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1. Introduction

We mean by a f.f.m.p. action of a discrete countable group an essentially free,
measure-preserving action of it on a standard Borel space with a finite positive
measure. The research of orbit equivalence (OE) rigidity for f.f.m.p. actions is
recently well developed, and many surprising results are established. Among other
things, Ioana, Peterson and Popa [4], and Alvarez and Gaboriau [1] study f.f.m.p.
actions of free products and they provide the following type of rigidity: If two
f.f.m.p. actions Γ1 ∗ Γ2 y (X,µ) and Λ1 ∗ Λ2 y (Y, ν) of free products are OE
(under ergodicity assumptions on actions of the factor groups if necessary), then the
actions Γi y (X,µ) and Λi y (Y, ν) are OE for each i = 1, 2 up to the exchange of
the indices.

In this article, we study f.f.m.p. actions of amalgamated free products Γ = Γ1∗AΓ2,
where A is always infinite and we impose algebraic assumptions on the pairs A < Γ1,
A < Γ2 and ergodicity assumptions on actions of Γ1, Γ2 and A. We present superrigid
f.f.m.p. actions Γ y (X,µ) of such a Γ, where superrigidity means that this action
satisfies that if a f.f.m.p. action Λ y (Y, ν) of an arbitrary group is OE to the
action Γ y (X,µ), then the cocycle associated with the OE is cohomologous to the
constant cocycle. In particular, the two actions Γ y (X,µ) and Λ y (Y, ν) are
conjugate (see Theorem 5.6).

Without the ergodicity assumptions on actions of Γ1, Γ2 and A, f.f.m.p. actions
of Γ are not typically rigid in the above sense because of the universal property
of amalgamated free products. If one considers f.f.m.p. actions of free products,
then the superrigidiy in the above sense cannot occur. In spite of this nature, if
one assumes very strong algebraic conditions on the pairs A < Γ1, A < Γ2, then
any action of the amalgamated free product Γ = Γ1 ∗A Γ2 can be superrigid. In
particular, one sees that such a Γ is ME rigid, that is, if a discrete group Λ is
measure equivalent (ME) to Γ, then they are virtually isomorphic. Recall that two
discrete groups are said to be virtually isomorphic if they are isomorphic up to
finitely many operations of taking finite index subgroups and taking the quotients
by finite normal subgroups. An example of an amalgamated free product which is
ME rigid is presented in Corollary 5.15.
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This article is organized as follows. Section 2 reviews the definition of ME and its
relationships with OE and isomorphism of discrete measured groupoids. In Section
3, we define ME coupling rigidity for a pair of a discrete group and its representation
into a standard Borel group. Thanks to this notion, one can apply Furman’s method
to diverse situations to deduce ME and OE rigidity results. Section 4 introduces
several algebraic assumptions for amalgamated free products, and we provide rigidity
for such groups in the next section. This section reviews the Bass-Serre trees for
amalgamated free products, which are an important geometric tool to study such
groups. Section 5 gives statements about rigidity for amalgamated free products.

This article is a note for the author’s talk at the workshop “Problems in Theory
of Operator Algebras” on September 10–12, 2008 at Research Institute for Mathe-
matical Sciences, Kyoto University. The detailed proof of the results in this article
will appear elsewhere.
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2. ME and isomorphism of groupoids

In this section, we shall review basic facts about ME and OE.

Definition 2.1. Two discrete groups Γ, Λ are said to be measure equivalent (ME)
if there exist a standard Borel space (Σ,m) with a σ-finite positive measure and a
measure-preserving action of Γ×Λ on Σ satisfying the following: There exist Borel
subsets X,Y ⊂ Σ such that Σ =

⊔
γ∈Γ γY =

⊔
λ∈Λ λX up to m-null sets. The space

(Σ,m) equipped with the action of Γ×Λ as above is called an ME coupling of Γ and
Λ. When m(X) = m(Y ), we say that the ME coupling has coupling constant one.

ME defines an equivalence relation among discrete groups (see [2]). A motivated
example of an ME coupling is given as follows: Let G be a locally compact second
countable group and Γ, Λ lattices in G (i.e., discrete subgroups of G with co-finite
measure with respect to the Haar measure on G). Then the action of Γ × Λ on G
given by

(γ, λ)g = γgλ−1, g ∈ G, γ ∈ Γ, λ ∈ Λ

satisfies the axiom of ME. It is not difficult to see that two virtually isomorphic
groups are ME. We refer to [2], [3] for fundamental discussion about ME and to the
survey [9] for important results about ME.

Let us explain a reformulation of ME in terms of discrete measured groupoids
associated with group actions. We mean by a standard finite measure space a stan-
dard Borel space with a finite positive measure. Given a measure-preserving action
of a discrete group Γ on a standard finite measure space (X,µ), one can construct
a discrete measured groupoid G = Γ n (X,µ) on (X,µ) as follows: As a measure
space, G is given by the Borel space Γ × X equipped with the product measure of
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the counting measure on Γ and µ. The range and source maps are defined by

r(γ, x) = γx, s(γ, x) = x,

respectively, and the product and inverse are defined by

(γ1, γ2x)(γ2, x) = (γ1γ2, x), (γ, x)−1 = (γ−1, γx),

respectively, for γ, γ1, γ2 ∈ Γ and x ∈ X. There is a close connection between orbit
equivalence and isomorphism of two discrete measured groupoids associated with
group actions. We first recall the definition of orbit equivalence.

Definition 2.2. Let Γ y (X,µ) and Λ y (Y, ν) be measure-preserving actions on
standard finite measure spaces. The two actions are said to be weakly orbit equivalent
(WOE) if there are Borel subsets X ′ ⊂ X, Y ′ ⊂ Y with ΓX ′ = X, ΛY ′ = Y up to
null sets, and a Borel isomorphism f : X ′ → Y ′ such that

• the two measures f∗(µ|X′) and ν|Y ′ are equivalent; and
• f(Γx ∩ X ′) = Λf(x) ∩ Y ′ for a.e. x ∈ A1.

If we can take both X ′ and Y ′ to have full measure, then the two actions are said
to be orbit equivalent (OE).

Let Γ y (X,µ) and Λ y (Y, ν) be measure-preserving actions on standard finite
measure spaces, and denote the associated groupoids by G and H, respectively. It
is easy to show that when the two actions are both essentially free, G and H are
isomorphic as discrete measured groupoids if and only if the two actions are OE. It
is clear that WOE is also formulated in terms of G and H.

Given an ME coupling (Σ,m) of discrete groups Γ and Λ and Borel subsets X,Y ⊂
Σ as in Definition 2.1, we can define actions Γ y X, Λ y Y as follows: For γ ∈ Γ
and x ∈ X, we can find a unique α(γ, x) ∈ Λ such that (γ, α(γ, x))x ∈ X since
X is a fundamental domain for the action Λ y Σ. It is easy to see that the map
(γ, x) 7→ (γ, α(γ, x))x defines an action of Γ on X which is measure-preserving with
respect to the restriction of m to X. To distinguish this action and the original
action of Γ on Σ, we use a dot for this new action, that is, we denote (γ, α(γ, x))x
by γ · x. The map α : Γ×X → Λ is called the ME cocycle (associated with X) and
it satisfies the cocycle identity:

α(γ1γ2, x) = α(γ1, γ2 · x)α(γ2, x), ∀γ1, γ2 ∈ Γ, a.e. x ∈ X.

We can define an action of Λ on Y in a similar way and denote the ME cocycle
associated with Y by β : Λ × Y → Γ.

Let us construct an isomorphism between (the restrictions of) the two groupoids
G = Γ n X and H = Λ n Y .

Lemma 2.3 ([6, Lemma 2.27]). In the above notation, one can choose X and Y so
that A = X ∩ Y satisfies the following two conditions:

• Γ · A = X up to null sets when A is regarded as a subset of X;
• Λ · A = Y up to null sets when A is regarded as a subset of Y .

Remark that replacing fundamental domains for the actions Γ y Σ, Λ y Σ
corresponds to exchanging the ME cocycles into cohomologous ones. Therefore,
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this replacing does not essentially affect the problem considering the ME coupling
Γ × Λ y Σ. Let us define groupoid homomorphisms

f : (G)A ∋ (γ, x) 7→ (α(γ, x), x) ∈ (H)A,

g : (H)A ∋ (λ, y) 7→ (β(λ, y), y) ∈ (G)A,

where (G)A = {g ∈ G : r(g), s(g) ∈ A} is the restriction of G to A, and (H)A is also
defined similarly. Note that β(α(γ, x), x) = γ for any γ ∈ Γ and a.e. x ∈ A with
γ · x ∈ A because γα(γ, x)x = γ · x ∈ A ⊂ Y . Similarly, α(β(λ, y), y) = λ for any
λ ∈ Λ and a.e. y ∈ A with λ · y ∈ A. Therefore, we obtain the following.

Proposition 2.4 ([6, Proposition 2.29]). In the above notation, the groupoid homo-
morphisms

f : (G)A → (H)A, g : (H)A → (G)A

satisfy g ◦ f = id and f ◦ g = id.

Conversely, given an isomorphism between (the restrictions of) two discrete mea-
sured groupoids associated with measure-preserving actions of groups on standard
finite measure spaces, one can construct the corresponding ME coupling (see Lemma
2.30 in [6]).

When both X and Y consist of a single point, the groupoids G, H degenerate
into groups Γ, Λ, respectively, and Proposition 2.4 gives an isomorphism between Γ
and Λ. This simple observation often helps the study of self ME couplings (i.e., ME
couplings of a discrete group and itself) as discussed in subsequent sections.

3. ME coupling rigidity

We introduce the notion of ME coupling rigidity for pairs of groups and their
representations and give some consequences of the property. A few examples of
such pairs are also presented.

3.1. ME coupling rigidity and Furman’s representation theorem. In [11],
Zimmer considers the problem asking which groups are ME to SL(n, Z) when n ≥ 3
(or more generally, which groups are ME to a lattice in a connected simple Lie group
with R-rank at least two). He shows in the paper that if a discrete group Λ which
is ME to SL(n, Z) admits a linear representation over a finite dimensional space
with infinite image, then Λ is virtually isomorphic to a lattice in SL(n, R). Zim-
mer’s cocycle superrigidity theorem ([10]) plays an indispensable role in his proof.
As discussed below, Furman [2] introduces construction of a representation into
Aut(PSL(n, R)) of an arbitrary group Λ which is ME to SL(n, Z) by way of the
cocycle superrigidity theorem, and gives a complete answer to the problem men-
tioned above. His construction of representations of unknown groups is applicable
to a more general setting. ME coupling rigidity is a condition for a pair of a dis-
crete group Γ and its representation into a standard Borel group G to which the
construction is applicable. More precisely, for such a pair of Γ and G, if a discrete
group Λ is ME to Γ, then a useful representation of Λ into G can be constructed.

4



Let G be a standard Borel group and Γ, Λ discrete groups. Given homomorphisms
π : Γ → G and ρ : Λ → G, we denote by (G, π, ρ) the Borel space G equipped with
the action of Γ × Λ defined by

(γ, λ)g = π(γ)gρ(λ)−1, g ∈ G, γ ∈ Γ, λ ∈ Λ.

Definition 3.1. Let Γ be a discrete group, G a standard Borel group and π : Γ → G
a homomorphism. We say that Γ is ME coupling rigid with respect to (G, π) if the
following conditions hold:

(i) For any self ME coupling Σ of Γ with coupling constant one, there exists an
almost (Γ × Γ)-equivariant Borel map Φ: Σ → (G, π, π). This means that
the equation

Φ((γ1, γ2)g) = π(γ1)gπ(γ2)
−1

holds for any γ1, γ2 ∈ Γ and a.e. g ∈ G.
(ii) The delta measure δe over the neutral element e ∈ G is the only probability

measure on G which is invariant under conjugation by each element of π(Γ).

It is easy to see that the condition (ii) assures the essential uniqueness of the map
Φ in the condition (i). A consequence of this property is stated in the following
representation theorem. The proof follows Furman’s argument in [2].

Theorem 3.2. Let Γ be a discrete group and suppose that Γ is ME coupling rigid
with respect to a pair (G, π). Let Σ be an ME coupling of Γ and a discrete group Λ.
Then we can find the following:

• a homomorphism ρ : Λ → G;
• an almost (Γ × Λ)-equivariant Borel map Φ: Σ → (G, π, ρ).

In addition, if the kernel of the homomorphism π : Γ → G is finite and there is a
Borel fundamental domain for the action of π(Γ) on G given by left multiplication,
then ρ can be chosen so that the kernel of ρ is finite.

Thanks to this theorem, one can study an unknown group Λ by using ρ and Φ.

3.2. Examples. We shall give examples of pairs of groups and their representations
which are ME coupling rigid.

Theorem 3.3. (i) ([2]) When n ≥ 3, SL(n, Z) is ME coupling rigid with respect
to (Aut(PSL(n, R)), ı), where ı : SL(n, Z) → Aut(PSL(n, R)) is the natural
representation.

(ii) ([5]) Let M be a compact orientable surface of genus g and with p boundary
components and let Mod∗(M) be the mapping class group of M . Suppose
that 3g +p−4 > 0 and (g, p) ̸= (1, 2), (2, 0). Then Mod∗(M) is ME coupling
rigid with respect to (Mod∗(M), ı), where ı : Mod∗(M) → Mod∗(M) is the
identity.

The first assertion is equivalent to the conclusion of Zimmer’s cocycle superrigidity
theorem for cocycles arising from self ME couplings of SL(n, Z). Furman formu-
lates the cocycle superrigidity theorem as above in terms of ME couplings, and this
formulation is fit to apply Theorem 3.2. The mapping class group Mod∗(M) of M
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is the group consisting of all diffeomorphisms of M up to isotopy which may move
points of the boundary of M . Applying Theorem 3.2, one can deduce the following
rigidity.

Theorem 3.4. (i) ([2]) When n ≥ 3, if a discrete group Λ is ME to SL(n, Z),
then Λ is virtually isomorphic to a lattice in SL(n, R).

(ii) ([5]) Let M be the surface in Theorem 3.3 (ii). Then the mapping class group
Mod∗(M) is ME rigid, that is, if a discrete group Λ is ME to Mod∗(M), then
Λ is virtually isomorphic to Mod∗(M).

Remark 3.5. In the assertion (i), combining the representation theorem 3.2 and
Theorem 3.3 (i), one can construct a representation ρ : Λ → Aut(SL(n, Z)) with
finite kernel. Depending on Zimmer’s argument in [11], Furman shows that the
image ρ(Λ) is a lattice in Aut(SL(n, Z)), that is a non-trivial fact. On the other
hand, because of discreteness of Mod∗(M), it is not difficult to deduce Theorem 3.4
(ii) from Theorem 3.3 (ii) by way of the representation theorem 3.2.

4. Amalgamated free products and the Bass-Serre trees

The first subsection introduces a class of amalgamated free products Γ = Γ1 ∗A Γ2

for which we prove OE and ME rigidity. We first define a class C of discrete groups
to which the factor groups Γ1, Γ2 should belong, and define conditions which the
pairs of subgroups and groups, A < Γ1 and A < Γ2, should satisfy. We call these
conditions Assumption (⋆).

The second subsection describes the Bass-Serre tree T associated with the amal-
gamated free product Γ = Γ1 ∗A Γ2. The main reference of this subsection is Serre’s
book [8]. The natural action Γ y T plays an important role in a subsequent dis-
cussion. This subsection states that under Assumption (⋆), each automorphism of
Γ naturally induces an automorphism of T , and therefore there exists an natural
homomorphism from the automorphism group of Γ into the automorphism group
of T . This fact inspires that Γ is ME coupling rigid with respect to the pair of the
automorphism group of T and the natural action of Γ on T .

4.1. Assumption (⋆). Let C be the class of discrete groups consisting of infinite
groups with Kazhdan’s property (T) and the mapping class groups in Theorem 3.4
(ii). (Though we can prove the results discussed below for a broader class of discrete
groups than this C, we do not define the broader class because it is technical.)

Assumption 4.1. We denote the following assumption by (⋆): Let Γ1, Γ2 ∈ C and

let Ai < Γi be proper infinite subgroups for i = 1, 2 and φ : A1
∼→ A2 an isomorphism.

Suppose one of the following two conditions:

(i) Both of the groups Γ1, Γ2 satisfy Kazhdan’s property (T), and LQNΓi
(Ai) =

Ai for i = 1, 2.
(ii) Ai is almost malnormal in Γi for i = 1, 2.

Take the amalgamated free product Γ = 〈Γ1, Γ2|A1 ≅φ A2〉 and denote by A the
subgroup of Γ corresponding to A1 ≅φ A2. Let T be the Bass-Serre tree associated
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with the decomposition of Γ and ı : Γ → Aut∗(T ) be the homomorphism coming
from the natural action Γ y T . Suppose that the kernel of ı is finite.

We collect here the new notation used in the above definition. For a pair of a
group Γ and a subgroup A, we put

LQNΓ(A) = {γ ∈ Γ : [A : γAγ−1 ∩ A] < ∞},

called the left quasi-normalizer of A in Γ, which is a subsemigroup of Γ containing A.
We say that A is almost malnormal in Γ if γAγ−1 ∩A is finite for each γ ∈ Γ \A. It
is clear that if A is almost malnormal in Γ, then LQNΓ(A) = A. Given a simplicial
tree T with at most countable simplices, we denote by Aut∗(T ) the automophism
group of T equipped with the standard Borel structure associated with the pointwise
convergence topology. In the next subsection, we shall recall the Bass-Serre tree
associated with amalgamated free products.

4.2. The Bass-Serre trees. Given an amalgamated free product Γ = Γ1 ∗A Γ2,
one can construct a tree T as follows. Let V (T ) = Γ/Γ1⊔Γ/Γ2 be the set of vertices
of T , and let E(T ) = Γ/A be the set of edges of T . For each γ ∈ Γ, the two vertices
of the edge γA ∈ E(T ) is given by γΓ1, γΓ2 ∈ V (T ). It is an excercise to show that
this indeed defines a connected tree and Γ acts on T as simplicial automorphisms
by left multiplication. It is easy to see the following properties:

• Let vi ∈ V (T ) be the vertex corresponding to Γi ∈ Γ/Γi for i = 1, 2. The
stabilizer of vi in Γ is equal to Γi, and there is a Γi-equivariant one-to-one
correspondence between Γi/A and the link of vi. In particular, if A is of
infinite index in Γi, then the link of vi consists of infinitely many vertices.

• Take two distinct edges e1, e2 having a common vertex. The stabilizer of e1

and e2 in Γ is conjugate in Γ to γAγ−1 ∩ A for some γ ∈ Γ1 ∪ Γ2.
• We introduce an orientation on T as follows: For each γ ∈ Γ, let γΓ1, γΓ2 ∈

V (T ) be the origin and terminal of the edge γA ∈ E(T ), respectively. Let
Aut(T ) be the group consisting of all elements in Aut∗(T ) preserving this
orientation. Then Aut(T ) is a subgroup of Aut∗(T ) of index two, and it
consists of automorphisms of T without inversions.

Under Assumption (⋆), one can show that the amalgamated free product Γ = Γ1∗AΓ2

satisfies the following remarkable property.

Theorem 4.2. Under Assumption (⋆), for each f ∈ Aut(Γ), there exists a unique
ϕ ∈ Aut∗(T ) such that ı(f(γ)) = ϕı(γ)ϕ−1 for any γ ∈ Γ. This correspondence
f 7→ ϕ defines a natural homomorphism ı : Aut(Γ) → Aut∗(T ).

Remark 4.3. The (abstract) commensurator Comm(Γ) of Γ is the group of all iso-
morphisms between finite index subgroups of Γ up to the equivalence relation so
that two such isomorphisms are equivalent if there exists a finite index subgroup
of Γ on which they are equal. There is a natural homomorphism from Aut(Γ) into
Comm(Γ). Under Assumption (⋆), one can show along the same idea that there is a
natural homomorphism Comm(Γ) → Aut∗(T ), which is a stronger statement than
Theorem 4.2.
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As discussed in Section 2, considering a self ME coupling of Γ with coupling con-
stant one is equivalent to considering an isomorphism between discrete measured
groupoids arising from two measure-preserving actions of Γ on standard finite mea-
sure spaces. The latter situation can be seen as a generalization of considering an
automorphism of Γ. This observation motivates us to show the following theorem
along the same idea as in the proof of Theorem 4.2.

Theorem 4.4. Under Assumption (⋆), Γ is ME coupling rigid with respect to
(Aut∗(T ), ı).

Combining the representation theorem 3.2, we obtain the following.

Corollary 4.5. Under Assumption (⋆), let Σ be an ME coupling of Γ and a discrete
group Λ. Then there exist a homomorphism ρ : Λ → Aut∗(T ) with finite kernel and
an almost (Γ × Λ)-equivariant Borel map Φ: Σ → (Aut∗(T ), ı, ρ).

5. Rigidity

Under Assumption (⋆), let Σ be an ME coupling of Γ and a discrete group Λ. This
section discusses the structure of Λ and the ME coupling. This is closely linked with
the study of ergodic f.f.m.p. actions of Γ from the viewpoint of orbit equivalence.

By Corollary 4.5, there exist a homomorphism ρ : Λ → Aut∗(T ) with finite kernel
and an almost (Γ × Λ)-equivariant Borel map Φ: Σ → (Aut∗(T ), ı, ρ). As already
noted, the group Aut(T ) of automorphisms of T is a subgroup of Aut∗(T ) of index
two. Therefore, we may assume that ρ and Φ are both valued in Aut(T ) to under-
stand the structure of Λ and the ME coupling Σ. In what follows, we always assume
this condition.

5.1. Fundamental facts. For each s ∈ V (T ) ∪ E(T ), we put

Stab(s) = {ϕ ∈ Aut(T ) : ϕ(s) = s},

Σs = Φ−1(Stab(s)), Γs = ı−1(ı(Γ) ∩ Stab(s)), Λs = ρ−1(ρ(Λ) ∩ Stab(s)).

The following lemma can be shown by observing that Stab(s) is not only a (Γs×Λs)-
invariant Borel subset of Aut(T ) but also a group.

Lemma 5.1. For each s ∈ V (T )∪E(T ), the Borel subset Σs of Σ is an ME coupling
of Γs and Λs. That is, Σs has positive measure and the action Γs×Λs y Σs satisfies
the axiom of ME.

Since Λ acts on T through ρ without inversions, by the Bass-Serre theory, one can
see the structure of Λ if Λs for s ∈ V (T )∪E(T ) and the quotient graph T/ρ(Λ) are
understood. This lemma gives nice information about Λs. In particular, Λs is ME to
one of the subgroups Γ1, Γ2, A of Γ because Γs is conjugate with one of them. The
next lemma gives information about the quotient graph T/ρ(Λ) when we assume
some ergodicity assumptions on the action Γ y Σ/Λ. For i = 1, 2, let Vi(T ) = Γ/Γi

be the subset of V (T ) = Γ/Γ1 ⊔ Γ/Γ2.
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Lemma 5.2. Let S be one of V1(T ), V2(T ) and E(T ), and take s ∈ S. Then the
action ρ(Λ) y S is transitive if and only if there exists a fundamental domain for
the action Λ y Σ contained in Σs. This is the case if the action Γs y Σ/Λ is
ergodic.

In particular, if the action A y Σ/Λ is ergodic, then the above equivalence holds
for any s ∈ S and any S. Combining these two lemmas, we obtain the following
description of the structure of ρ(Λ).

Corollary 5.3. Let vi ∈ Vi(T ), e ∈ E(T ) be the simplices of T corresponding to
the cosets containing the trivial element. Put Λi = Λvi

for i = 1, 2 and B = Λe. If
the action A y Σ/Λ is ergodic, then ρ(Λ) is isomorphic to the amalgamated free
product Λ1 ∗B Λ2 such that Γi ∼ME Λi for i = 1, 2 and A ∼ME B. Moreover, their
ME couplings have all the same ratio of measures of fundamental domains for the
actions of two groups.

5.2. OE rigidity. The aim of this subsection is to conclude that the two actions
Γ y Σ/Λ and Λ y Σ/Γ are virtually conjugate when we impose stronger as-
sumptions on the groups Γ1, Γ2, A and their actions on Σ/Λ. We shall collect the
assumptions on the groups here.

Assumption 5.4. We denote the following assumption by (†): Under Assumption
(⋆), suppose that for each i = 1, 2, Γi is ME coupling rigid with respect to a pair
(Gi, πi) such that the kernel of πi is trivial and one of the following two conditions
is satisfied:

(i) Gi is a discrete countable group;
(ii) Γi = PSL(n, Z) for some n ≥ 3 and (Gi, πi) = (Aut(PSL(n, R)), ı), where

ı : PSL(n, Z) → Aut(PSL(n, R)) is the natural homomorphism.

Let vi ∈ Vi(T ), e ∈ E(T ) be the simplices of T corresponding to the cosets
containing the trivial element. For i = 1, 2, since Σvi

is an ME coupling of Γi and
Λi = ρ−1(ρ(Λ)∩Stab(vi)) and since Γi is ME coupling rigid with respect to (Gi, πi),
there exist a homomorphism ρi : Λi → Gi with finite kernel and an almost (Γi ×Λi)-
equivariant Borel map Φi : Σvi

→ (Gi, πi, ρi). Therefore, we have the following
diagram:

(⋄)

Σv1 ⊃ Σe ⊂ Σv2

Φ1

y yΦ2

(G1, π1, ρ1) (G2, π2, ρ2)

Let us give an important remark about the map Φi when Γi satisfies the condition
(ii) in Assumption (†). Furman [2] shows that the image of the measure on Σi via
Φi is a linear combination of the Haar measure on Gi and atomic measures on Gi.
In this case, the Haar measure can not be involved as shown in the following.

Lemma 5.5. The image of the measure on Σvi
via Φi is an atomic measure on Gi,

that is, it is supported on a countable subset of Gi.
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The existence of the smaller ME coupling Σe of infinite subgroups of infinite
index in Γi and Λi plays an important role in the proof of this lemma. If we assume
that the image of the measure on Σvi

is the Haar measure on Gi, then we can
deduce a contradiction by using Moore’s theorem about unitary representations of
Lie groups (see Theorem 2.2.19 in [10]). Thanks to this lemma, we may assume
that the image of Φi is contained in the commensurator CommGi

(πi(Γi)) of πi(Γi)
in Gi by replacing Φi and ρi if necessary. The group CommGi

(πi(Γi)) by definition
consists of all elements g ∈ Gi such that [πi(Γi) : g−1πi(Γi)g ∩ πi(Γi)] < ∞ and
[πi(Γi) : gπi(Γi)g

−1 ∩ πi(Γi)] < ∞.
To prove rigidity results discussed below, it is important to understand the two

maps Φ1, Φ2 defined on the common subset Σe. If the “difference” between them is
not so big, then one can deduce OE or ME rigidity results. This difference can be
small if we impose ergodicity assumptions on the actions of the groups Γ1, Γ2, A on
Σ/Λ. The following is one consequence of the above argument stated in terms of
OE.

Theorem 5.6. Under Assumption (†), let Λ be a discrete group and suppose that two
ergodic, essentially free and measure-preserving actions Γ y (X,µ), Λ y (Y, ν) on
standard finite measure spaces are WOE. We assume the following two conditions:

(i) Let X ′ ⊂ X and Y ′ ⊂ Y be Borel subsets of positive measure on which there
exists a Borel isomorphism preserving the class of measures and the orbits
of the actions of Γ and Λ. Then µ(X ′)/µ(X) ≤ ν(Y ′)/ν(Y ); and

(ii) Either the action A y X is aperiodic or the actions Γ1 y X and Γ2 y X
are both aperiodic, the action A y X is ergodic and A is ICC.

Then the cocycle arising from the WOE is cohomologous to the constant cocycle. In
particular, the two actions Γ y X and Λ y Y are conjugate.

We say that an action of a discrete group Γ on a measure space is aperiodic if
any finite index subgroup of Γ acts ergodically. It seems that one can construct
counterexamples by using the universal property of amalgamated free products if
one of the assumptions in Theorem 5.6 is dropped.

5.3. Examples. We shall give several examples satsifying Assumption (†).

Example 5.7. Let M be the surface in Theorem 3.3 (ii) and let {F±} be a pair of
points in the Thurston boundary for M which is fixed by a pseudo-Anosov element in
Mod∗(M). Let A be the stabilizer of the pair {F±}. Then A is virtually isomorphic
to Z and is almost malnormal in Mod∗(M).

Example 5.8. Let n ≥ 2 be an integer and take a flag F of the vector space Rn such
that it is a sequence of subspaces all of whose bases can be chosen as a subset of the
standard basis of Rn. Let Γ = SL(n, Z) and let A be the stabilizer of F in Γ. Then
LQNΓ(A) = A. When n ≥ 3, SL(n, Z) satisfies Kazhdan’s property (T).

In [7], many examples of subgroups of SL(n, Z) which are almost malnormal in
SL(n, Z) are presented.
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5.4. ME rigidity. Theorem 5.6 assumes strong conditions on actions of subgroups
of Γ. The goal of this subsection is to deduce rigidity by adding a stronger assump-
tion on the pairs of groups Ai < Γi for i = 1, 2 instead of the ergodicity assumptions
on their actions. This leads to a new example of ME rigid groups. Recall that a
discrete group Γ is said to be ME rigid if any discrete group which is ME to Γ is
virtually isomorphic to Γ.

Assumption 5.9. We denote the following assumption by (‡): Under Assumption
(†), suppose the following two conditions: Put Γi = πi(Γi), Ai = πi(Ai), Ci =
CommGi

(Γi) and C(Ai) = CommCi
(Ai) for i = 1, 2. Recall that we assumed that πi

is injective.

(i) The isomorphism π2 ◦φ ◦ π−1
1 : A1 → A2 can be extended to an isomorphism

φ : C(A1) → C(A2).
(ii) For i = 1, 2, the delta measure δe on the neutral element of Ci is the only

probability measure on Ci which is invariant under conjugation by each ele-
ment of Ai.

Take the amalgamated free product G = 〈C1, C2|C(A1) ≅φ C(A2)〉. Note that π1

and π2 induce an injective homomorphism π : Γ → G.

It is not difficult to see that the second condition assures the uniqueness of the
extension of the isomorphism π2 ◦ φ ◦ π−1

1 in the first condition. In the diagram (⋄),
we may assume that the map Φi is valued in Ci for i = 1, 2, and therefore in the
sole group G. The condition (ii) is so strong that one can prove that the two maps
Φ1, Φ2 are equal on Σe up to multiplication of an element of G. This fact helps to
show the following.

Theorem 5.10. Under Assumption (‡), let Σ be an ME coupling of Γ and a discrete
group Λ. Suppose that there are a homomorphism ρ : Λ → Aut(T ) with finite kernel
and an almost (Γ×Λ)-equivariant Borel map Φ: Σ → (Aut(T ), ı, ρ). Then there exist
a homomorphism ρ0 : Λ → G with finite kernel and an almost (Γ × Λ)-equivariant
Borel map Φ0 : Σ → (G, π, ρ0).

Since G is countable, π(Γ) and ρ0(Λ) are commensurable, and this theorem implies
the following.

Corollary 5.11. Under Assumption (‡), Γ is ME rigid.

Remark 5.12. One can show the following stronger theorem than Theorem 5.10 along
the same idea:

Theorem 5.13. Under Assumption (‡), let Σ be a self ME coupling of Γ such that
there is an almost (Γ×Γ)-equivariant Borel map Φ: Σ → (Aut(T ), ı, ı). Then there
exists an almost (Γ × Γ)-equivariant Borel map Φ0 : Σ → (G, π, π).

Theorem 5.10 follows from this theorem by (the proof of) the representation the-
orem 3.2. By using this theorem and the countability of G, we can conclude the
following.
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Theorem 5.14. Under Assumption (‡), if Comm(Γ) is countable (in particular, if
Γ is finitely generated), then Γ is ME coupling rigid with respect to (Comm(Γ), ı),
where Comm(Γ) is equipped with the discrete Borel structure, and ı : Γ → Comm(Γ)
is the natural homomorphism.

Note that under Assumption (†), Γ is ICC, and therefore the homomorphism
ı : Γ → Comm(Γ) is injective.

This article ends with presenting an example satisfying Assumption (‡). Let
{e1, e2, e3} be the standard basis for the vector space R3. Let F be the flag consisting
of the subspaces {0} ⊂ 〈e1〉 ⊂ R3. Let A be the stabilizer of SL(3, Z), which consists
of all matrices in SL(3, Z) whose (2, 1)-, (3, 1)-entries are both 0. Then we can prove
that the amalgamated free product SL(3, Z) ∗A SL(3, Z) satisfies Assumption (‡).

Corollary 5.15. The amalgamated free product SL(3, Z) ∗A SL(3, Z) is ME rigid.

We note that there are many flags of Rn with n ≥ 3 such that the amalgamated
free products constructed as above satisfy Assumption (‡) and therefore they are
ME rigid. It is an interesting problem to find subgroups of mapping class groups
such that the associated amalgamated free products satisfy Assumption (‡).
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