
A USER’S GUIDE TO VOEVODSKY CORRESPONDENCES

SHANE KELLY

Abstract. We discuss the Suslin, Voevodsky theory of relative cycles. The

goal is to define and work with categories of finite correspondences over a
general base scheme.

Disclaimer. Following Suslin, Voevodsky, all schemes are Noetherian1 and sep-
arated2. As we are working diagrammatically, it will be convenient to use the
anti-Leibniz notation for composition. We use the symbol ∗ for this, as it is related
to pullback. That is,

f∗g := g ◦ f.
There is no new mathematics anywhere in this note. The presentation is taken
from [Kel12]. See also [Ivo05] and [CD19] for other accounts of the theory. The
reference for the theory of relative cycles is of course [SV00].

1. First definitions

Definition 1.1. For schemes X,Y a finite correspondence from X to Y is formal
finite sum of roofs

α =
∑

i=1,...,N

ni

 Zipi
��

fi
��

X Y

 .
such that

(Clo) each Zi → X × Y is a closed immersion,
(Int) each Zi is integral,
(Fin) each pi is finite, and

(Dom) each pi dominates an irreducible component of X.

If X,Y are S-schemes, and each Zi is contained in X ×S Y ⊆ X × Y then α is
called an finite S-correspondence. Let’s write Corpre(X,Y ) and CorpreS (X,Y ) for
the set of all finite correspondences, resp. finite S-correspondences.3 These are free
abelian groups.

Remark 1.2. The conditions (Clo), (Int), and possibly even (Dom) may look
unnatural to readers who usually work on the “vector bundle” side of Grothendieck-
Riemann-Roch, but one should keep in mind that Voevodsky motives are on the
“cycles” side. If X is the spectrum of a field, then α is a zero cycle on the X-scheme

Date: March 25, 2023.
1There are at least two places where the Noetherianity assumption is used. The definitions of

[f ] and [tf ] require finitely many generic points, and the definition of [tf ] requires multiplicity to
be finite. The former could possibly be avoided by assuming the underlying topological spaces
are Noetherian or by generalising finite sums to locally constructible functions. For the latter one
could try setting∞ = 0 as is done in the definition of proper push-forward of cycles, but probably

the most reasonable thing to do is left Kan extend everything from finite type Z-schemes.
2Separated is obviously a natural requirement for doing intersection theory.
3The “pre” is because not all correspondences have a well-defined pullback. To get a cat-

egory of correspondences, we restrict our attention to those correspondences with well defined

specialisation, Def.3.2.
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X × Y . In general, α can4 be thought of as a family of zero cycles and (Dom) is a
minimum requirement that this family varies in a reasonable way.

Example 1.3.

(1) (Graph) If f : X → Y is any morphism of schemes and Xi ⊆ X are the
integral components of X, then we write

[f ] =

 X f

��
Y

 =
∑
i

 Xi

�� ��
X Y

 .
(2) (Transpose) If p : Y → X is any finite flat morphism, the Yi ⊆ Y are the

integral components of Y with generic points yi, and mi =
lengthOY,yi

lengthOX,fyi
are

the “vertical” multiplicities, then we write

[tp] =

 Y
p

��
X

 =
∑
i

mi

 Yi

�� ��
X Y

 .
2. Composition

Wish List 2.1. We would like to define a composition of finite correspondences
which satisfies the following three conditions.

(1) (Contravariance) If
p→ q→ are composable finite flat morphisms then[

q

��

]∗ [
p

��

]
=

[
p∗q

��

]
.

(2) (Pushforward) For any morphism f : Y → Y ′ we have

∑
ni

 Zi

�� ��
X Y

∗  Y f

��
Y ′

 =
∑

nidi

 Z ′i
�� ��

X Y ′


where Z ′i is the image Z ′i = im(Zi ⊆ X × Y → X × Y ′) and

di =

{
[k(Zi) : k(Z ′i)] if finite,

0 if infinite.

(3) (Flat locus pullback) If ι : x→ X is any morphism with x the spectrum of
a field and ι(x) is in the flat locus of tZi → Xred then x ��
X

∗∑ni

 Zi

�� ��
X Y

 =
∑

ni

 x×X Zi

��
x

∗  x×X Zi

��
Y

 .
Definition 2.2. For the moment, let’s say C is a category of finite correspondences
if:

(1) objects of C are in bijection with (separated Noetherian) schemes,
(2) homC(X,Y ) ⊆ Corpre(X,Y ),
(3) all correspondences of the form (Graph) and (Transpose) from Ex.1.3 are

morphisms in C,
(4) Properties (1), (2), (3) from Wish List 2.1 hold in C.

Exercise 2.3. Suppose that C is a category of finite correspondences. Show the
following.

4Although, α ∈ Corpre(X,Y ) perhaps should be thought of as a multi-valued morphism from
X to Y .
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(1) (Covariance) For any two composable morphisms of schemes
f→ g→ we have:[

f

��

]∗ [
g

��

]
=

[
f∗g

��

]
.

(2) (Generically determined) If η = tηi ⊆ X is the disjoint union of the generic
points of X, then we have

homC(X,Y ) ⊆ homC(η, Y ).

(3) (Field Extensions) If L/K is an extension of fields, we have

homC(Spec(K), Y ) ⊆ homC(Spec(L), Y ).

(4) (Dominance) If X ′ → X is a dominant morphism, we have

homC(X,Y ) ⊆ homC(X
′, Y ).

(5) (Decomposition) If x is the spectrum of a field, then every correspondence
from x to Y decomposes as

∑
ni

 zi

�� ��
x Y

 =
∑

ni

 zi

��
x

∗  zi ��
Y

 .
(6) “Horizontal” nilpotents are invisible Xred

��
X

∗∑ni

 Zi

�� ��
X Y

 =
∑

ni

 Zi

�� ��
Xred Y

 .
(7) (Strict transform) If f : X̃ → X is a proper birational morphism then X̃

��
X

∗∑ni

 Zi

�� ��
X Y

 =
∑

ni

 Z̃i
�� ��

X̃ Y


where the Z̃i are the strict transforms5 of the Zi.

(8) (Finite flat base change) If T
f→ S is any morphsm of schemes and X

p→ S
any finite flat morphism, we have T

��
S

∗  X

��
S

 =

 T ×S X
��

T

∗  T ×S X ��
X

 .
(9) (Degree formula). If Y → X is a finite flat morphism of constant degree d

then  Y

��
X

∗  Y ��
X

 = d · idX .

(10) (Tri1) Suppose that Y → X is a finite flat morphism, X is integral, Yi ⊆ Y
are the integral components of Y with generic points ηi ∈ Yi and generic
multiplicity mi = lengthOY,ηi . Suppose further that each Yi → X is still
flat. Then we have Y

��
X

 =
∑

mi

 Yi

��
X

∗  Yi
��
Y

 .
5That is, Z̃i is the closure of the generic point of Zi in X̃ × Y , where we use birationality of

X̃ → X to identify the generic fibres of X̃ × Y with the generic fibres of X × Y .
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(11) (Tri2) Suppose that Y ′ → X and Y → X are finite flat morphisms of
integral schemes admitting a factorisation Y ′ → Y → X (here Y ′ → Y is
not necessarily flat). Then

[k(Y ′) : k(Y )]

 Y

��
X

 =

 Y ′

��
X

∗  Y ′
��
Y

 .
Remark 2.4. The properties (Tri1) and (Tri2) are exactly the difference between
“cycle theoretic” finite correspondences and “vector bundle theoretic” finite cor-
respondences in a precise mathematical sense, cf. [Kel12, Thm.3.7.1], at least for
cdh-sheaves.

3. The category of correspondences

Lemma 3.1. Suppose that C, C′ are two categories of finite correspondences and α ∈
Corpre(X,Y ), β ∈ Corpre(Y,W ) are in both C and C′. Then α∗β is the same in both
C and C′. That is composition of arbitrary correspondences is uniquely determined
by (Flat locus pullback), (Pushforward), and (Contravariance) from Wish List 2.1.

Proof. By (2) we can assume that X = Spec(Ω) is the spectrum of a field, and by
(3) that Ω is algebraically closed. By (5) we can then assume that X → Y is the
graph of a morphism. By (7) and Raynaud-Gruson flatification, we can assume
that each Y ← Zi is flat, where β =

∑
ni[Y ← Zi → W ]. Then (Pullback) from

Wish List 2.1 determines the composition. �

In the proof of Lemma 3.1 we used algebraic closures of function fields, and flat-
ification of correspondences to show that composition of arbitrary finite correspon-
dences was unique, assuming the three properties in Wish List 2.1. Composition
does not necessarily exist though. We will now address this.

Definition 3.2. Suppose that α =
∑
ni[X ← Zi → Y ] ∈ Corpre(X,Y ). We

say that α is has well-defined specialisation if for any proper birational morphism

p : X̃ → X such that the strict transforms Z̃i → X̃ are all flat, any point x ∈ X
and any extension of fields Ω/k(x) admitting a commutative diagram

Spec(Ω)
φ //

κ

��

X̃

p

��
x

ι // X

the following two conditions are satisfied:

(1) there exists a cycle β ∈ Corpre(x, Y ) such that κ∗β = φ∗(p∗α),
(2) the cycle β is independent of the choice of κ, φ, p.

Here, κ∗, φ∗, p∗ are the operations from Ex.2.3(3), (Pullback), and Ex.2.3(7) re-
spectively. The abelian group of correspondences with well-defined specialisation
is denoted Cor(X,Y ).

Note that a consequence of Lemma 3.1 is that the collection of categories of finite
correspondences is partially ordered.

Theorem 3.3 ([SV00], see also [Ivo05]). There exists a category of finite corre-
spondences C containing all others, and we have homC(X,Y ) = Cor(X,Y ) for all
X,Y .
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4. Finite correspondences with regular source

Theorem 4.1 ([SV00, Cor.3.4.6]). If X is regular then Cor(X,Y ) = Corpre(X,Y ).

Theorem 4.2 ([SV00, Thm.3.5.8, Lem.3.5.9]). Suppose X is regular, x ∈ X is a
point, and [X ← Z → Y ] is a finite correspondence. Then x ��

X

∗  Z

�� ��
X Y

 =
∑

ni

 zi

�� ��
x Y


where zi ∈ x×X Z are the points in the fibre over x and

ni =

dimOX,x∑
j=0

(−1)j lengthOZ,zi
(Tor

OX,x

j (OZ,zi , k(x))).

5. Relative correspondences

Recall that if X, Y are S-schemes, then a finite correspondence
∑
ni[X ← Zi →

Y ] is called an S-correspondence if each Zi is a subscheme of X ×S Y ⊆ X × Y .

Exercise 5.1. Show the following.

(1) Suppose X,Y are S-schemes, α ∈ Cor(X,Y ) is a finite correspondence,
and η ⊆ X is the disjoint union of the generic points of X. Show that
[η → X]∗α is an S-correspondence if and only if α is an S-correspondence.

(2) Suppose that L/K is an extension of fields, Spec(K) and Y are S-schemes
and α ∈ Cor(Spec(K), Y ) is a finite correspondence. Show that [Spec(L)→
Spec(K)]∗α is an S-correspondence if and only if α is an S-correspondence.

Proposition 5.2. Suppose that X,Y,W are S-schemes, and α ∈ Cor(X,Y ) and
β ∈ Cor(Y,W ) are correspondences with well-defined specialisation. If α is an
S-correspondence, the so is α∗β.

Proof. By Exercise 5.1, we can assume that X is the spectrum of an algebraically

closed field, and α = [X → Y ] for some morphism. Chose a blowup Ỹ → Y which

flatifies β, since k(X) is algebraically closed there exists a factorisation X → Ỹ →
Y . That is, we can assume each summand of β is flat over Y . Then it follows from
(Flat locus pullback) that the summands of α∗β lie in X ×S W . �

Definition 5.3 ([Voe00], [Ivo05]). Let S be a separated Noetherian scheme. The
category whose objects are smooth S-schemes, and morphism sets are CorS(X,Y )
is denoted SmCor(S).

Remark 5.4. It follows from Thm.4.1 that if S is a field then homSmCor(S)(X,Y )
is the free abelian group generated by closed integral subschemes Z ⊆ X×S Y such
that X ← Z is finite and dominates an irreducible component of X.

6. Products of correspondences

Write Cor for the category of correspondences from Theorem 3.3. So objects
of Cor are in bijection with separated Noetherian schemes, and homCor(X,Y ) =
Cor(X,Y ). When considering a scheme X as an object of Cor we write [X].

Wish List 6.1. We would like an additive functor

⊗ : Cor×Cor→ Cor

satisfying the following properties.
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(1) If f : X → Y is any morphism of schemes and T is any other scheme, then T id

��
T

⊗
 X f

��
Y

 =

 T×X id×f
��
T×Y


and similar for [f ]⊗ [idT ].

(2) If p : Y → X is any finite flat morphism of schemes and T is any other
scheme, then T

id

��
T

⊗
 Y

p

��
X

 =

 T×Y
id×p
��

T×X


and similar for [tp]⊗ [idT ].

Exercise 6.2. Suppose that the functor ⊗ from Wish List 2.1 exists. Show the
following.

(1) For any two schemes X,Y we have [X]⊗ [Y ] = [X × Y ].
(2) For any two morphisms f, g we have [f ]⊗ [g] = [f × g].
(3) For any two finite flat morphisms p, q we have [tp]⊗ [tq] = [tp× q].

Lemma 6.3. Suppose that ⊗, ⊗′ are two additive functors satisfying the properties
from Wish List 6.1. Then ⊗ = ⊗′. That is, if ⊗ exists, it is unique.

Proof. Given two finite correspondences α ∈ Cor(X,Y ) and β ∈ Cor(S, T ), we

want to see that α⊗ β = α⊗′ β. Choose blowups p : X̃ → X and q : S̃ → S which

flatify α and β. Since p× q : X̃ × S̃ → X × S is dominant, by Ex.2.3(4) it suffices
to show that [p × q]∗(α ⊗ β) = [p × q]∗(α ⊗′ β). But since p∗α and q∗β have flat
components, they decompose (cf.Ex.2.3(5)) and the tensor product is determined
by linearity and Wish List 6.1. �

Theorem 6.4 ([SV00], [Ivo05]). The functor from Wish List 6.1 exists.

There is also a relative version.

Theorem 6.5 ([SV00], [Ivo05]). If α, β are S-correspondences then α ⊗ β is also
an S-correspondence. More precisely, if α ∈ CorS(A,B) and β ∈ CorS(X,Y ) then
there exists a unique γ ∈ CorS(A×S X,B ×S Y ) forming a commutative square

A×S X
γ //

��

B ×S Y

��
A×X

α⊗β
// B × Y.

7. Suslin and Voevodsky’s notation

In [SV00], Suslin and Voevodsky use cequi(X/S, 0) for what we have written as
CorS(S,X). This sits in a series of four families of groups, [SV00, pg.30],

z(X/S, r), zequi(X/S, r), c(X/S, r), cequi(X/S, r).

The r means the Z → S should be generically of relative dimension r, the c means
Z → S should be proper, and equi means Z → S should be equidimensional. Before
defining z(X/S, r), zequi(X/S, r), c(X/S, r), cequi(X/S, r), Suslin and Voevodsky
define

Cycl(X/S, r), Cyclequi(X/S, r), P ropCycl(X/S, r), P ropCyclequi(X/S, r),
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which have analogous definitions to Def.3.2 but don’t require descendability to x.
That is, they only require that φ∗(p∗α) is independent of the choice of φ and p,
[SV00, Def.3.1.3].

There are two functorialities discussed in [SV00, §3.6]: proper pushforward and
flat pullback. As expected these are denoted f∗ and f∗. More precisely, if f : X →
Y is a morphism of S-schemes, then what we have written as

(−)∗[f ] : CorS(S,X)→ CorS(S, Y )

is written as

f∗ : cequi(X/S, 0)→ cequi(Y/S, 0)

in [SV00, Cor.3.6.3]. Similarly, if f is flat, then what we have written as

[f ]∗(−) : CorS(S, Y )→ CorS(S,X)

is written as

f∗ : cequi(Y/S, 0)→ cequi(X/S, 0)

in [SV00].
For a morphism f : T → S, Suslin and Voeovdsky write cycl(f) on [SV00, pg.29]

for the maps

Cycl(X/S, r)→ Cycl(T ×S X/T, r)
that are essentially our [f ]∗(−). More precisely, if pr : T ×S X → X, is the
projection, α ∈ CorS(S,X) = cequi(X/S, 0) then cycl(f)(α)∗[pr] = [f ]∗α, i.e.,
cycl(α) is the unique cycle making the square

[T ×S X]
[pr] // [X]

[T ]
[f ]

//

cycl(α)

OO

[S]

α

OO

commutative.
The maps cycl(f) should not be confused with cyclX(Z) for Z ⊆ X which is

Suslin and Voevodsky’s version of our [S
p← Z], [SV00, pg.13]).6

In [SV00, §3.7], Suslin and Voevodsky define correspondence homomorphisms
Cor(−,−) which are essentially our composition. That is, for α ∈ CorX(X,Y ) =
cequi(Y/X, 0) and β ∈ CorS(S,X) = cequi(X/S, 0) what we have written as β∗α is
written as Cor(α, β) in [SV00, pg.49 and Cor.3.7.5].

The Suslin, Voevodsky version of ⊗ is at the end of [SV00, §3.7]. They define it in
terms of the other operations. More precisely, in our notation, for α ∈ CorS(S,X)
and β ∈ CorS(S, Y ) we the cycle α⊗β ∈ CorS(S,X ×S Y ) is the unique cycle such
that (α ⊗ β)∗pr1 = α and (α ⊗ β)∗pr2 = β where pri are the projections. (This
does not mean Cor has fibre products; if f : X → S is the structure morphism we
almost always have α∗[f ] 6= [idS ]).

Us Suslin, Voevodsky
CorS(S,X) cequi(X/S, 0) [SV00, pg.30 and Def.3.1.3]

α∗[f ] f∗α [SV00, pg.14 and Cor.3.6.3]
[f ]∗α f∗α [SV00, pg.13 and Lem.3.6.4]
[f ]∗α pr∗cycl(α) [SV00, pg.29]

[S ← Z] cyclZ(Z) [SV00, pg.13]
β∗α Cor(α, β) [SV00, pg.49 and Cor.3.7.5]

6Here, there is a small issue. Suslin and Voevodsky’s cyclX(Z) only works properly over
generically reduced bases. This is a known issue and is easily fixed by using “vertical” multiplicities
as we have done above instead of global multiplicities.
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