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Abstract

In this short expository note we discuss how the cdh topology can be defined as the coarsest topology
satisfying étale excision, and having a well-defined theory of cohomology with compact support.

Mayer-Vietoris ≥ Zariski topology

Recall that if we have a topological space X, and two open
subspaces U, V ⊆ X such that U ∪ V = X, there is an associ-
ated long exact sequence of (singular, for example) cohomology
with F -coefficients (for F a field, or more generally, a sheaf of
abelian groups on X)

· · · → Hn(X,F ) →Hn(U, F )⊕Hn(V, F ) (1)

→ Hn(U ∩ V, F ) → Hn+1(X,F ) → . . . .

Recall also that the Zariski cohomology of any sheaf F on
an algebraic variety or a scheme X also has this property. In
fact, it is possible to define the Zariski (Grothendieck) topology
via this property.

Definition 1 (Cf. [BG73] for example). The Zariski topology
on the category of noetherian schemes is the coarsest topology
such that every sheaf F : Schop → Ab has1 F (∅) = 0, and for
every cartesian square

U ×X V



 V

j


U

i
 X

such that i and j are open immersions, and j−1(X\U) → X\U
is an isomorphism, the associated morphisms fit into a long
exact sequence2 as in Equation (1).

Equivalently, (cf. Appendix) for any open subspace
V ⊆ X, and closed subspace Z ⊆ X contained in V , (e.g.,
Z = X \ U for the U from above), there are isomorphisms

Hn
Z(X,F )

∼→ Hn
Z(V, F ) (2)

where Hn
Z(X,F ) are defined as the groups which fit into long

exact sequences3

· · · → Hn
Z(X,F ) →Hn(X,F ) (3)

→ Hn(U, F ) → Hn+1
Z (X,F ) → . . . .

Excision ≥ Nisnevich topology

If we are working with smooth manifolds then the isomorphism
(2), sometimes called excision, means that, when calculating

Hn
Z(X,F ), we can assume that X is a tubular neighbourhood

of Z, or even that X is a vector bundle over Z, and Z is the
zero section. In light of the long exact sequence (3), this makes
calculating the cohomology with supports Hn

Z(X,F ) relatively
accessible. When working with varieties though, even smooth
varieties, Zariski locally we cannot make this assumption.

On the other hand, suppose we don’t insist on open im-
mersions, but allow étale morphisms. Étale locally on X, at
least when Z → X is a closed immersion between smooth
varieties, we can assume X is a vector bundle over Z, and
Z is the zero section. Let us explain. Zariski locally on
X, there exists an étale morphism q : X→Ad such that
Z = q−1(Ad−c×{0, . . . , 0}) for some c, d. Using q we can

build two étale morphisms X
π1← X′ π2→ Z×Ac such that

Z ∼= π−1
1 (Z) = π−1

2 (Z×{0, . . . , 0})), cf. [MV99, Proof of
Lemma 3.2.28].

Example 2. Consider any rational point x ∈ E in an ellip-
tic curve E over some k. Choose a local parameter t in the
dvr OE,x and lift it to some f ∈ OE(V ) on some open affine
neighbourhood V ∋ x. This defines a map f : V → A1

k sending
x to the origin 0 ∈ A1

k which is étale at x. As E is a curve,
X is obtained by removing some points from E, that is, we
have V = E − {x1, . . . , xn}. Removing some more points if
necessary, we may assume that V → A1

k is étale everywhere,
and is an isomorphism over 0 ∈ A1

k.

Now if we allow j to be an étale morphism in the square
of Definition 1, then up to shrinking X a little, we auto-
matically obtain isomorphisms Hn

Z(X) ∼= Hn
Z×(0,...,0)

(Z×Ac),

where Z = X−U . Indeed, asking for the excision isomorphisms
(2) is equivalent to demanding that squares as in Definition 1
induce long exact sequences generalising Equation (1), where
j is now allowed to be an étale morphism, cf. Appendix.

Definition 3. The Nisnevich topology on the category of
noetherian schemes is the coarsest topology such that any
sheaf F has F (∅) = 0, and for every cartesian square

U ×X V



 V

j


U

i
 X

such that i is an open immersion, j is an étale morphism, and
j−1(X\U) → X\U is an isomorphism, the associated mor-
phisms fit into a long exact sequence4 as in Equation (1).

1The condition F (∅) = 0 is equivalent to asking that the empty family {} is a covering family of ∅.
2 Actually, the condition we really need is that the canonical morphism from C•(X,F ) to the deshifted cone of the canonical

morphism C•(U, F )⊕C•(V, F ) → C•(U ∩ V, F ) is a quasi-isomorphism, where C•(X,F ), C•(U, F ), C•(V, F ), C•(U ∩ V, F ) are
the complexes calculating Hn(X,F ), Hn(U, F ), Hn(V, F ), Hn(U ∩ V, F ). For the sake of the reader uncomfortable with trian-
gulated categories, we will pretend that the long exact sequences condition is the same as the distinguished triangle condition,
but a priori the long exact sequence condition is weaker.

3 By which we really mean, that Hn
Z(X,F ) is the (n−1)th cohomology of Cone(C•(X,F )→C•(U, F ))., cf. Footnote 2.

4Cf. Footnote 2.



Equivalently, it is the coarsest topology such that for all
sheaves F , we have F (∅) = 0, and:
(Exc) For any closed immersion Z → X, and étale morphism

j : V → X such that j−1(Z) = Z we have isomorphisms
Hn

Z(X,F ) ∼= Hn
Z(V, F ).

Example 4. Continuing with Example 2, we find that for
any topology at least as fine as the Nisnevich topology, we
have Hn

{O}(E,F ) ∼= Hn
{0}(A

1
C, F ). This is true for the étale

topology, for example.

Compact support ≥ cdh topology

Two of the defining characteristics of cohomology with com-
pact support of topological spaces, are

(CS1) If X is compact then Hn
c (X,F ) = Hn(X,F ).

(CS2) If U ⊆ X is an open subspace and Z = X \U its closed
complement, there is a long exact sequence

. . .→Hn
c (U, F )→Hn

c (X,F )

→Hn
c (Z, F )→Hn+1

c (U, F )→ . . . .

For cohomology theories of algebraic varieties, its not always
clear what “compact support” should mean, however, we can
force the above two properties with the following “definition”.

“Definition” 5. If F is a sheaf on the category of varieties
equipped with some topology τ , define Hn

τ,c(X,F ) to be the

groups which fit into a long exact sequence5

· · · → Hn−1
τ (∂X,F ) → Hn

τ,c(X,F )

→ Hn
τ (X,F ) → Hn

τ (∂X,F ) → . . .

where X → X is an open immersion into a proper variety,
and ∂X = X \X.

The obvious problem with “Definition” 5 is that it depends
on the choice of compactification. The cdh topology adresses
this.

Recall that given a second open immersion X → X
′
into a

proper variety with closed complement ∂X′, there exists a com-
pactification dominating the two. That is, we can find proper

morphisms X
′′ → X and X

′′ → X
′
which are isomorphisms

over X. Now, again using Lemma 7, we see that “Definition” 5
is independent of the choice of compactification, if and only if

for any proper morphism p : X
′ → X which is an isomorphism

over X, we have a long exact sequence

· · · → Hn
τ (X,F ) → Hn

τ (X
′
, F )⊕Hn

τ (∂X,F ) (4)

→ Hn
τ (∂X

′, F ) → Hn+1
τ (X,F ) → . . .

where ∂X′ = X
′ ×X ∂X.

Definition 6. The cdh topology on the category of noetherian
schemes is the coarsest topology which is finer than the Nis-
nevich topology, and such for every sheaf F and every carte-
sian square

E



 Y

p


Z

i
 X

such that i is a closed immersion, p is proper, and Y \E →
X\Z is an isomorphism, the associated morphisms fit into a
long exact sequence

· · · → Hn(X,F ) → Hn(Y, F )⊕Hn(Z, F ) (5)

→ Hn(E,F ) → Hn+1(X,F ) → . . . .

Equivalently, it is the coarsest topology finer than the Nis-
nevich topology, such that for any open immersion U → X,
and proper morphism p : Y→X such that p−1(U) = U we
have isomorphisms6

Hn(X,X−U ;F )
∼→ Hn(Y, Y−U ;F ) (6)

and F (∅) = 0, for all sheaves F .

More heuristically:

Definition 6’. The cdh topology is the coarsest topology for
which

1. excision is satisfied, and

2. cohomology with compact support is well-defined.

Appendex 1. Some homological algebra

Exercise 7. In the category of chain complexes of abelian
groups, suppose that the square

A
a 

a′



B

b


C

c
 D

is commutative. Then Cone


A

a+a′
→ B⊕C


b−c→ D is a quasi-

isomorphism if and only if Cone(a) → Cone(c) is a quasi-
isomorphism.

Hint : Show that Cone(Cone(A→B)→Cone(C→D)) is
equal to Cone(Cone(A→B ⊕ C)→D) as a chain complex and
note that this complex is acyclic if and only if the two mor-
phisms in question are quasi-isomorphisms.

Corollary 8. Equation (1) (resp.Equation (5)) is a long ex-
act sequence if and only if Equation (2) (resp.Equation (6))
is an isomorphism.

Appendex 2. Covering families

Often the Nisnevich, and cdh topologies are de-
fined as topologies generated by certain covering families
{U→X,V→X}, {Z→X,E→X} associated to squares as in
Definitions 3 and 6. For the equivalence of these definitions
see [Voe10].
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5More precisely, we define Hn
c (X) to be the (n−1)th cohomology of Cone(C•(X,F )→C•(∂X,F )) where

C•(X,F ), C•(∂X,F ) are complexes calculating the groups Hn(X,F ), Hn(∂X,F ).
6Here, by Hn(X,X−U ;F ) we mean the groups fitting into long exact sequences · · · → Hn(X,F ) → Hn(X−U, F ) →

Hn(X,X−U ;F ) → Hn+1(X,F ) → . . . , or more precisely, the (n−1)th cohomology of Cone(C•(X,F ) → C•(X−U, F )).


