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Abstract. We present a classification result up to conjugacy of generalized
Bernoulli actions of mapping class groups arising geometrically. As a conse-

quence of a rigidity result due to the author, this gives a classification of such
actions up to orbit equivalence.

1. Introduction

By a discrete group we mean a discrete and countable group. We refer as standard
finite measure space (X,µ) to a standard Borel space X with a finite positive
measure µ. When µ(X) = 1, we call (X,µ) a standard probability space. A standard
action of a discrete group means an essentially free, measure-preserving action on
a standard finite measure space.

Definition 1.1. For i = 1, 2, let αi : Γi y (Xi, µi) be a measure-preserving action
of a discrete group Γi on a standard finite measure space (Xi, µi).

(i) The two actions α1, α2 are said to be weakly orbit equivalent (WOE) if
there are Borel subsets A1 ⊂ X1, A2 ⊂ X2 with Γ1A1 = X1, Γ2A2 = X2

up to null sets, and a Borel isomorphism f : A1 → A2 such that
• the two measures f∗(µ1|A1) and µ2|A2 are equivalent;
• f(Γ1x ∩ A1) = Γ2f(x) ∩ A2 for a.e. x ∈ A1.

(ii) In (i), if we can take both A1 and A2 to have full measure, then α1 and α2

are said to be orbit equivalent (OE). In addition, if there is an isomorphism
F : Γ1 → Γ2 such that for any g ∈ Γ1 and any x ∈ A1, gx belongs to A1

and the equation f(gx) = F (g)f(x) holds, then we say that α1 and α2 are
conjugate (via the isomorphism F ).

In [K2], several orbit equivalence rigidity results are established for ergodic stan-
dard actions of mapping class groups of compact orientable surfaces with higher
complexity (see Theorem 3.1). The aim of this note is to construct a family of er-
godic standard actions of mapping class groups which are mutually non-WOE. By
the rigidity results, this problem reduces to construction of non-conjugate actions.
We present several concrete families of generalized Bernoulli actions of mapping
class groups which can be classified up to conjugacy, and thus up to WOE (see
Theorem 3.8).

Note that a recent result of Bowen [Bo] classifies Bernoulli actions of sofic groups
up to conjugacy and gives a classification of Bernoulli actions of mapping class
groups up to WOE by combining the rigidity result in [K2].
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2. Generalized Bernoulli actions

Let (X,µ) be a standard probability space, which is non-trivial, that is, it does
not consist of a single atom. Given a discrete group Γ and a countable Γ-space
(i.e., a set on which Γ acts), we define the generalized Bernoulli action, called GBA
briefly, of Γ on the product space (X,µ)K =

∏
K(X,µ) by

γ(xk)k∈K = (xγ−1k)k∈K , γ ∈ Γ, (xk)k∈K ∈ (X,µ)K .

In this section, we summarize basic properties of GBAs. Lemmas 2.1, 2.2 state
sufficient conditions for GBAs to be essentially free and to be ergodic, respectively,
which are well-known among experts (see Section 2 in [PV]). Proposition 2.4 is a
classification result.

Lemma 2.1. Let Γ be a discrete group and K a countable Γ-space. Let (X,µ) be
a non-trivial standard probability space. Then the GBA Γ y (X,µ)K is essentially
free if each γ ∈ Γ \ {e} moves infinitely many elements of K, that is, for each
γ ∈ Γ \ {e}, there exist infinitely many k ∈ K such that γk ̸= k.

We say that a measure-preserving action of a group Γ on a measure space is
aperiodic if any finite index subgroup of Γ acts ergodically on the space.

Lemma 2.2. Let Γ be a discrete group and K a countable Γ-space. Then the
following three conditions are equivalent:

(i) The GBA Γ y (X,µ)K is ergodic.
(ii) The GBA Γ y (X,µ)K is aperiodic.
(iii) There exist no k ∈ K such that the orbit Γk is finite.

Given a group Γ and its subgroup Λ, we define the left quasi-normalizer LQNΓ(Λ)
of Λ in Γ by

LQNΓ(Λ) = {γ ∈ Γ : [Λ : γΛγ−1 ∩ Λ] < ∞},
which is a subsemigroup of Γ containing Λ. It is easy to check the following.

Lemma 2.3. Let Γ be a discrete group and Λ a subgroup of Γ. Let Λ act on Γ/Λ
so that λ[γ] = [λγ] for λ ∈ Λ and γ ∈ Γ, where [γ] denotes the left coset γΛ of Λ
for γ ∈ Γ.

(i) The equation LQNΓ(Λ) = Λ holds if and only if each orbit of the action
Λ y Γ/Λ other than {[e]} consists of infinitely many elements.

(ii) Let (X,µ) be a non-trivial standard probability space. If LQNΓ(Λ) = Λ,
then the projection

(X,µ)Γ/Λ → (X,µ), (xt)t∈Γ/Λ 7→ x[e]

gives the ergodic decomposition for the GBA Λ y (X,µ)Γ/Λ.

Proposition 2.4. Let Γ be a discrete group and Λi a subgroup of Γ such that
LQNΓ(Λi) = Λi for i = 1, 2. Let (X1, µ1) and (X2, µ2) be non-trivial standard
probability spaces. Then the two GBAs

α1 : Γ y (X1, µ1)Γ/Λ1 , α2 : Γ y (X2, µ2)Γ/Λ2

are conjugate via an isomorphism F : Γ → Γ if and only if the following two condi-
tions are satisfied:

(i) There exists g ∈ Γ such that F (Λ1) = gΛ2g
−1.

(ii) The two probability spaces (X1, µ1), (X2, µ2) are isomorphic.
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We say that two probability spaces (X,µ), (Y, ν) are isomorphic if there exist
conull Borel subsets X ′ ⊂ X, Y ′ ⊂ Y and a Borel isomorphism f : X ′ → Y ′ such
that f∗µ = ν.

Proof. The proof is essentially given in Theorem 5.4 of [PV] in the framework of
operator algebras. We present a proof without operator algebraic arguments. It
is easy to see that α1 and α2 are conjugate if (i) and (ii) are satisfied. Assume
that α1 and α2 are conjugate via an isomorphism F : Γ → Γ. Since the action
Λ1 y (X1, µ1)Γ/Λ1 is not ergodic, neither is the action F (Λ1) y (X2, µ2)Γ/Λ2 .
Thus, there exists an orbit for the action F (Λ1) y Γ/Λ2 consisting of only finitely
many elements. Take g ∈ Γ so that gΛ2 is in the orbit. Then F (Λ1)∩ gΛ2g

−1 is of
finite index in F (Λ1). Similarly, there exists h ∈ Γ such that hΛ1h

−1∩F−1(gΛ2g
−1)

is of finite index in F−1(gΛ2g
−1). This implies that hΛ1h

−1 ∩F−1(gΛ2g
−1)∩Λ1 is

of finite index in F−1(gΛ2g
−1) ∩ Λ1, which is of finite index in Λ1. It follows from

LQNΓ(Λ1) = Λ1 that h ∈ Λ1 and F (Λ1) ∩ gΛ2g
−1 is of finite index in gΛ2g

−1.
Therefore, F (Λ1) and gΛ2g

−1 have a common finite index subgroup. This implies
that F (Λ1) ⊂ LQNΓ(gΛ2g

−1) = gΛ2g
−1. Since Λ1 and F−1(gΛ2g

−1) have a
common finite index subgroup, F−1(gΛ2g

−1) ⊂ Λ1 holds similarly. Thus, F (Λ1) =
gΛ2g

−1. By Lemma 2.3 (ii), (X1, µ1) and (X2, µ2) are isomorphic. ¤
Remark 2.1. For a group Γ and a subgroup Λ of Γ, the condition LQNΓ(Λ) = Λ is
the second requirement for Condition B introduced in Definition 1.4 of [PV].

3. Actions of mapping class groups

In this section, we present families of subgroups of mapping class groups to
which Proposition 2.4 can be applied. We always assume a surface to be connected,
compact and orientable unless otherwise stated. We write κ(M) = 3g + p − 4 for
a surface M = Mg,p of genus g with p boundary components. Let Γ(M)⋄ be
the extended mapping class group of M , i.e., the group of isotopy classes of all
diffeomorphisms of M . We first review some known results.

Let n be a positive integer and Mi a surface with κ(Mi) > 0 and Mi ̸= M1,2,M2,0

for i ∈ {1, . . . , n}. Put G = Γ(M1)⋄ × · · · × Γ(Mn)⋄.

Theorem 3.1 ([K2, Theorem 1.3]). Let Γ be a finite index subgroup of G. Let
(X,µ) and (Y, ν) be standard finite measure spaces. Suppose that Γ admits an
aperiodic standard action on (X,µ) and an ergodic standard action on (Y, ν). If
the two actions are WOE, then they are conjugate.

The following describes all isomorphisms between finite index subgroups of G.

Theorem 3.2 ([K1, Corollary 7.3]). Let Γ be a finite index subgroup of G. Suppose
that we have an injective homomorphism τ : Γ → G with the index [G : τ(Γ)] finite.
Then we can find a bijection t on the set {1, . . . , n} and an isotopy class gi of a
diffeomorphism Mt(i) → Mi for each i ∈ {1, . . . , n} such that

τ(γ) = (g1γt(1)g
−1
1 , . . . , gnγt(n)g

−1
n )

for any γ = (γ1, . . . , γn) ∈ Γ.

For a surface M with κ(M) > 0, let Γ(M) be the mapping class group, i.e., the
group of isotopy classes of all orientation-preserving diffeomorphisms of M . We
denote by V (M) the set of all isotopy classes of essential simple closed curves on
M , where a simple closed curve on M is said to be essential if it is isotopic to
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neither a point nor a boundary component of M . We denote by S(M) the set of
all non-empty finite subsets of V (M) which can be realized disjointly on M . Let T
be the Thurston compactification of the Teichmüller space for M , which is a union
of the Teichmüller space and the Thurston boundary PMF for M . It is known
that Γ(M)⋄ acts continuously on T , and the action of Γ(M)⋄ on PMF is faithful
if κ(M) > 0 and M ̸= M1,2,M2,0. The set S(M) is naturally embedded in PMF .
We refer to [FLP] or Section 2 in [I2] for more details on PMF . A pseudo-Anosov
element of Γ(M) admits the following remarkable dynamics on T .

Theorem 3.3 ([I2, Theorem 3.5]). Suppose that κ(M) ≥ 0 and g ∈ Γ(M) is
pseudo-Anosov. Then there exist two distinct fixed points F±(g) ∈ PMF of g such
that if K is a compact subset of T \ {F−(g)} and U is an open neighborhood of
F+(g) in T , then gn(K) ⊂ U for all sufficiently large n.

In this theorem, the two elements F±(g) is called pseudo-Anosov foliations for
g. The following facts are known:

• F±(g) ̸= σ for any σ ∈ S(M) and any pseudo-Anosov element g ∈ Γ(M)
(see 2.9 in [I2]). In particular, a pseudo-Anosov element fixes no element
of S(M).

• The set of all pseudo-Anosov foliations is dense in PMF (see Section 5,
Example 1 in [MP]).

We denote by Φ(M) the set consisting of the subsets {F±(g)} of PMF for all
pseudo-Anosov elements g ∈ Γ(M). The action of Γ(M)⋄ on PMF makes Φ(M)
a countable Γ(M)⋄-space. The equation h{F±(g)} = {F±(hgh−1)} holds for any
pseudo-Anosov element g ∈ Γ(M) and any h ∈ Γ(M)⋄.

Lemma 3.4. Let M be a surface with κ(M) > 0 and M ̸= M1,2,M2,0. If Γ is
a finite index subgroup of Γ(M)⋄ and σ ∈ S(M), then each γ ∈ Γ \ {e} moves
infinitely many elements of the Γ-orbit Γσ.

Proof. Let γ ∈ Γ be an element which moves only finitely many elements of Γσ.
Let δ ∈ Γ be a pseudo-Anosov element. Then there exists a subsequence {nk}k of
N such that γ fixes all δnkσ. Since δnkσ → F+(δ) when k → ∞ by Theorem 3.3,
γ also fixes F+(δ). Similarly, γ fixes F−(δ) = F+(δ−1). Since F±(δn

0 ) = F±(δ0) for
any pseudo-Anosov element δ0 ∈ Γ(M) and any n > 0, γ fixes all pseudo-Anosov
foliations in PMF . Thus, γ acts on PMF by the identity. ¤

Lemma 3.5. Let Γ be as in Lemma 3.4. We denote the stabilizer of σ ∈ S(M) in
Γ by Γσ. Then the following assertions hold:

(i) If σ, τ ∈ S(M) satisfy that Γσ ∩ Γτ is of finite index in Γσ, then τ ⊂ σ.
(ii) LQNΓ(Γσ) = Γσ for each σ ∈ S(M).

The proof of this lemma is given in Proposition 5.1 in [P].

Lemma 3.6. Let Γ be as in Lemma 3.4 and take ϕ ∈ Φ(M). Then each γ ∈ Γ\{e}
moves infinitely many elements of the Γ-orbit Γϕ.

Proof. Let γ ∈ Γ be an element which moves only finitely many elements of Γϕ. Let
δ ∈ Γ be a pseudo-Anosov element and take ψ ∈ Γϕ such that ψ ̸= {F±(δ)}. Then
there exists a subsequence {nk}k of N such that γ fixes all δnkψ. As in Lemma 3.4,
we can prove that γ fixes F±(δ) and that γ acts on PMF by the identity. ¤
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Lemma 3.7. Let Γ be as in Lemma 3.4. We denote the stabilizer of ϕ ∈ Φ(M) in
Γ by Γϕ. If ϕ ∈ Φ(M) and γ ∈ Γ \ Γϕ, then γΓϕγ−1 ∩ Γϕ is finite. In particular,
LQNΓ(Γϕ) = Γϕ.

Proof. Take ϕ ∈ Φ(M) and γ ∈ Γ. Choose a pseudo-Anosov element g ∈ Γϕ. Since
Γϕ contains the cyclic subgroup generated by g as a finite index one (see [M] or
Lemma 5.10 in [I2]), if γΓϕγ−1∩Γϕ is infinite, then it contains gn for some positive
integer n. Since ϕ = {F±(g)} is the unique fixed point for gn in Φ(M) by Theorem
3.3, γϕ = ϕ holds. ¤

The following is a classification result for GBAs of mapping class groups.

Theorem 3.8. Let n be a positive integer and Mi a surface with κ(Mi) > 0 and
Mi ̸= M1,2,M2,0 for i ∈ {1, . . . , n}. Put Gi = Γ(Mi)⋄ and G = G1 × · · · × Gn. Let
G act on Σ =

∏n
i=1(S(Mi) ∪ Φ(Mi)) in the coordinatewise way. Let Γ be a finite

index subgroup of G and take ξ, ζ ∈ Σ. Let (X,µ) and (Y, ν) be non-trivial standard
probability spaces. Then the two GBAs

Γ y (X,µ)Γξ, Γ y (Y, ν)Γζ

are WOE if and only if the following two conditions are satisfied:
(i) There exist a bijection t on the set {1, . . . , n} and an isotopy class gi of a

diffeomorphism Mt(i) → Mi for each i ∈ {1, . . . , n} such that πg(Γ) = Γ
and g(Γξ) = Γζ;

(ii) The two probability spaces (X,µ), (Y, ν) are isomorphic.

In the condition (i), note that the isotopy classes g1, . . . , gn induce a bijection
on Σ, denoted by g. The automorphism πg of G associated with g is defined by

πg(γ) = (g1γt(1)g
−1
1 , . . . , gnγt(n)g

−1
n ), γ = (γ1, . . . , γn) ∈ G.

Proof. The “if” part is clear. Note that the two Γ-spaces, Γξ and Γ/Γξ, are natu-
rally identified for each ξ ∈ Σ, where Γξ is the stabilizer of ξ in Γ. Then the GBA
Γ y (X,µ)Γξ is essentially free by Lemmas 2.1, 3.4 and 3.6. Lemmas 3.5 and 3.7
imply that LQNΓ(Γξ) = Γξ and LQNΓ(Γζ) = Γζ . Proposition 2.4 and Theorem
3.2 show that if the two actions Γ y (X,µ)Γξ, Γ y (Y, ν)Γζ are conjugate, then the
conditions (i), (ii) are both satisfied. By Lemma 2.2 and Lemma 2.3 (i), the actions
Γ y (X,µ)Γξ, Γ y (Y, ν)Γζ are both aperiodic. Theorem 3.1 then completes the
proof. ¤

Corollary 3.9. Let n be a positive integer and Mi a surface with κ(Mi) > 0 for
i ∈ {1, . . . , n}. Let Γ be a finite index subgroup of Γ(M1)⋄ × · · · × Γ(Mn)⋄. Then Γ
admits continuously many ergodic standard actions which are mutually non-WOE.

Note that Epstein [E] proves that any non-amenable groups admit continuously
many ergodic standard actions which are mutually non-OE.

Remark 3.1. Let Λ be a discrete group and N a finite normal subgroup of Λ.
Let p : Λ → Λ/N be the quotient map. Suppose that there exists a homomorphism
f : Λ → F into a finite group F such that f is injective on N . Put Λ1 = kerf . Then
Λ1 and p(Λ1) are finite index subgroups of Γ and Γ/N , respectively. If p(Λ1) ≅ Λ1

admits two non-WOE ergodic standard actions on (X,µ) and (Y, ν), then the two
actions, X ↑Λ

Λ1
and Y ↑Λ

Λ1
, of Λ induced from the actions of Λ1 are ergodic, standard
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and mutually non-WOE. Induced actions are defined as follows: Given an action
Λ1 y Z, let Λ1 × Λ act on Z × Λ by

(λ1, λ)(z, λ0) = (λ1z, λ1λ0λ
−1), λ1 ∈ Λ1, λ, λ0 ∈ Λ, z ∈ Z.

The induced action Z ↑Λ
Λ1

is defined to be the action Λ y (Z × Λ)/(Λ1 × {e}).

Proof of Corollary 3.9. It is known that the quotient group of Γ(M1,2)⋄ (resp.
Γ(M2,0)⋄) by its center, which is generated by the hyperelliptic involution, is iso-
morphic to a finite index subgroup of Γ(M0,5)⋄ (resp. Γ(M0,6)⋄) (see [Bi] and [L]).
It is also known that Γ(M)⋄ is residually finite for any surface M with κ(M) ≥ 0
(see [BL], [G], [I1]). The corollary follows from Theorem 3.8 and Remark 3.1 since
there exist continuously many standard probability spaces which are mutually non-
isomorphic. ¤
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