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1. Introduction

Let Γ be a group. A subgroup E of Γ is called quasi-normal (or commensurated) in Γ if
for any γ ∈ Γ, the group E ∩ γEγ−1 is of finite index in both E and γEγ−1. In this case,
the modular homomorphism m : Γ → R×

+ into the multiplicative group R×
+ of positive real

numbers is defined by the formula

m(γ) = [E : E ∩ γEγ−1][γEγ−1 : E ∩ γEγ−1]−1

for γ ∈ Γ. This m depends only on the commensurability class of E, where two subgroups
of Γ are called commensurable if their intersection is of finite index in both of them. If
that class is characteristic in Γ, then m is invariant under any automorphism of Γ, and we
can derive valuable information on Γ from m. With regard to the Baumslag-Solitar (BS)
group defined by the presentation

BS(p, q) = ⟨ a, t | tapt−1 = aq ⟩,
where p and q are integers with 2 ≤ p ≤ |q|, the modular homomorphism m is associated
to the quasi-normal subgroup ⟨a⟩, and it turns out that the image of m and hence the ratio
|q/p| is an isomorphism invariant among the BS groups. In [Ki2, Theorem 1.2], we realized
this for transformation-groupoids from the BS groups. Namely, to the pair of a discrete
measured groupoid and its quasi-normal subgroupoid, the modular cocycle is associated,
and among transformation-groupoids from the BS groups, its Mackey range is shown to
be an isomorphism invariant of the groupoid. This work was inspired by construction of
the flow associated with type III transformations and invariance of its isomorphism class
under orbit equivalence ([HOO], [Kr1] and [Kr2]). The aim of this note is to review the
result in [Ki2] and provide new examples of groups to which it is applicable. We refer to
[HR], [M] and [MV] for other related results on the BS groups and modular invariants.

Throughout this note, unless otherwise stated, all relations among measurable sets and
maps are understood to hold up to sets of measure zero, and (X,µ) denotes a standard
Borel space with a probability measure.

2. The modular cocycle

2.1. Quasi-normal subgroupoids. Normal subgroupoids generalize normal subgroups
and normal sub-equivalence relations ([FSZ]). Quasi-normal subgroupoids further gener-
alize quasi-normal subgroups. Let G be a p.m.p. discrete measured groupoid on (X,µ),
where “p.m.p.” stands for “probability-measure-preserving”. Let r, s : G → X be the range
and source maps of G, respectively. For x, y ∈ X, let Gy

x denote the set of elements of G
whose range is y and source is x. For a non-negligible subset A of X, i.e., a measurable
subset of X with positive measure, we denote by G|A := { g ∈ G | r(g), s(g) ∈ A } the
restriction of G to A, which is a discrete measured groupoid on (A,µ|A). We define [[G]]
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as the pseudo-group of partial isomorphisms from G into itself, that is, measurable maps
ϕ : Dϕ → G from a measurable subset Dϕ of X such that ϕ is a section of the source map
s and the composed map ϕ◦ := r ◦ ϕ : Dϕ → X is injective. For ϕ ∈ [[G]], let Rϕ denote
the range of the map ϕ◦. The isomorphism Uϕ : G|Dϕ

→ G|Rϕ
is defined by conjugating ϕ,

that is, defined by the formula Uϕ(g) = ϕ(y)gϕ(x)−1 for g ∈ Gy
x.

Let S be a subgroupoid of G. For x ∈ X, we define an equivalence relation on the set
s−1(x) by declaring that two elements g, h of s−1(x) are equivalent if gh−1 ∈ S. We define
the index of S in G at x, denoted by [G : S ]x, as the number of equivalence classes in
s−1(x). We say that S is of finite index in G if the index [G : S ]x is finite for any x ∈ X.
We define QNG(S), the set of quasi-normalizers of S in G, as the set of elements ϕ of [[G]]
such that for any x ∈ Dϕ, the indexes

[S|Dϕ
: S|Dϕ

∩ U−1
ϕ (S|Rϕ

) ]x and [S|Rϕ
: S|Rϕ

∩ Uϕ(S|Dϕ
) ]ϕ◦(x)

are both finite. We call S quasi-normal in G if QNG(S) generates G. This property is
stable under finite-index perturbation and restriction of the unit space. Namely,

(i) for two subgroupoids S, T of G such that S is contained in T and of finite index
in T , S is quasi-normal in G if and only if so is T ([Ki2, Lemma 3.19]), and

(ii) for any non-negligible subset A of X, if S is quasi-normal in G, then S|A is quasi-
normal in G|A ([Ki2, Lemma 3.18]).

In Subsections 2.2 and 2.3, to the pair of a groupoid G and its quasi-normal subgroupoid
S, the two cocycle D, I : G → R×

+ are associated. For each ϕ ∈ [[G]], setting U = Uϕ,
D = Dϕ and R = Rϕ and taking an x ∈ Dϕ, the numbers D(ϕ(x)), I(ϕ(x)) are defined
by measuring difference between the two groupoids S− = S|D ∩ U−1(S|R) and S+ = S ∩
U(S|D) in two different ways. The number D(ϕ(x)) describes distortion under conjugating
ϕ between the S−-ergodic probability measure on the component containing x and the S+-
ergodic probability measure on the component containing ϕ◦(x). The number I(ϕ(x)) is
defined as the ratio of indexes of some subgroupoids from S− and S+, similarly to the
modular homomorphism m. In fact, when G is a group, the cocycle I coincides with m
(and the cocycle D is trivial). Toward the definition of I, instead of the usual index,
we introduce the local index of a subgroupoid, which holds stability under restriction of
the unit space. The two cocycles D, I are canonical, and their cohomology classes are
invariant under finite-index perturbation of S and restriction of the unit space.

2.2. The Radon-Nikodym cocycle. Let G be a p.m.p. discrete measured groupoid on
(X,µ) and S a quasi-normal subgroupoid of G. We have the ergodic decomposition for
S described by a measure-preserving map from (X,µ) into a standard probability space,
π : (X,µ) → (Z, ξ). Let µ =

∫
Z µz dξ(z) be the disintegration of µ with respect to π. For

z ∈ Z, we set Xz = π−1(z) and denote by Sz the restriction of S to the probability space
(Xz, µz), which is an ergodic p.m.p. discrete measured groupoid.

To explain the idea of defining the Radon-Nikodym cocycle D = D(G,S) : G → R×
+, let

us start with an element ϕ of [[G]] whose domain is the whole space X. We set U = Uϕ,
S− = S ∩ U−1(S) and S+ = S ∩ U(S). We then have U(S−) = S+. Pick x ∈ X and set
y = ϕ◦(x). Because S− is of finite index in S, the S-ergodic component Xπ(x) contains only
finitely many S−-ergodic components. Let Σ denote the S−-ergodic component containing
x. The restriction µπ(x)|Σ is a constant multiple of the S−-ergodic probability measure on
Σ, and the constant is equal to the measure µπ(x)(Σ). The same thing holds for the S+-
ergodic component containing y, denoted by Ω. On the other hand, being an isomorphism
from S− onto S+, by uniqueness of the ergodic decomposition, U sends the S−-ergodic
probability measure on Σ to the S+-ergodic probability measure on Ω. It turns out that
U sends the measure µπ(x)|Σ to a constant multiple of the measure µπ(y)|Ω. The constant
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is equal to µπ(x)(Σ)/µπ(y)(Ω) and describes distortion between the ergodic measures for S
induced by the conjugation of ϕ. We want to define it as D(ϕ(x)).

Here is a problem. We have to show that for almost every x ∈ X, this constant depends
only on ϕ(x), not on ϕ. To solve it, let us consider the same thing for a general element
ϕ of [[G]]. We fix the notation in the same manner: We set D = Dϕ, R = Rϕ, U = Uϕ,
S− = S|D ∩ U−1(S|R) and S+ = SR ∩ U(S|D). The rest of the process is the same as
that in the previous paragraph. Thus for x ∈ D, setting y = ϕ◦(x) and denoting Σ the
S−-ergodic component containing x and Ω the S+-ergodic component containing y, we
obtain that U sends the measure µπ(x)|Σ to a constant multiple of the measure µπ(y)|Ω,
and the constant is equal to µπ(x)(Σ)/µπ(y)(Ω). Let us denote this constant by D(ϕ, x).
Its crucial property is that for any ϕ ∈ [[G]] and any non-negligible subset A of Dϕ, the
equation D(ϕ|A, x) = D(ϕ, x) holds for almost every x ∈ A. It turns out that for almost
every x ∈ Dϕ, the constant D(ϕ, x) depends only on ϕ(x) and not on ϕ. We hence obtain

the map D : G → R×
+ associated with the quasi-normal subgroupoid S. The map D is

indeed a cocycle. We call this cocycle D = D(G,S) the Radon-Nikodym cocycle for the
pair of G and S. We refer to [Ki2, Subsection 6.1] for a more precise account and the proof
of the above claims.

Example 2.1. Let Γ = BS(2, 3) = ⟨ a, t | ta2t−1 = a3 ⟩ be the BS group and set E = ⟨a⟩
and En = ⟨an⟩ for an integer n. Let Γ ↷ (X,µ) be an ergodic p.m.p. action such that
there are E-equivariant maps from X into E/E2 and from X into E/E3, or equivalently,
each E-ergodic component contains exactly two E2-ergodic components and exactly three
E3-ergodic components. We denote by G = Γ⋉X the transformation-groupoid associated
with the action Γ ↷ (X,µ). This is the discrete measured groupoid on (X,µ) consisting
of the pair (γ, x) of γ ∈ Γ and x ∈ X such that the range and source of (γ, x) are γx
and x, respectively, and the product of two elements (γ1, γ2x), (γ2, x) is (γ1γ2, x). We set
E = E⋉X and D = D(G, E). Then for any γ ∈ Γ and x ∈ X, the equation D(γ, x) = m(γ)
holds, where m : Γ → R×

+ is the homomorphism defined by m(a) = 1 and m(t) = 3/2 and
is in fact the modular homomorphism associated with E.

This claim is proved as follows: It suffices to show the desired equation only when g = a
and t. Let π : (X,µ) → (Z, ξ) be the ergodic decomposition for E and let µ =

∫
Z µz dξ(z)

be the disintegration with respect to π. We set E− = E ∩ U−1
g (E) and E+ = E ∩ Ug(E).

Pick x ∈ X. Let Σ be the E−-ergodic component containing x and let Ω be the E+-ergodic
component containing gx. If g = a, then E = E− = E+ and µπ(x)(Σ) = 1 = µπ(ax)(Ω). The

equation D(a, x) = 1 = m(a) hence holds. If g = t, then E− = E2 ⋉X and E+ = E3 ⋉X.
By the assumption on the action Γ ↷ (X,µ), we have µπ(x)(Σ) = 1/2 and µπ(tx)(Ω) = 1/3.
It follows that D(t, x) = 3/2 = m(t).

The Radon-Nikodym cocycle for the pair of G and S is canonical, and its cohomology
class is invariant under finite-index perturbation of S and restriction of the unit space:

Proposition 2.2 ([Ki2, Lemmas 6.3 and 6.4]). Let G be a p.m.p. discrete measured
groupoid on (X,µ) and S a quasi-normal subgroupoid of G. Then

(i) for any finite index subgroupoid T of S, the two cocycles D(G, T ), D(G,S) are
equivalent, and

(ii) for any non-negligible subset A of X, the cocycle D(G|A,S|A) and the restriction
of the cocycle D(G,S) to G|A are equivalent.

2.3. The local-index cocycle. Let G be a p.m.p. discrete measured groupoid on (X,µ).
For a subgroupoid H of G, we introduce its local index in G under the assumption that each
G-ergodic component contains only countably many H-ergodic components. Let π : X →
Z be the ergodic decomposition for G and let πH : X → W be the ergodic decomposition
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for H. We then have the measure-preserving map σ : W → Z with π = σ ◦πH. The above
assumption says that each fiber of the map σ is at most countable. This is the case if H
is of finite index in G.

To explain what the local index is in a simpler case, we first suppose that G is ergodic
and H is of finite index in G. For any non-negligible subset A of X, the index [G|A : H|A ]x
is then independent of x and we denote it by I(A). If we pass to a non-negligible subset
of X, then the index does not increase and may strictly decrease. For example, if H is the
disjoint union of G|A and G|X\A, then I(A) = 1 and I(X) = 2. On the contrary, if H is
ergodic, then this decreasing does not occur, that is, for any non-negligible subset A of X,
we have I(A) = I(X). It turns out that for a general finite-index subgroupoid H, there
is a partition of X into finitely many non-negligible subsets such that on each piece, the
index is stable under passing to its non-negligible subset. This stable value is defined as
the local index of H in G at a point of the piece.

Let us define the local index for a general G and its subgroupoidH under the assumption
in the first paragraph of this subsection. Recall that we have the maps π, πH and σ. For
z ∈ Z, let Gz be the ergodic groupoid G restricted to the fiber Xz := π−1(z). Similarly, for
w ∈ W , let Hw be the ergodic groupoid H restricted to the fiber Xw := π−1

H (w). For each
z ∈ Z, the fiber Xz is decomposed into countably many fibers of πH, and each of them
is non-negligible with respect to the measure µz. As observed in the previous paragraph,
for each w ∈ W , the index of Hw in Gσ(w)|Xw is stable under passing to a non-negligible
subset of Xw. This stable value is defined as the local index of H in G at a point of Xw.
For any x ∈ Xw, the value is denoted by [[G : H ]]x, while it depends only on the set Xw

and is independent of a point x ∈ Xw.
The local index has the advantage of satisfying the following formulas, which do not

hold for the index in general:

(i) ([Ki2, Lemma 3.13]). The local index is stable under passing to a non-negligible
subset of X. Namely, for any non-negligible subset A of X and any x ∈ A,

[[G|A : H|A ]]x = [[G : H ]]x.

(ii) ([Ki2, Lemma 3.12]). If K is an intermediate subgroupoid between H and G, then
for any x ∈ X,

[[G : H ]]x = [[G : K ]]x[[K : H ]]x.

The following computes the local index for transformation-groupoids, refining [Ki2, Lemma
3.14]:

Proposition 2.3. Let Γ be a countable group and Λ a finite index subgroup of Γ. Let
Γ ↷ (X,µ) be a p.m.p. action and set G = Γ⋉X and H = Λ⋉X. Let π : X → Z be the
ergodic decomposition for G, and for z ∈ Z, let µz be the G-ergodic probability measure on
the fiber Xz := π−1(z). Let πΛ : X → W be the ergodic decomposition for H. Then for
any x ∈ X,

[[G : H ]]x = [Γ : Λ]µπ(x)(XπΛ(x)).

Proof. Let N be a finite-index normal subgroup of Γ contained in Λ. For example, let
N be the intersection

∩
γ∈Γ γΛγ

−1. Set N = N ⋉X and let πN : X → V be the ergodic
decomposition for N . We have the measure-preserving maps θ : V → W and σ : W → Z
such that πΛ = θ ◦ πN and π = σ ◦ πΛ. Because N is normal in Γ, for any z ∈ Z, the
group Γ/N transitively acts on the fiber Vz := (σ ◦ θ)−1(z), and for any x ∈ Xz, the local
index of N in G at x is equal to the index of N in the stabilizer of a point of the fiber Vz.
It follows that for any x ∈ Xz, we have [[G : N ]]x = [Γ : N ]|Vz|−1. By the same reason,
for any w ∈ W and x ∈ Xw, setting Vw := θ−1(w), we have [[H : N ]]x = [Λ : N ]|Vw|−1.
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Combining the obtained equations, for any x ∈ X, we have

[[G : H ]]x = [[G : N ]]x[[H : N ]]−1
x =

[Γ : N ]

|Vπ(x)|
|VπΛ(x)|
[Λ : N ]

= [Γ : Λ]
the number of N -ergodic components in πΛ(x)

the number of N -ergodic components in π(x)
,

and this concludes the proposition. □
We are now in a position to introduce the local-index cocycle. Let G be a p.m.p. discrete

measured groupoid on (X,µ) and S a quasi-normal subgroupoid of G. For g ∈ Gy
x with

x, y ∈ X, taking an element ϕ of [[G]] with ϕ(x) = g, we define a value I(g) ∈ R×
+ by

I(g) = [[S|Rϕ
: S ∩ Uϕ(S) ]]y [[S|Dϕ

: S ∩ U−1
ϕ (S) ]]−1

x .

It follows from assertion (i) right before Proposition 2.3 that this value does not depend
on the choice of ϕ and is hence well-defined. Thanks to assertion (ii), we can show that
the map I : G → R×

+ is a cocycle, following the proof that the modular homomorphism
for a quasi-normal subgroup is in fact a homomorphism ([Ki2, Lemma 6.5]). We call this
cocycle I = I(G,S) the local-index cocycle for the pair of G and S. The stability of its
cohomology class holds as well as the Radon-Nikodym cocycle:

Proposition 2.4 ([Ki2, Lemma 6.6]). Let G be a p.m.p. discrete measured groupoid on
(X,µ) and S a quasi-normal subgroupoid of G. Then

(i) for any finite index subgroupoid T of S, the two cocycles I(G, T ), I(G,S) are
equivalent, and

(ii) for any non-negligible subset A of X, the cocycle I(G|A,S|A) coincides with the
restriction of the cocycle I(G,S) to G|A.

2.4. Computation. Let G be a p.m.p. discrete measured groupoid on (X,µ) and S a
quasi-normal subgroupoid of G. We define the modular cocycle δ = δ(G,S) : G → R×

+ for
the pair of G and S by setting δ(g) = D(g)I(g) for g ∈ G. We compute this when G and
S arise from transformation-groupoids, refining [Ki2, Lemma 6.7]:

Proposition 2.5. Let Γ be a countable group and E a quasi-normal subgroup of Γ. Let
Γ ↷ (X,µ) be a p.m.p. action and set G = Γ ⋉ X and E = E ⋉ X. Then the modular
cocycle δ : G → R×

+ associated with E is equal to the modular homomorphism m : G → R×
+

associated with E in the sense that the equation δ(γ, x) = m(γ) holds for any γ ∈ Γ and
x ∈ X.

Proof. Pick γ ∈ Γ and set E− = E ∩ γ−1Eγ and E+ = E ∩ γEγ−1. We identify γ with
the element of [[G]] defined by the map sending x ∈ X to (γ, x) ∈ G. Set E− = E ∩U−1

γ (E)
and E+ = E ∩ Uγ(E). We then have E− = E− ⋉X and E+ = E+ ⋉X. Let π, π− and π+
be the ergodic decompositions for E , E− and E+, respectively. Applying Proposition 2.3,
we obtain the desired equation as follows: For any x ∈ X,

I(γ, x) = [[ E : E+ ]]γx [[ E : E− ]]−1
x

= [E : E+]µπ(γx)(Xπ+(γx))([E : E−]µπ(x)(Xπ−(x)))
−1

= m(γ)D(γ, x)−1. □

3. Localizing quasi-normal subgroupoids

In this section, we utilize the modular cocycle along the following scheme: Suppose that
we aim to distinguish discrete measured groupoids in a certain class C, and to each of them,
its quasi-normal subgroupoid is attached. Suppose also that the attached subgroupoid is
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characteristic in the following sense: For any isomorphism f between two groupoids G, H
in C, if we denote by E and F the subgroupoids attached to G and H, respectively, then E
and f−1(F) are commensurable, i.e., E ∩ f−1(F) is of finite index in both E and f−1(F).
Let δG and δH be the modular cocycles associated with the attached subgroupoids E , F ,
respectively. The cocycle δH ◦ f then coincides with the modular cocycle for the pair of G
and f−1(F). By Propositions 2.2 and 2.4, the cocycles δG and δH ◦ f are equivalent and
their Mackey ranges are isomorphic. It turns out that the Mackey ranges of δG and δH
are isomorphic and therefore the Mackey range of δG is an invariant under isomorphism
among groupoids in C. In [Ki2], we carried out this scheme for transformation-groupoids
from the BS groups. We here introduce a broader class of groups, including generalized BS
groups, and apply the scheme to those groups. The main task is to localize the attached
quasi-normal subgroupoid under isomorphism of groupoids (Theorem 3.2).

The class of groups under consideration. Let us consider a graph of groups satisfying
the following four conditions:

(1) the numbers of vertices and edges are finite,
(2) for any two (possibly the same) vertices u, v connected by an edge, the edge group

is of finite index in the vertex group of u and in that of v,
(3) any vertex group is amenable, and
(4) its fundamental group is non-amenable.

Let Γ be the fundamental group. Let T be the associated Bass-Serre tree, on which Γ acts
by simplicial automorphisms, and let V (T ) be the set of vertices of T . Any vertex group
is quasi-normal in Γ and any two of them are commensurable in Γ. We hence have the
modular homomorphism m : Γ → R×

+ associated to any or some vertex group.
We mean by generalized BS groups the fundamental group of a graph of groups such

that the numbers of vertices and edges are finite, and any vertex group and any edge group
are isomorphic to Z. Any non-amenable, generalized BS group is an example of the group
Γ.

Let Γ ↷ (X,µ) be a p.m.p. action and set G = Γ⋉X. Let A be a non-negligible subset
of X. We say that a subgroupoid E of G|A is elliptic if there exists an E-invariant map
into V (T ), i.e., a measurable map φ : A → V (T ) with φ(γx) = γφ(x) for any (γ, x) ∈ E .
We say that a discrete measured groupoid on (X,µ) is nowhere amenable if its restriction
to any non-negligible subset of X is not amenable.

Lemma 3.1. With the above notation, let S and T be subgroupoids of G|A such that S is
amenable and quasi-normal in T , and T is nowhere amenable. Then S is elliptic.

Proof. We give only a sketch and refer to [Ki2, Theorem 5.1] for a precise account. Suppose
that S is not elliptic. We can then find a non-negligible subset B of X such that there is no
S-invariant map from any non-negligible subset of B into V (T ). Because S is amenable,
there exists an S-invariant map from A into M(∂T ), the space of probability measures on
the boundary ∂T of T . It follows from nowhere ellipticity of S on B and hyperbolicity of
T that for any S-invariant map φ : B1 → M(∂T ), where B1 is a non-negligible subset of B,
for almost every x ∈ B1, the support of the measure φ(x) consists of at most two points.
Let ∂2T denote the quotient space of ∂T ×∂T with respect to the action of the symmetric
group of two letters that exchanges the two coordinates. This space is naturally identified
with the set of non-empty subsets of ∂T consisting of at most two points. It turns out
that there exists an S-invariant map φ0 : B → ∂2T which is maximal in the sense that the
measure of the set {x ∈ B | |suppφ0(x)| = 2 } is maximal among S-invariant maps from
B into ∂2T . The map φ0 is therefore canonical and is in fact shown to be invariant under
any element of QNG(S). In particular, φ0 is T -invariant. On the other hand, if the space
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∂2T is equipped with any probability measure quasi-invariant under the action Γ ↷ ∂2T ,
then the action is amenable in the sense of Zimmer ([Ki1, Corollary 3.4]). This implies
that the restriction T |B is amenable, which contradicts our assumption. □

Let Λ be another group of the same kind as Γ. Namely, let Λ be the fundamental group
of a graph of groups satisfying conditions (1)–(4) required for the graph of groups for Γ.
Let n : Λ → R×

+ be the modular homomorphism associated to a vertex group of Λ.

Theorem 3.2. Let Γ ↷ (X,µ) and Λ ↷ (Y, ν) be p.m.p. actions and set G = Γ ⋉ X
and H = Λ ⋉ Y . Suppose that we have an isomorphism f : G|Z → H|f(Z), where Z is
a measurable subset of X with ΓZ = X and Λf(Z) = Y . Then the two cocycles m and
n ◦ f from G|Z into R×

+ are equivalent, where m is identified with its composition with the
projection from G onto Γ, and the same identification is performed for n.

Proof. We follow the proof of [Ki2, Theorem 7.3]. Let TΓ and TΛ be the Bass-Serre trees
associated to Γ and Λ, respectively. For a vertex u of TΓ, we denote by Γu the stabilizer
of u in Γ and set Gu = Γu ⋉X. We similarly define Λv and Hv for a vertex v of TΛ. Fix a
vertex u of TΓ. Because Γu is quasi-normal in Γ, the subgroupoid Gu|Z is quasi-normal in
G|Z and hence its image f(Gu|Z) is quasi-normal in H|f(Z). Because Λ is non-amenable,
it follows from Lemma 3.1 that f(Gu|Z) is elliptic in H|f(Z). There exists a non-negligible
subset Z1 of Z such that the inclusion f(Gu|Z1) < Hv|f(Z1) holds for some vertex v of TΛ.

Applying this procedure for f−1 and Hv|f(Z1), we obtain a non-negligible subset A of Z1

such that Hv|f(A) < f(Gu′ |A) for some vertex u′ of TΓ. If we set E = f−1(Hv|f(A)), then
the inclusion

((Γu ∩ Γu′)⋉X)|A < E < (Γu′ ⋉X)|A
holds. The left hand side is of finite index in the right hand side by condition (2) for Γ,
and hence so is E . We define the modular cocycles

δΓ = δ(G|A, E), δΛ = δ(H|f(A),Hv|f(A)).

We have δΓ = δΛ ◦ f because H|f(A) = f(G|A) and Hv|f(A) = f(E). By Propositions 2.2

and 2.4, δΓ is equivalent to δ(G,Gu′) as a cocycle from G|A into R×
+, and by Proposition

2.5, the latter cocycle is equivalent to m. By Propositions 2.2 and 2.4, δΛ is equivalent to
n as a cocycle from H|f(A) into R×

+. Hence m and n ◦ f are equivalent as cocycles from

G|A into R×
+. This proof indeed shows that there exists a partition of Z into countably

many non-negligible subsets such that for any piece A from it, m and n ◦ f are equivalent
as cocycles from G|A into R×

+. The conclusion of the theorem then follows. □

Remark 3.3. The above proof also shows that if Γu is infinite, then so is Λv. Hence, if C
denotes the collection of the fundamental group of a graph of groups satisfying conditions
(1)–(4), then whether a vertex group is finite or infinite is invariant under stable isomor-
phism among the groupoids Γ⋉X associated with a p.m.p. action of a group from C. We
note that if a vertex group is finite, then the associated modular homomorphism is trivial.

Let G be a discrete measured groupoid on (X,µ) and α : G → H a cocycle into a locally
compact second countable group H. The Mackey range of α is defined as follows: Let R
be the discrete measured equivalence relation on X × H such that for any g ∈ Gy

x and
h ∈ H, the two points (x, h) and (y, α(g)h) are equivalent. Let Z be the space of ergodic
components of R. The action of H on X×H by right-multiplication on the second variable
then induces the action of H on Z. The action H ↷ Z is exactly the Mackey range of α.
The isomorphism class of the Mackey range of α depends only on the equivalence class of
α and also coincides with that of the restriction of α to G|A for any measurable subset A
with GA = X. We therefore obtain:
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Corollary 3.4. Under the assumption in Theorem 3.2, the Mackey range of the cocycle
m : G → R×

+ and that of the cocycle n : H → R×
+ are isomorphic.

Let us consider the Mackey range of the cocycle log ◦m : G → R instead of m. If m(Γ)
is closed in R×

+, then it is described as follows: Let Z be the space of ergodic components
for the action kerm ↷ X. The action of m(Γ) on Z is induced, and the action log(m(Γ))
on Z is obtained through the isomorphism log between R×

+ and R. If m(Γ) is closed in

R×
+, then the Mackey range of the cocycle log ◦m coincides with the action of R induced

from the action log(m(Γ)) ↷ Z.
We itemize immediate consequences of Theorem 3.2 and Corollary 3.4: Let Γ be the

group as above and let Γ ↷ (X,µ) be an ergodic p.m.p. action.

(i) If m(Γ) is trivial, then the Mackey range of log ◦m is the translation flow on R.
Otherwise the Mackey range is a p.m.p. flow. Hence, if C denotes the collection
in Remark 3.3, then whether m(Γ) is trivial or not is an invariant under stable
orbit equivalence among free, ergodic and p.m.p. actions of groups in C.

(ii) If m(Γ) is a lattice in R×
+, then the Mackey range of log ◦m is a non-trivial flow.

If m(Γ) is dense in R×
+ and the action Γ ↷ (X,µ) is mildly mixing ([S]), then the

Mackey range of log ◦m is the trivial flow. Hence the closure of m(Γ) in R×
+ is

an invariant under stable orbit equivalence among free, mildly mixing and p.m.p.
actions of groups in C.

Let Λ be the group as above and let Λ ↷ (Y, ν) be an ergodic p.m.p. action. Suppose that
the two groupoids Γ⋉X and Λ⋉ Y are stably isomorphic.

(iii) If n(Λ) is a lattice in R×
+, then by Theorem 3.2, a Γ-equivariant map from X into

R×
+/n(Λ) is induced, where Γ acts on R×

+/n(Λ) by translation through m. If m(Γ)

is further dense in R×
+/n(Λ), then the image of µ under the induced map is the

Lebesgue measure and hence the action Γ ↷ (X,µ) is not weakly mixing.
(iv) If both m(Γ) and n(Λ) are lattices in R×

+, then kerm and ker n are measure equiv-
alent, that is, there are ergodic p.m.p. actions of kerm and of ker n such that
the associated transformation-groupoids are stably isomorphic. If m(Γ) = n(Λ)
further, then the action of m(Γ) on the space of kerm-ergodic components and
the action of n(Λ) on the space of ker n-ergodic components are conjugate. The
proof of these assertions are obtained as well as [Ki2, Corollaries 7.5 and 7.6].

For countable groups G and H, we mean by a (G,H)-coupling a standard Borel space
with a σ-finite measure, (Σ,m), on which the group G × H acts by measure-preserving
automorphisms such that each of the restrictions to G × {e} and to {e} × H admits a
measurable fundamental domain of finite measure ([F]). This (G,H)-coupling naturally
gives rise to a stable isomorphism between the transformation-groupoids from some p.m.p.
actions of G and of H, and vice versa. As its consequence, two countable groups G and H
are measure equivalent in the sense mentioned above if and only if there exists a (G,H)-
coupling. The following is a translation of Theorem 3.2 in terms of a coupling (see [Ki2,
Theorem 7.3]):

Corollary 3.5. Let Γ and Λ be the groups in Theorem 3.2. Then for any (Γ,Λ)-coupling
(Σ,m), there exists a (Γ×Λ)-equivariant map from Σ into R, where the group Γ×Λ acts
on R by the formula (γ, λ)t = logm(γ) + t− log n(λ) for γ ∈ Γ, λ ∈ Λ and t ∈ R.

Combining this corollary and a variant of Furman’s machinery [F] constructing a ho-
momorphism from equivariant maps of the above kind, we obtain the following:

Theorem 3.6. Let Γ be the group as above and suppose further that m is non-trivial. Let
Γ ↷ (X,µ) be a free, ergodic and p.m.p. action. Let ∆ be an arbitrary countable group
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and ∆ ↷ (Y, ν) a free, weakly mixing and p.m.p. action. If those two actions are stably
orbit equivalent, then there exists a non-trivial homomorphism ρ : ∆ → R. If log(m(Γ)) is
further a lattice in R, then the image of the obtained ρ is also a lattice in R.

Proof. We follow the proof of [Ki2, Theorem 1.3]. Thanks to Corollary 3.5, we can apply
[Ki2, Theorem 4.3] to the coupling Σ associated with the stable orbit equivalence in our
assumption. We then obtain a homomorphism ρ : ∆ → R and a (Γ×∆)-equivariant map
Φ: Σ → R, where the equivariance condition means that the following equation holds:

Φ((γ, g)x) = log(m(γ)) + Φ(x)− ρ(g) for γ ∈ Γ, g ∈ ∆ and x ∈ Σ.

If ρ were trivial, then Φ would induce a Γ-equivariant map from X = Σ/∆ into R, which
contradicts that m is non-trivial. The latter assertion of the theorem is obtained along the
third paragraph in the proof of [Ki2, Theorem 1.3]. □

Remark 3.7. Theorem 3.2 holds as well for the fundamental group of a graph of groups
satisfying conditions (1) and (2) and the condition that any vertex group has property (T).
In fact, let Γ and Λ be the fundamental groups of such graphs of groups and let Γ ↷ (X,µ)
and Λ ↷ (Y, ν) be p.m.p. actions. Suppose that the groupoids Γ ⋉X, Λ ⋉ Y are stably
isomorphic. Fix a vertex u of the tree for Γ. For localizing the image of Γu ⋉ X under
the isomorphism, we appeal to the fact that any simplicial action of a discrete measured
groupoid with property (T) on a tree admits a fixed point ([AS], [A]). The image of Γu⋉X
is then contained in Λv ⋉ Y for some vertex v of the tree for Λ after restricting it to some
non-negligible subset of Y . For the rest, the same proof works. The corollaries of Theorem
3.2 are also available for those groups.

The group SLn(Z)⋉Zn with n ≥ 3 has property (T), and its subgroups SLn(Z)⋉ kZn

with k a positive integer are of finite index and mutually isomorphic. The HNN extension
of SLn(Z)⋉Zn relative to an isomorphism between those subgroups is an example under
this remark such that the modular homomorphism can be non-trivial.
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