group A is ME
to the direct product T'(My) x - -+ x T'(M,,), then there exists a homomorphism
p: A — G = Aut(C(My)) x --- x Aut(C(My)) such that the kernel of p and
the index [G : p(A)] are both finite.

Let (3, m) be an ME coupling of ' = T'(M7) x - - - x T'(M,,) and an unknown
group A. For the proof of Theorem 8.2, we first consider a self ME coupling
Q=Y x5 Axp2of T as in the proof of Theorem 1.5. We then construct an
almost (I" x I')-equivariant Borel map

Q= G = Aut(C(M)) x - x Aut(C(M,)) (8.1)

for some (I" x I')-action on G for which G is a self ME coupling of T' (see
Theorem 7.1 and Corollary 7.2 in [36] for a more explicit statement).

Monod and Shalom [48] introduced the class C consisting of discrete groups
A which admit a mixing unitary representation w on a Hilbert space such that
the second bounded cohomology HZ (A, m) of A with coefficient 7 does not van-
ish. They studied self ME couplings of discrete groups of the form Ay x---x A,
with A; € C and n > 2 via the theory of bounded cohomology. They obtained
many interesting measurable rigidity results on ergodic standard actions of
such product groups. Whether a discrete group is in the class C or not is
invariant under ME, and C contains all non-elementary hyperbolic groups in
the sense of Gromov. Hamenstédt [25] proved that the mapping class group
(M) with k(M) > 0 is in C. We apply these results to our situation, and
construct the map in (8.1).

We note that a theorem similar to Theorem 1.6 can also be shown for direct
products of mapping class groups (see Theorem 1.4 in [36]).

4. Construction of non-OE actions. Let M be a surface with x(M) > 0
and put I' = I'(M)°. In Corollary 3.12, we proved that if two ergodic standard
(i.e., measure-preserving and essentially free) actions of I are OE, then they
are conjugate. In the theory of OE, it is an interesting problem to construct
(continuously) many ergodic standard actions of one specified group which are
mutually non-OE. Thanks to Corollary 3.12, if we construct non-conjugate
actions, then they are non-OE. In [38], we give a family of non-OE actions of
I' as shown in the following: Let oo € V(C') and consider its I'-orbit K = I'a,
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on which T" naturally acts. Let (X, po) be a standard probability space, i.e.,
a standard Borel space with a probability measure. We assume that (Xo, o)
may contain atoms, whereas (X, 10) is non-trivial, i.e., it does not consist of a
single atom. The generalized Bernoulli action of I" on (Xo, f10)% = [T (Xo, to)
is defined by

9(zp)sex = (Tg-15)pex, (vp)pex € X(<, g€T.

This action is ergodic and standard. We can show that for two non-trivial
standard probability spaces (Xo, uo) and (Yo, 1), the two generalized Bernoulli
actions of I on (Xo, tg)® and (Yp, )X are conjugate if and only if (Xo, o)
and (Y, vp) are isomorphic, i.e., there exists a Borel isomorphism f: X — Y
between conull Borel subsets X C Xy and Yy C Y such that f.uo = vp.
Hence, this example gives a family of continuously many ergodic standard
actions of I' which are mutually non-OE.
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