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概要
（実）対称行列が直交行列によって対角化できることの証明を 3通り与える．
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第 1の証明は中間値の定理を用いる．また，矢印行列（arrowhead matrix）では行列式を明示
的に計算できることを用いる．

定義 1. n次正方行列 A = [aij ]が矢印行列であるとは，第 1行・第 1列・対角成分以外がすべて
0であることをいう．すなわち，次の形である：

a11 a12 . . . a1,n−1 a1,n
a21 a22
...

. . .

an−1,1 an−1,n−1

an,1 an,n

 (1)

ここで空欄はすべて 0である．

補題 2. 式 (1)の形の矢印行列 Aをとる．2 ≤ i ≤ nのすべてで aii 6= 0と仮定する．このとき

detA =

a11 −
n∑

j=2

anjajn
ajj

 n∏
j=2

ajj


が成り立つ．

証明.
a11 a12 . . . a1n
a21 a22 . . . 0
...

...
. . .

...
an1 0 . . . ann


︸ ︷︷ ︸

A


1 0 . . . 0

−a21

a22
1 . . . 0

...
...

. . .
...

−an1

ann
0 . . . 1


︸ ︷︷ ︸

det=1

=


a11−

∑n
j=2

anjajn

ajj
a12 . . . a1n

0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann


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定理 3. n ≥ 1とし，Aを n次対称行列とする．次の 2つの命題を考える．

(Eig.)n Aは少なくとも 1つの固有値をもつ．
(Diag.)n ある直交行列 P が存在して P−1AP は対角行列である．

すると，

(a) (Eig.)n ∧ (Diag.)n−1 =⇒ (Diag.)n,

(b) (Diag.)n =⇒ (Eig.)n+1，特に，
(c) (Diag.)n はすべての n ≥ 1で成り立つ．

注意 4. 0次正方行列は（1 ≤ i 6= j ≤ 0となる成分が存在しないので）対角行列とみなせる．し
たがって (Diag.)0 は意味を持ち，真である．しかし，R0 = {0}には零でないベクトルが存在しな
いので，0次正方行列は固有値をもたない．よって (Eig.)0 は偽である．(c)の帰納法ステップでは
n ≥ 2なので，(a)の n = 1の場合は無視してよい．

証明. (a) まず (Eig.)n ∧ (Diag.)n−1 =⇒ (Diag.)n を示す．仮定 (Eig.)n より，固有値 λをもつ
固有ベクトル v を第 1列にもつ直交行列 Q = [v, x2, . . . , xn]を取れる．すると，

Q−1AQ =

(
λ 0
0 B

)
が成り立つ．ここで B は (n−1)次正方対称行列である．仮定 (Diag.)n−1 より，D = R−1BRは
対角行列である (n−1)次正方直交行列 Rが存在する．2つの直交行列の積 P = Q [10

0
R]も直交行

列であり，

P−1AP = [10
0
R]

−1Q−1AQ[10
0
R] = [λ0

0
D]

は対角行列なので，Aについて (Diag.)n が成り立つ．
(b) 次に (Diag.)n =⇒ (Eig.)n+1 を示す．Aを (n+1)次正方対称行列とし，Aの第 (1, 1)小
行列を A1 として

A = [d0

b

tb
A1

]

と書ける．ここで，b は列ベクトルである．仮定 (Diag.)n より A1 は直交行列 Q1 で対角化でき
る．次の直交行列を考える：

Q = [10
0
Q1

].

講義の定理 3.16より*1，Aの固有値と Q−1AQの固有値は一致する．したがって Aを Q−1AQに

*1 次の等式が成り立つからである：det(A−tE) = 1 · det(A−tE) · 1 = detQ−1 det(A−tE) detQ =

det
(
Q−1(A−tE)Q

)
= det(Q−1AQ−Q−1tEQ) = det(Q−1AQ−tE).
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置き換えれば，Aは式 (1)の形の矢印行列であると仮定してよい．あとは，対称矢印行列
d0−t b1 . . . bn
b1 d1−t . . . 0
...

...
...

bn 0 . . . dn−t

 (2)

の行列式が，ある t ∈ Rで 0となることを示せばよい．1 ≤ i ≤ nについて di−tはR\{d1, . . . , dn}
上で可逆なので，補題 2よりそのような tでは行列式は(

(d0−t)−
n∑

i=1

b2i
di − t

)
(d1−t)(d2−t) . . . (dn−t) (3)

となる．式 (3) が，ある t ∈ R \ {d1, . . . , dn} で 0 となることは，下記の式 (4) が，ある t ∈
R \ {d1, . . . , dn}で 0となることと同値である：

f(t) = (d0−t)−
n∑

i=1

b2i
di−t

(4)

式 (4)を観察すると

limt→∞f(t) = −∞ かつ limt→d+
m
f(t) = ∞

が分かる．ここで，dm = max{d1, . . . , dn} とする．したがって中間値の定理より，連続関数 (4)

は (dm,∞)のどこかで 0となる．よって Aは少なくとも 1つの固有値をもつ．
(c) 最後に，(Diag.)1 と (Eig.)1 はいずれも真であることが気づく．以上より帰納法で，すべて
の n ≥ 1について (Eig.)n と (Diag.)n が成り立つ．具体的には，

(Eig.)n−1 ∧ (Diag.)n−1
(b)
=⇒ (Eig.)n ∧ (Diag.)n−1

(a)
=⇒ (Eig.)n ∧ (Diag.)n.
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第 2の証明は複素共役・三角化・代数学の基本定理を用いる．

定理 5. Aを n次正方実対称行列とする．すなわち，Aの成分がすべて実数である．このとき，n

次多項式 φA(t) = det(A − tE)の複素根はすべて実数である．特に，Aは直交行列により対角化
できる．

証明. λ ∈ Cが φA(λ) = 0を満たすとする．このとき複素行列 A−λE の行列式は 0なので，対応
する C-線形写像 TA−λE : Cn → Cn; x 7→ (A− λE)xは非自明な核をもつ．すなわち，Ax = λx
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を満たす 0 6= x ∈ Cn が存在する．複素共役 tx = (x1, . . . , xn)を用いると，次の計算より λ ∈ R
が従う：

λ(txx)
(∗)
= λ(txx) = txλx = txAx

(∗∗)
= txAx = t(txAx)

(∗∗∗)
= txAx = txλx = λ(txx)

ここで (∗)は txxが実数であること，(∗∗)は Aが実行列であること，(∗ ∗ ∗)は Aが対称であるこ
とによる．したがって，n次多項式 φA(t)の複素根はすべて実数である．
最後に，n次正方行列 Aは（重複度込みで）n個の固有値をもつので，講義の定理 4.2より直交
行列 P が存在して tPAP は三角行列となる．さらに Aが対称なので tPAP も対称であり，対称
な三角行列は対角行列である．
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3

以下の資料（第 3の証明・極値定理の付録）は
授業の範囲外で，参考用です。

第 3の証明は微積分と極値定理を用いる．用いる形は，1年次の数学で必ずしも扱われないこと
があるので，後で自己完結的に説明する．証明では V ⊆ Rn の直交補

V ⊥ = {w ∈ Rn | twv = 0 ∀v ∈ V }

および v の張る部分空間
〈v〉 = {av | a ∈ R}

を用いる．補題 7より (V ⊥)⊥ = V である（Rn の次元は有限であるから）．

定理 6. A を n 次正方対称行列とする．このとき A は少なくとも 1 つの実固有値をもつ．した
がって任意の対称行列は直交行列により対角化できる．

証明. 単位球面上で f : x 7→ txAxを考える．

Sn−1 = {x ∈ Rn | txx = 1}.

Sn−1 はコンパクトであり（定理 10），また f : Sn−1 → Rは連続である（演習 13）から，最大値
定理（定理 14）により f は最大値M をとる．すなわち，ある x ∈ Sn−1 が存在して f(x) = M で
ある．
x に直交する任意の単位ベクトル y ∈ Sn−1 ∩ 〈x〉⊥ を取る．ε ∈ R に対し，下記の図のとおり，
摂動したベクトル vε を

vε :=
1√

1+ε2
(x+ εy) ∈ Sn−1

で定める．y を固定すると，次の新しい関数が定まる：

g : R → R; ε 7→ g(ε) := f(vε).

この g は vε = xのとき，すなわち ε = 0 のとき，最大値をとる．したがって g′(0) = 0 である．g

を
g(ε) = 1√

1+ε2
(x+ εy)t A 1√

1+ε2
(x+ εy) =

c0 + c1ε+ c2ε
2

1 + ε2

と書く．ここで c0 = txAx, c1 = tyAx+ txAy, c2 = tyAy である．右端の式を微分すると

0 = g′(0) = c1 = tyAx+ txAy
A が対称

= 2 tyAx

を得る．すなわち Ax ∈ 〈2y〉⊥ = 〈y〉⊥ である．これは任意の y ∈ 〈x〉⊥ について成り立つので，

Ax ∈ { y | y ∈ 〈x〉⊥ }⊥ = (〈x〉⊥)⊥ Lemma 7
= 〈x〉
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図 1
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x+ εy

vε

vε :=
1√

1+ε2
(x+ εy) ∈ Sn−1

と従う．よってある λ ∈ R が存在して Ax = λx．言い換えると x は固有ベクトルである．
以上を用いて，最後の主張を証明する．A が対称であるとする．このとき A は少なくとも 1つ
の固有ベクトル x1（固有値 λ1）をもつ．第一列が x1 である直交行列*2

P1 = [x1 v2 . . . vn ]

を取る．すると
P−1
1 AP1 =

(
λ1 0
0 A1

)
となり，ここで A1 は n− 1 次対称行列である．よって A1 も固有ベクトル x2（固有値 λ2）をも
つ．第一列が x2 である直交行列

P2 = [x2 w2 . . . wn−1 ]

を取る．このとき (
1 0
0 P2

)−1

P−1
1 AP1

(
1 0
0 P2

)
=

λ1 0 0
0 λ2 0
0 0 A2


を得る．ここで A2 は n− 2 次対称行列である．この手順をさらに n−3 回繰り返すと，A は直交
行列の積によって対角化される．直交行列の積は直交行列なので，結局 A はある直交行列によっ
て対角化される．

補題 7. 任意の部分空間 V ⊆ Rn について (V ⊥)⊥ = V が成り立つ．

証明. (−)⊥ の定義から V ⊆ (V ⊥)⊥ は自明なので，dimV = dim(V ⊥)⊥ を示せばよい．V の基底
を行ベクトルにもつ k × n行列 Aを取る．このとき

V ⊥ = ker(TA : Rn → Rk;x 7→ Ax).

*2 例えば，x1 を Rn の基底に延長し，それに Gram–Schmidt の正規直交化を施せばよい．
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Aの行は独立なので，ある小行列式が 0でない．したがって TA は全射であり，

dimV ⊥ = dimkerTA = dimRn − dim im TA

= n−k

= dimRn − dimV.

同様に，
dim(V ⊥)⊥ = dimRn − dimV ⊥ = n− (n− k) = k = dimV
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付録．極値定理
定義 8. X ⊆ Rn を部分集合とする．X がコンパクトであるとは，任意の列 {xn}n∈N ⊆ X が
収束部分列をもつことをいう．すなわち，ある i0 < i1 < i2 < · · · ∈ N と x ∈ X が存在して
limn→∞||x− xin || = 0となること．

例 9. a < b ∈ R ∪ {−∞,∞}に対し，{t ∈ R | a < t < b}はコンパクトではない．

定理 10.

1. 任意の a < b ∈ Rについて，[a, b] = {t ∈ R | a ≤ t ≤ b}はコンパクトである．
2. X ⊆ Rn と Y ⊆ Rm がコンパクトならば，X × Y ⊆ Rn+m もコンパクトである．
3. 単位球面 Sn = {x ∈ Rn+1 | ||x|| = 1}はコンパクトである．

証明.

1. 列 {xi}i∈N ⊆ [a, b]を取る．a0 = a, b0 = bと定める．n > 0に対し，次を満たす an, bn を
帰納的に定める：
（a）an−1 ≤ an < bn ≤ bn−1,

（b）|bn − an| = 1
2 |bn−1 − an−1|,

（c）区間 [an, bn] は列 {xi}i∈N の項を無限個含む．
[an, bn] がこれらの性質を満たすとして構成できたと仮定する．2 つの区間 [an,

bn+an

2 ] と
[ bn+an

2 , bn] を考える．(c) より，少なくとも一方は {xi}i∈N の項を無限個含む．前者なら
an+1 = an，bn+1 = bn+an

2 とし，後者なら an+1 = bn+an

2 ，bn+1 = bn とする．(a),(b)は
構成から従う．さらに (b)より

limn→∞|bn−an| = limn→∞
|b0−a0|

2n = |b0−a0|limn→∞
1
2n = 0.

(a)より列 {an}n∈N は単調増加，{bn}n∈N は単調減少である．したがって，ある c ∈ [a, b]

が存在して limn→∞an = limn→∞bn = c となる．各区間 [an, bn] は (c) を満たすので，
xin ∈ [an, bn]となる i0 < i1 < · · · ∈ Nを取れる．このとき limn→∞xin = cが従う．

2. 列 {(xi, yi)}i∈N ⊆ X × Y を取る．X がコンパクトなので，ある i0 < i1 < · · · ∈ N と
x ∈ X が存在して limn→∞||x − xin || = 0となる．{(xi, yi)}を {(xin , yin)}で置き換えれ
ば in = nとしてよいので，limn→∞||x − xn|| = 0を仮定できる．さらに Y もコンパクト
なので，ある i0 < i1 < . . . と y ∈ Y が存在して limn→∞||y − yin || = 0となる．再び部分
列で置き換えて in = nとすれば，limn→∞||x − xn|| = 0かつ limn→∞||y − yn|| = 0を得
る．すると

0 ≤ limn→∞||(x, y)−(xn, yn)|| = limn→∞||(x−xn, y−yn)||
≤ limn→∞||x−xn||+ limn→∞||y−yn|| = 0.
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3. 列 {xi}i∈N ⊆ Sn を取る．Sn ⊆ [−1, 1]n+1 ⊆ Rn+1 であり，[−1, 1]n+1 はコンパクトなの
で，ある i0 < i1 < · · · ∈ Nと x ∈ [−1, 1]n+1 が存在して limn→∞||x − xin || = 0となる．
x ∈ Sn を示せばよい．逆三角不等式より

0 ≤
∣∣∣∣||x|| − ||xin ||

∣∣∣∣ ≤ ||x− xin ||

したがって
0 = limn→∞||x||−||xin || = limn→∞||x||−1 = ||x|| − 1

すなわち，x ∈ Sn である．

注意 11. Sn のコンパクト性は次のように直接示すこともできる． 立方体 [−1, 1]n+1 を，等しい
大きさ 1 の 2n+1 個の部分立方体に分割せよ．Sn 上の任意の列 {xi}i∈N は，そのうち 1つの小立
方体に無限個の項をもつ．その小立方体をさらに等しい大きさ 1

2n+1 の 2n+1 個に分割し，同様に
無限個含むものを選ぶ．これを繰り返すと，C0 ⊇ C1 ⊇ · · · で各 Ci が {xi}の項を無限個含み，か
つ Ci の大きさが ( 1

2n+1 )
i−1 であるような小立方体列を得る．したがって xij ∈ Cj となる部分列を

取り，∩i∈NCi の唯一の点に収束させられる．（ここには多少の作業があり，詳細は演習とする．）

定義 12. X ⊆ Rn と Y ⊆ Rm を部分集合とする．写像 f : X → Y が連続であるとは，収束列を
収束列に送ることをいう．すなわち，x1, x2, · · · ∈ X と x ∈ X が limn→∞||x− xn|| = 0を満たす
とき，limn→∞||f(x)− f(xn)|| = 0が成り立つこと．

演習 13.

1. Rn → R; (x1, . . . , xn) 7→ xk は任意の 1 ≤ k ≤ nで連続である．
2. f, g : Rn → Rが連続ならば，f + g : x 7→ f(x)+ g(x)と fg : x 7→ f(x)g(x)も連続である．
3. Aを任意の n次正方行列とするとき，Rn → R; x 7→ txAxは連続である．
4. X ⊆ Y ⊆ Rn とし，f : Y → Rが連続ならば，合成 X → Y

f→ Rも連続である．

定理 14 (最大値定理). X ⊆ Rn がコンパクトで f : X → Rが連続ならば，f は最大値をとる．す
なわち，ある xmax ∈ X が存在して任意の x ∈ X について f(x) ≤ f(xmax)である．

証明. 背理法で示す．最大値が存在しないと仮定する．すると帰納的に x0, x1, x2, · · · ∈ X を構成
して f(x0) < f(x1) < f(x2) < . . . かつ

f(x) < limn→∞f(xn) が任意の x ∈ X に対して成り立つ． (∗)

ここで，limn→∞f(xn) = ∞となる場合も許す．X はコンパクトなので，ある i0 < i1 < · · · ∈ Nと
x ∈ X が存在して limn→∞||x− xin || = 0となる．f は連続なので limn→∞||f(x)− f(xin)|| = 0，
すなわち f(x) = limn→∞f(xin)である．これは (∗)に反する．
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