Algebraic K-theory

Shane Kelly
August 12, 2025

Abstract

This is a series of five lectures on algebraic K-theory aimed at (advanced) fourth
year undergraduates. The goal is to introduce various aspects of algebraic K-theory.

Algebraic K-theory was defined in the late 1950s by Alexander Grothendieck
in order to formulate his generalisation of the mid-1800’s Riemann—Roch theorem
which relates vector bundles on algebraic varieties to algebraic cycles. The foun-
dational idea is to construct a group in which every short exact sequence of vector
bundles splits. Since then, algebraic K-theory has developed into a deep and far-
reaching subject with applications across algebraic geometry, number theory, and
topology.

In the first two lectures we present the classical Riemann—Roch (for smooth
projective curves over C) followed by Grothendieck’s generalisation (for smooth
quasi-projective varieties over an algebraically closed field). In the third lecture we
motivate the groups K1, K_1, K_o, ...surrounding K for rings by the desire to
have long exact sequences. The fourth lecture discusses co-groupoids, co-categories,
and K-theory as the universal localising invariant, and in the final lecture, we give
a brief survey of some recent advances and open conjectures.
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1 Riemann—Roch

In this lecture, the base field is always the complex numbers C.

1.1 Riemann—Roch Statement

The goal for today’s talk is to understand the words in the following statement. A good
reference is [Ful69]. The theorem is also in [Har77].

Theorem 1.1.1 (Riemann—Roch). Let X be a smooth projective curve of genus g. Then
there ezists a divisor K (the canonical divisor) such that for every divisor D on X, we
have

dim H°(X,O(D)) — dim H°(X,O(K—D)) = deg(D) + 1 — g.

1.2 Affine varieties

Definition 1.2.1 (Affine Variety over C). An affine variety is a subset X C C" of the

form
fl(zla" '7Zn> =0
X=S(21,...,2)€C" | falz1,-,20) =0
for some collection of polynomials {f;}ic; € Clzy,...,z,]. We say X is the zero set of
the fz
Remark 1.2.2. Since C[zy,...,x,] is Noetherian, we can assume the set {f;};c; is finite,

but it is convenient to allow infinite sets of polynomials.
Example 1.2.3 (Examples of Affine Varieties).
1. Affine space: X = C™ =: A" itself (i.e., taking I = @).
2. Node: X = {(z,y) € C*: y? = 2*(z + 1)}.
3. Cusp: X = {(z,y) € C? : y* = 23},

Node: y? =z%*(z+1)

Cusp: 1° =
y usp: Y’ ==

x s
N\

4. Elliptic curve: X = {(z,y) € C*: y* = 23 + ax + b} where 4a® + 270 # 0.



Elliptic curve: y?* =2 —z=z(zx —1)(x +1)
Y

5. Complement of a hypersurface: Given an affine variety X = V({f;}) € C" and
polynomial g, the complement U := X \ V(g) is not a closed subvariety of C".
However, the affine variety

U ={(z1,...,20,y) €EC"™: fi(ay,...,2,) =0,9(x1,...,2,) -y =1}
projects bijectively to U. This gives the commutative diagram:
U/ (Cn+1

o

U——0C"

6. General linear group: GL,(C) = {A € Mat,(C) | det(A) # 0} is an example of a
U as in the previous point. That is,

GL,(C)={(A,t) € Mat,(C) x C | det(A)-t =1}
7. Intersection: If X, Xo C A" are affine varieties defined by sets of polynomials
F1, Fo respectively, then X7 N X5 is the affine variety defined by JF; U Fs.

8. Union: If X1, Xy C A" are affine varieties defined by sets of polynomials Fi, Fa,
then X; U X is the affine variety defined by {fg: f € Fi,9 € Fa}.

1.3 Projective varieties

Definition 1.3.1 (Complex Projective Space). Complex projective space is the set

pr— {(20,...,2n) € C"1\ {0}}

~

of equivalence classes under the relation
(205 -y 2n) ~ (Az0y ..., Azn), A€ C.

One writes (2g : + -+ : z,) € P" for the equivalence class containing (z, ..., 2,) € C".



Remark 1.3.2. For each ¢ = 0,...,n we have a bijection

~

Cn—>Ul ::{(ZO:"':Zn) ’ ZZ#O}
(X1, xp) > (Tt Loy oot xy)
These cover P".

Exercise 1.3.3. Describe the intersections U;, N --- N U;; as subsets of Uy = C".

Definition 1.3.4 (Projective Variety). A projective variety is a subset X C P" such that
for each affine chart U;, the intersection X N U; is an affine variety in U; = A™.

Example 1.3.5 (Homogeneous Polynomials). If F is a set of homogeneous polynomials
(i.e., polynomials of the form Ziﬁ_._ﬂ.n:d Uiy iy 20 - - - 2t for some d), then the zero set
V(F)=A(z0:":2,) €P": f(20,...,2,) = 0 for all f € F} is a projective variety. In
fact, every projective variety is of this form.
Example 1.3.6 (Grassmannians). The Grassmannian Gr(k,n) is the variety of k-dimensional
subspaces of C". For example: Gr(2,4) (planes in C*), which can be embedded in P° via
Pliicker coordinates.

Gr(2,4) — P°

<'U1, 'U2> — <’Ul A U2>

If we use p;; for the coordinate of P° corresponding to e; A e; € C* A C* =2 C°, then the
image of Gr(2,4) in P° is defined by the Plicker relation:

Do1P23 — Po2P13 + Pospiz = 0.

Example 1.3.7 (Segre Embedding). P™ x P™ has a structure of projective variety via
the Segre embedding

P" x P™ —s ]P)(n+1)(m+1)71
(ot 1), (Yo i 1 Ym) = (ToYo : ToYr : -+ T XYt TnYm)
The image is defined by the quadratic relations z;;zi; — zy2; = 0 for all 7,k and j,1.

Consequently, if X C P" and Y C P™ are projective varieties, then X x Y can canonically
be identified with a subvariety of P(»+D(m+1)-1

Remark 1.3.8. One can consider P" as a compactification of A™ = U, where we have
adjoined one point for every line through the origin in such a way that if a curve approaches
that line “at infinity” then it will actually intersect at that new point “at infinity”.

For example, consider the affine curves

Cy : x =0 (the y-axis) , Cy : xy =1 (a hyperbola)

in C?* = {(z,y)} 2 {(z:y:1)} = Uy. These curves do not intersect in the affine plane.
However, these curves are the intersection of Uy with the projective curves

Cr:{(20:21: 22) | 20 =0} (1)
Cy:{(z0:21: 2) | 2120 = 22} (2)
Intersecting with the chart Uy = {(s:1:¢)} = {(s,t)}, they become the curves
C] : s = 0 (the t-axis) , C} .t = s* (a quadric)

They intersect at the point (s,t) = (0,0) <> (0 : 1 : 0), the point at infinity corresponding
to the line {(0,y) |y € C} C U.



-
=0

’
Cis=0

1.4 Smooth Complex Projective Curves

Definition 1.4.1 (Smooth Point). Let X C A" be an affine variety and z € X. We say X
is smooth of dimension d at x if there exists an open ball B 5 z (in the analytic topology,
i.e., B={z]||z—z|| <& for some € > 0) and a biholomorphic map ¢ : B = B" C C" to
an open subset B’ of C" such that

BNX=¢""(z1,...,24,0,...,0) € B'}.
Example 1.4.2 (Non-smooth Points).
1. Node: The affine curve y* = z?(x + 1) has a node at the origin.
2. Cusp: The affine curve y? = 23 has a cusp at the origin.
In both cases all other points are smooth.

Definition 1.4.3 (Smooth Complex Projective Curve). A smooth projective curve X is
a projective variety which is smooth of dimension one at every point.

Remark 1.4.4 (Underlying Topological Space). We can consider smooth projective
curves as compact real manifolds of real dimension 2. They are automatically oriented,
so homeomorphic to a sphere with ¢ handles. This ¢ is called the genus of the curve.
(There is also a purely algebraic description of genus, namely dim H°(X, O(K)) where K
is the canonical divisor mentioned in the statement of the Riemann—Roch theorem, and
HO(X,0(-)) is defined below).

Example 1.4.5 (Genus Examples).



1. Projective line: The projective line P! is topologically a sphere, hence has genus
g = 0. Indeed, it is the one point compactification of C = R2.

2. Elliptic curve: A smooth cubic curve in P2, such as 3%z = x® + azz? + bz® with
4a® + 27b* # 0, is topologically a torus (i.e., the surface of a doughnut, or coffee
mug) and has genus g = 1. Indeed, every elliptic curve is holomorphic to a quotient
abelian group of the form C/(Z+Z7) with the canonical smooth complex manifold
structure, where 7 € R.

Higher genus curves: A smooth curve of degree d
in P? has genus g = &2(‘172). For example, the
Klein quartic 23y + 132 + 23z = 0 is a smooth
degree 4 curve, so has genus g = W 3.
Topologically it looks like the surface of a fidget

splnner.

1.5 Divisors

Definition 1.5.1 (Basic Open). A basic open of an affine variety X C A" is a subset of
the form

D(g)={z e X :g(x) #0} € X

for some polynomial g € C[zy,...,z,]. The basic opens together with inclusion maps
form a category which we denote B(X). If X is projective, then we define B(X) =
Ui, B(U; N X) to be the union of the basic opens of the n 4 1 standard affine varieties
associated to X.

Example 1.5.2.
1. If g =1 (or more generally, if ¢ is invertible on X') then D(g) = X.
2. If g =0 (or more generally, if g vanishes everywhere on X) then D(g) = &.

3. f X =A"and g = (z — a1)...(z — a,) then D(g) = X \ {ay,...,a,}. Similarly,
every basic open of P! is of the form P!\ {ay,...,a,} for some nonempty set of
points.

4. More generally, if X is a projective or affine curve, then every basic open is of the
form X \ {z1,...,2,}. (But not conversely).



Definition 1.5.3 (Structure Sheaf on Basic Opens). Given an affine variety X C C™ and
a basic open U = D(g) C X, write

OX(U):{¢:U—>C|g0:ginforsomefGC[xl,...,xn],nz()}

for the set of functions on U of the form f/g".

Remark 1.5.4. Note that if f’ vanishes on X, then f/¢" = (f + f')/g" as a function on
X. More precisely, one can show that the ring Ox(U) of functions, is isomorphic to the

abstract ring
Clzy, ..., T

X = 75T

l97"]
where X =V(f1,..., fe).
Remark 1.5.5. As U varies, the Ox(U) define a functor

B(X)? — Ring

That is,

0. for every U we have a ring
Ox (U)7

1. for every inclusion U’ C U, restriction gives a ring homomorphism

Ox(U> — Ox(U/),

2. for every two inclusions U” C U’ C U we have a commutative triangle of ring
homomorphisms

Ox(U)
N

Ox(U) Ox(U")

Definition 1.5.6. Suppose that X C A" is irreducible. That is, X is not a union of two
distinct nonempty varieties. Then each Ox(U) — Ox(U’) (for U’ # @) is injective, and
we can define

Ky := | ox(U).
U#2

Remark 1.5.7. If X is a smooth curve, then each f € Kx is a meromorphic function on
the corresponding smooth complex manifold. In particular, the order

ord,(f)

of the pole (or zero) of f at x € X is well-defined.



Definition 1.5.8. A divisor on a smooth projective curve X is a finite formal sum of
. d .
points D = 7 n;x;. We write

for the (free) abelian group of divisors. The degree of a divisor is
deg(X4 nz;) = B¢ ;.

Example 1.5.9. The divisor associated to a rational function f € Kx is

div(f) =) ord.(f) - z.

Definition 1.5.10. Each divisor D determines a functor

O(D) : B(X)® — Ab
U—{feKx| div(f)+D>0onU}

where a divisor £ = ) n, - x satisfies £ > 0 if n, > 0 for all z.
Example 1.5.11. We have Ox = O(0) where 0 is the zero divisor.
Remark 1.5.12. Note that the assignement
Kx itU+#9o
Kx:Uw— X l 7é
0 ifU=0o

also defines a functor B(X)% — Ab for each each Kx(U) is a Ox(U)-module and the
transition morphisms are compatible with this structure.

Moreover, each O(D)(U) is a sub-Ox(U)-module of Kx(U), and the transition mor-
phisms O(D)(U) — O(D)(U’) are compatible with this structure. In other words, we
have an inclusion of quasi-coherent O x-modules

O(D) C Kx.

Remark 1.5.13 (Physical Interpretation). In string theory, Riemann surfaces appear as
worldsheets of strings. Line bundles O(D) on these surfaces can encode various physical
properties:

1. Spin structures
2. Gauge field backgrounds
3. D-brane charges in type II string theory

The degree of a line bundle corresponds to quantized charges or fluxes.



1.6 Riemann—Roch restatement

Definition 1.6.1 (Global sections). Given a divisor D on an irreducible smooth curve X
we define

H(X,0(D):= () O(D)U).

oAUEB(X)
That is, an element of H°(X, O(D)) is an element of Kx which belongs to all O(D)(U).

Remark 1.6.2. We could also have directly defined
H(X,0(D))={f € Kx | div(f)+ D >0on X}

but the above definition is warm-up for the definition of H°(X, F') that we will see next
time when F' is an arbitrary quasi-coherent Ox-module.

Example 1.6.3. Consider the divisor D = d - co on P! where oo = (1 : 0). Then
HO(P', O(D)) is identified with the set Clz, ylq = {32, a;z'y? '} of homogeneous poly-
nomials of degree d. In particular, it is a complex vector space of dimension d + 1 (if
d > 0 and 0 otherwise).

Theorem 1.6.4. If X is a smooth projective curve, then each H°(X,O(D)) is a finite
dimensional C-vector space.

Theorem 1.6.5 (Riemann—Roch). Let X be a smooth projective curve of genus g. Then
there ezists a unique divisor K (the canonical divisor) such that for every divisor D on
X, we have

dim H°(X, O(D)) — dim H*(X, O(K — D)) = deg(D) + 1 — g.

Example 1.6.6. For X = P!, we have K = —2-00 and g = 0. Then inputting everything
we check that for D = n - co we have

deg(D)+1—g=n+1.

For the left side, we compute the dimensions case by case.

Case n > 0:
dim H°(X,0(D)) =n +1 (3)
dim H(X, O(K — D)) = dim H°(X, O((—n — 2)oc)) = 0 (4)
since —n — 2 < 0.
Case n = —1:
dim H°(X,0(D)) =0 (5)
dim H(X, O(K — D)) = dim H°(X, O(—00)) = 0. (6)
Case n < —2:
dim H°(X,0(D)) =0 (7)
dim H°(X, O(K — D)) = dim H°(X, O((—n — 2)o0)) = —n — 1. (8)

In all cases,
dim H°(X,O(D)) — dim H*(X,O(K — D)) =n +1,

confirming Riemann—Roch.

10



2 Grothendieck—Riemann-Roch

2.1 Statement

Everything in this lecture is over an algebraically closed field k = k (e.g., C, Q, @p, F,,
UnenC((t*/™)), ...). References include [Ful84] and [SGAT1]. Note that Fulton’s book has
an appendix on algebraic geometry.

Theorem 2.1.1 (Grothendieck—Riemann—Roch). Suppose X is a smooth quasi-projective
variety. Then the Chern character induces an isomorphism

ch: Go(X)Q = A*(X)Q

Moreover, if X — Y is a projective morphism between smooth quasi-projective varieties,
we have

ch(fea) - td(Ty) = fo(ch(a) - td Tx)).

Remark 2.1.2. When X is a smooth projective curve and Y = A this recovers the
classical Riemann—Roch theorem from Lecture 1.

2.2 Morphisms of varieties

Recall that last time we defined affine varieties X C k", projective varieties X C P" =
n+1
m, and basic opens U C X C C". We also considered the rings

e
Ox(U)={¢o:U—k|op=f/g", for some f € klxy,...,x,|,n € N}
where U = D(g) = {z € X | g(x) # 0}.

Definition 2.2.1. A morphism of basic opens U C X C A", V CY C A™ is a sequence
(h1,...,0m) € Ox(U)™ such that the corresponding morphism U — k™ factors through
V C k™.

Example 2.2.2.
1. Any inclusion of basic opens is a morphism.

2. If D(g) CV(f1,..., f.) € A", then the canonical bijection

V(flu"wfmyg_l)% D(g)
CAn+l CV(f1,esfe)CAT

is a morphism of basic opens. It has inverse given by (x1, s, ..., zp, é) : D(g) —
k"1, That is, in the (big) category of basic opens, we have

V(fi,..., feyg—1) = D(g).

3. A composition of morphisms of basic opens is a morphism of basic opens. So we
have a “big” category of basic opens. We don’t need a notation for this because we
won’t often use it.

11



Remark 2.2.3. A morphism of basic opens CU)'( — C\{/ induces a ring homomorphism

Oy (V) — Ox(U). In particular, every point A® = U induces a (surjective) ring homo-
morphism Ox(U) — k. In fact, every surjection Ox(U) — k comes from a point. That
is, there is a bijection

hom 4., (Ox (U), k) = hom(A’, U) = U.
This holds more generally,
hOIIlAlgk (Ox<U), Oy(V)) = hom(V, U)

Definition 2.2.4. A quasi-projective variety or just variety is a union of basic opens in
some projective variety X.
X =UyeaUy C X

We continue to write B(X) for the category of all basic opens (of X) contained in X.

Example 2.2.5. The set A?\ {0} from last lecture is not (isomorphic to) a basic open,
nor a projective variety, but it is a quasi-projective variety. Similarly, P™\ {(0:0:...:0:1)}
is a quasi-projective variety which is neither affine, nor projective.

Remark 2.2.6. One should think of quasi-projective varieties as being covered by basic
opens in the same way that a smooth manifold is covered by opens that are homeomorphic
to an open in R".

Definition 2.2.7. A morphism of quasi-projective varieties is a function
f:X—=>Y
such that for every x € X there exists a commutative diagram

T E U——=V
In In

X—Y

such that U, V are basic opens and U — V' is a morphism of basic opens. The category
of quasi-projective varieties will be denoted QProj.

In other words, a morphism of quasi-projective varieties is a morphism defined by
quotients of polynomials.

Example 2.2.8.

1. For X € QProj and {Uy}xea C B(X) then U := UpU, € QProj and the inclusion
U — X is a morphism. In this case U is called an open subvariety of X.

2. In the previous notation, we also have Z = X \ U € QProj and Z — X is a
morphism. In this case Z is called a closed subvariety of X.

3. For X,Y € OProj, the product X x Y has a canonical structure of quasi-projective
variety (via the Segre embedding). The two projections X <+ X x Y — Y are
morphisms.

12



2.3 Quasi-coherent Ox-modules

Now we have a nice category of quasi-projective varieties. We are going to fix a quasi-
projective variety X and study certain families of vector spaces parameterised by X.

Definition 2.3.1 (Quasi-coherent O x-module). A quasi-coherent Ox-module on a quasi-
projective variety X is a functor F': B(X)” — Ab such that:

1. Each F(U) is an Ox(U)-module
2. Each restriction map F(U) — F(V) (for V C U) is a morphism of Ox(U)-modules

3. For every inclusion V' C U of basic opens, the natural map
FU) ®@oxw) Ox(V) = F(V) (%)
is an isomorphism

A morphism of quasi-coherent Ox-modules is a natural transformation ¢ : F' — G such
that each component ¢y : F(U) — G(U) is a morphism of Ox (U)-modules. If each F'(U)
is a finitely generated Ox(U)-module, then we say that F' is coherent.

Write QCoh(X) and Coh(X) for the categories of quasi-coherent and coherent Ox-
modules.

Remark 2.3.2. One can check that if U = Uy U U; with U, Uy, U; € B(X) then for any
quasi-coherent Oy-module F' we have F(U) = F(Uy) X rw,nuvy) F(Ur).! Consequently,
there is a unique sheaf F” on the X (considered as a topological space via open subvarieties)
such that F'|gx)y = F. However, I don’t want to talk about sheaves in this series of
lectures.

Remark 2.3.3. For every point z € U and F' € QCoh(X) we get an associated k-vector
space
F, = F(U) R0y (U) k

where Ox (U) — k is the homomorphism associated to z — U. The condition () ensures
that this is independent of U. In this way you can/should think of F' as a family of vector
spaces parameterised by X, at least if F' is coherent.

Example 2.3.4 (Examples in QCoh(X)).
1. The functor Ox, and more generally the O(D) (for D € Div(X)) are in Coh(X).
2. The functor Ky : U — {{* /72 is in QCoh(X) but not in Coh(X) in general.

3. On projective space P", the O(d) for d € Z are in Coh(P"). These are defined via
the canonical projection 7 : A"\ {0} — P" as follows: for basic opens U C P",
we have

O@d)(U) = {¢ i (U) =k ‘ for aﬁ(ixe) ;,A;i(?—lw) }

1Basically, if Uy = D(f) and U; = D(g) then U = Uy U U; implies that there are a,b € Ox (U) with
1 =af +bgin Ox(U). The claim F(U) = F(Up) X pw,nuv,) F(U1) follows from 1 = af + bg and the
condition ().

13



4. Direct sums and products: If {Fj}xea is a family in QCoh(X), then ,., F) and
[ L P are in QCoh(X) where (D,.) F2)(U) = @ e FA(U) and ([],cp FA)(U) =
HAeA FA(U)~

5. Kernels and cokernels: if ¢ : F' — G is a morphism in QCoh(X), then ker(¢), coker(¢) €
QCoh(X) where (ker(¢))(U) = ker(¢y) and (coker(¢))(U) = coker(¢y).

6. Tensor products and Homs: If F,G € QCoh(X), then F ®¢p, G € QCoh(X) where
(F ®oy G)(U) = F(U) ®oyw) GU). If F,G € QCoh(X), then Hom(F,G) €
QCoh(X) where Hom(F,G)(U) = homoconw (Fv, Glv).

7. For any closed subvariety Z C X, the ideal sheaf Z, defined by U — {f € Ox(U) :
flzaw = 0} is in Coh(X).

The following proposition follows easily from the definitions.

Proposition 2.3.5. Let U be a basic open (hence isomorphic to an affine). Then we have
equivalences of categories:

{ Ouy(U)-modules } = QCoh(U)
finitely generated | .,
{ Oy (U)-modules } = Coh(U)

The equivalences are given by:

M — (V — M Qo (U) OU(V))
F(U) — F

Definition 2.3.6 (Grothendieck group Gy). Let X € QProj. The Grothendieck group

Zl[iso. classes of F' € Coh(X)]

Go(X) = ([F]=[F]+[F|0—>F = F — F" —0)

is the abelian group generated by symbols [F] for F' € Coh(X), subject to the relation

1

[F] = [F'] + [F"] whenever there exists a short exact sequence 0 — F/ = F % F” — 0 in
Coh(X). Here ezxact means that F' = ker(i) and F" = coker(z).

Example 2.3.7 (Examples of Grothendieck groups).

1. Point: Go(A%) = Z, since Coh(A") is equivalent to the category of finite dimensional
k-vector spaces.

2. Affine space: Go(A") = Z. Since k[xy,...,x,] has finite global dimension, every
F € Coh(A™) has a finite free resolution. That is, a sequence of morphisms

0— 0. B oin ool p_, g

for some 7; such that ker(d;) = im(d;41) for all . By induction, it follows that

[F] =32, (=1) (0] = (Zi(—l_)%) [Oan] -

14



3. Closed-open decomposition: If U C X is open and Z = X \ U then there is an
exact sequence

This sequence is exact on the left if Z C X is a reqular embedding.?

4. Projective space: Go(P") = Z®" ! with generators [O], [O(1)],...,[O(n)]. More
generally, if X is a smooth variety then

5. Grassmannian:
Go(Gr(2,4)) =2 7.

This comes from the decomposition Go(G7(2,4)) = Ay @ A1 & (Ay ® Ay) ® Az d Ay
determined by a choice of flag.?

6. Elliptic curve: For an elliptic curve E, we have Go(E) = Z & Pic(F) where
Z = {n[O]} and Pic(E) = {[O(D)] — [O]}. There is an explicit bijection

Z® E 5 Pic(E)
(n,z) = O(x + (n—1)zo)

for some fixed point xg.

Y

7. Smooth curves: More generally, for a smooth projective curve C' we have Go(C') =
Z®Pic(C). The subgroup Pic’(C) = {O(D) | deg D = 0} has a canonical structure
of smooth projective variety of dimension g = the genus of C.

2.4 Pushforward
Definition 2.4.1. Suppose that f: X — Y is in QProj, F' € QCoh(X). We define f.F

(LE)(V)= lim F(U)
fcv

2If X is an affine variety then Z C X is globally a regular embedding if there exists f1,..., f. € Ox(X)
such that Z =V (f1,..., f.) and each f;11 is a nonzero divisor in Ox (X)/{f1,..., fi). In general, Z C X
is a regular embedding if Z NV — V is globally a regular embedding for every basic open V C X.
3A flag is a sequence of subspaces {0} =V_1 C Vo C V3 C Vo C V3 C Vy =V with dimV; = i. In the
case of Gr(2,4) we have d =4 and:
(a) AQ is {VQ},
(b) ApUA; = is the set of planes W with V; C W C V3,
(C) One Ag UA; UA, is {W | Vi C W},
(d) The other AO UAl U AQ is {W | W C VE;},
)
)

(e A()UAlU(AQUAQ)UAg:{W | WQV27£{O}},
(f AQUAlu(AQUAg)UA3UA4:GT(2,4).

15



where the limit is over basic opens U contained in f~!'V. That is, an element of (f.F)(V)
is a sequence (sy) ey of sy € F(U), such that for each U’ C U, the transition function
sends sy to sy-.

Example 2.4.2.

1. Let X be a smooth curve, D a divisor, and p : X — A° the canonical projection to
the base. Then QCoh(A%) & Vec,, and

p.O(D) = H(X,0(D))
2. Let ¢ : Z C X be a closed subvariety. Then

L*OZ = OX/Iz.

Definition 2.4.3 (Projective morphism). A morphism f : X — Y of quasi-projective
varieties is called projective if it factors as

XSSP xy ™y
where ¢ is a closed embedding and proj is the projection to the second factor.

Proposition 2.4.4. If f : X — Y € QProj is projective, then f, : QCoh(X) — QCoh(Y)
sends coherent sheaves to coherent sheaves.

Proposition 2.4.5. There is a unique collection of morphisms of abelian groups f, :
Go(X) = Go(Y) associated to projective morphisms f : X — Y satisfying the following
properties.

1. For closed immersions v : Z — X, we have 1,([F]) = [t.F].
2. For projections : P* X Y — Y we have m,([0(i) @ 7*F]) = [F] fori=0,...,n.

3. Functoriality: (go f)« = g« o f« for composable projective morphisms.

2.5 Pullbacks

Proposition 2.5.1. Suppose that f : X — Y is in QProj and G € QCoh(Y). Then
there exists a unique f*G € QCoh(X) such that:

1. If U € B(X) and f(U) CV for some V € B(Y), then
(&) U) = G(V) @oy(v) Ox(U)
where we use the induced ring morphism Oy (V) — Ox(U).

2. If {Ux}xea is a family of basic opens, closed under intersection, and U = UycaU)y, is
also a basic open, then

(f*&)U) = lm(f*G)(U)
AEA

Remark 2.5.2. The above proposition is a consequence of the sheaf property mentioned
in Remark 2.3.2 and the fact that for any basic open V' C Y the preimage f~'V is a union
of basic opens.
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Example 2.5.3 (Pullback examples).

1. For any morphism f: X — Y, we have

Oy = Ox.

2. If 1 : U — X is an open subvariety and F' € QCoh(X), then
UF F‘U
where F|y is simply the functor F restricted to basic opens contained in U.

3. If p: X — AY is the canonical projection and V = k®! € Ve, is a vector space
with basis or cardinality /. Then

PV =0y,

Recall that there is a very clean description for finitely generated abelian groups up
to isomorphism. Namely, they are of the form Z" ® Z/n, @ - - - & Z/ny. Coherent sheaves
are slightly more complicated, but still quite accessible.

Remark 2.5.4 (Flat pullback). If j : U — X is an open subvariety, there is an induced
group homomorphism Go(X) — Go(U); [F] — [j*F]. More generally, if f : Y — X is
flat in the sense that f* : Coh(X) — Coh(Y') sends exact sequences to exact sequences,
then we get a group homomorphism.

Go(X) — Go(Y)
[F] = [°F].
Remark 2.5.5 (Stratification of coherent sheaves). Suppose X is a quasi-projective va-

riety and F' € Coh(X). Then there exists a sequence of closed subvarieties @ = Z_; C
Zy C -+ C Zg= X such that if o; : W; = Z; \ Z;_1 — X is the inclusion, we have

yF =0y
for some 19 > ry > .-+ > r, € N. Geometrically, O?@T is the module of sections s of the
projection
X x A"
7
s | lp
AN
X

So we can/should think of the coherent sheaf F' as the varieties W; x A" glued together
in some way.

Next lecture we will be concerned with vector bundles, namely, coherent O x-modules
where the rank is locally constant.

Definition 2.5.6 (Vector bundle). A wvector bundle on a quasi-projective variety X is a
coherent Ox-module E such that for every point x € X, there exists a basic open U > x
and an isomorphism E|; 2 OF for some r > 0.
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2.6 Cotangent sheaf

Definition 2.6.1 (Cotangent sheaf). Let X be a quasi-projective variety. Consider the
diagonal morphism A : X — X X X; z — (z,z) and let Zn € Oxyx be the ideal sheaf
of the diagonal. The cotangent bundle of X is defined as

Qx == A*(T/T?)
where A* denotes pullback along the diagonal morphism. The tangent bundle is the dual
TX = /HOmoX(Qx, Ox)

Remark 2.6.2. More explicitly, for any basic open U C X we can find a basic open
V' C X xX such that VN A(X) = U. In this case,

Qx(U) =1/I?
where I = {¢:V — k| ¢(U) = 0}.

Remark 2.6.3 (Geometric interpretation). Intuitively, if Z C Y is a closed subvariety
with sheaf of ideals Z, then Z;/Z% captures the linear part of functions vanishing along
Z. This controls tangent information about the directions perpendicular to Z in Y. When
Z =X and Y = X x X, this turns out to be the same as the cotangent bundle.

Example 2.6.4 (Examples of cotangent sheaves).
1. Affine space: For X = A" we have Qun = O3,

2. Projective line: For X = P!, we have Qp1 = Opi(—2). This can be computed
using the Euler sequence:

0— Qp — Op (1) — Op1 — 0

The degree —2 reflects the fact that P! has “negative curvature” in the sense that
it has no global vector fields.

3. Node curve: Consider the curve X = V(y? — 2%(x + 1)) € A? from Lecture 1.
At smooth points x, dim(Q2x), = 1. However, at the singular point 0, the fiber
(€2x)(0,0) has dimension 2.

Definition 2.6.5 (Smooth variety). A quasi-projective variety X is called smooth of
dimension d at a point z if there is a basic open x € U such that Qx(U) = Ox(U)%4. Tt
is called smooth if it is smooth at every point.

2.7 Chow groups

Definition 2.7.1 (Dimension and cycles). An irreducible variety Z has dimension d if,
generically, there are d-linearly independent differential forms. That is, for any non-empty

basic open U we have
disz KZ ®OZ(U) Qz(U) =d.

For a quasi-projective variety X, let X4 denote the set of irreducible subvarieties of X
of dimension d. The free abelian group generated by X4 is denoted

Zy(X) = {S, W] | N.n; e NW € X} = P Z
WeX g

An element of Z,(X) is called a d-cycle.
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Example 2.7.2.
1. If X is a smooth curve we have Zy(X) = Div(X).

2. If Z — X is a closed subvariety, we have a canonical morphism

For a general projective morphism f : X — Y, there is a pushforward f, : Z4(X) —
Z,4(Y') determined by

Ky : Kpn)-[f(Z)] if dim Z = dim f(2)

0 otherwise

£12]) = {

Here [Ky : Ky(z)] is the degree of the finite extension of fields Kz C Kz.

3. Flat pullback: If f: Y — X is a flat morphism between irreducible varieties (see
Remark 2.5.4), then there is a pullback map f*: Z3(X) = 24 dimy—aimx(Y). For
an irreducible subvariety Z C X of dimension d, the preimage f~'(Z) may have
multiple irreducible components W;. We define f*([Z]) = >, m;[W;] where m, are
appropriate multiplicities to account for ramification. See [Sta2h, Tag 0AZE] for
more details.

4. Divisors from functions: If W is an irreducible variety of dimension d+1 and
f € K}, then f defines a d-cycle div(f) € Z4(WW) given by

div(f) = 3 ords(f)- (2]

ZEW(d)

where ordz(f) is the order of vanishing of f along Z. See [Sta25, Tag 02AR] for the
algebraic definition of ordz(f).

5. Let D =) . n;[Z;)] € Z4-1(X) where X is smooth of dimension d. As for smooth
curves, we define the line bundle Ox (D) by

Ox(D)(U) ={f € Kx : div(f)|v + D[y = 0}

Definition 2.7.3 (Rational equivalence and Chow groups). The Chow group Aq(X) is
defined by the exact sequence

=24(X)
=
b K= Z — Ay(X) =0,
WGX(d+1) ZEX(d)

Remark 2.7.4 (Intersection product). Suppose X is irreducible of dimension d. The
graded abelian group @®;enAq_;(X) admits a structure of graded ring. (Note that we have
placed A; is in degree d — i. That is, we are grading by codimension codim = d — dim
not dimension). We would like to define a structure of graded ring on this graded abelian
group using intersection [V] - [W]*“ = "[V N W]. There are a number of obstacles to this
definition.

Firstly, VN W may be a union of more than one irreducible subvariety VNW = U, T,.
Worse, the T, may not be of codimension codim V' + codim W.
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It is a quite technical classical theorem in intersection that for any classes a € A;_;(X),
p e Aq_j(X) we can find representatives a = Y ni[Vi] and 8 = > my[W,] such that the
irreducible components Ty, of the intersections Vi N W, have codimension ¢ + j. Even
then, we need to account for the fact that the intersections might have some multiplicity.
For such cycles in good position, the defintion of the intersection product is

- f= Z g - i(Vie, Wes Tiom ) [Tioem]

ktm

where the multiplicities come from Serre’s Tor formula. See [Sta25, Tag 0B08| for more
details.

Example 2.7.5 (Examples of Chow groups).
1. For an irreducible variety X of dimension d, we have A4(X) = Z.

2. For a smooth variety X of dimension d the assignment D +— O(D) induces an
isomorphism

Ag1(X) 5 Pie(X)

where Pic(X) = {O(D)}/ = is the set of isomorphism classes of O(D) equipped
with ®. For any L = O(D) in Pic(X), the class D € Ay_1(X) is called the first
Chern class of L and denoted

Cl(L).

Now we are going to extend the isomorphism Ay ;(X) = Pic(X) to the isomorphism
in the GRR theorem. For an abelian group A we write

AQ = A®Z Q

Theorem 2.7.6 (Universal property of Chern character). There ezists a unique natural
transformation

a +— ch(a)

on smooth quasi-projective varieties X such that:

1. For line bundles L, we have ch([L]) = e =" Ley(L)™.

2. For a, € Go(X), we have ch(a + ) = ch(a) + ch(p).

3. For flat morphisms f 1Y — X (see Remark 2.5.4) and vector bundles E (see
Definition 2.5.6), we have

ch(f*[E]) = f*(ch([E])).
These morphisms induce isomorphisms

ch: GO(X)Q = A*(X)Q
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Remark 2.7.7. The groups Go(X) and A.(X) are contravariantly functorial for flat
morphisms and ch is actually a natural transformation for this functoriality. That is,
ch(f*a) = f*ch(a) when f is flat. In this lecture we are interested in projective push-
fowards. In order to make ch natural in projective pushfowards we need to use Todd
classes.

Theorem 2.7.8 (Universal property of Todd classes). There exists a unique natural
transformation

a— td(a)

on smooth quasi-projective varieties X such that:

1. For line bundles L, we have td([L]) = a(l) 4

l—e— €1 (L) -

2. For a, € Go(X), we have td(a + ) = td(a) - td(B).

3. For flat morphisms f 1Y — X (see Remark 2.5.4) and vector bundles E (see
Definition 2.5.6), we have

td(f*[E]) = [ (td([E])).

Remark 2.7.9 (Splitting principle). To prove existence and uniqueness of Chern and
Todd classes, one uses the splitting principle: any vector bundle E of rank r on X can
be pulled back to a sum of line bundles Ly & - - - & L, via some (flat projective surjective)
f Y — X that induces an injection f*: A,(X) — A.(Y). This reduces the problem to
line bundles, where the classes are explicitly defined.

2.8 Restatement

We can now restate the Grothendieck-Riemann-Roch theorem with all the machinery
we’ve developed:

Theorem 2.8.1 (Grothendieck—Riemann—Roch, Restated). Suppose f : X — Y is a
projective morphism of smooth quasi-projective varieties. Then the following square com-
mutes, and the horizontal morphisms are isomorphisms.

C! td(TX)'_
Go(X)g —L> Au(X)g—> A (X)g

| |

C! td(TY)'—
Go(Y)g —= A(Y)g—= A.(Y)g

Remark 2.8.2. When X is a smooth projective curve and Y = A°, this recovers the
classical Riemann—Roch theorem from Lecture 1. In this case we have:

o f.: Go(X) — Go(A%) sends L € Pic(X) to
~76Pic(X) ~7

dim H°(X, L) — dim H°(X, Hom(L, Qx)).

This comes from Serre duality.

4The power series —2— € Q[[z]] is defined to be the inverse of the power series 1=¢—~ = 1—Z 42
l1—e x 2

21



For D € Div(X) we have f,(D) = deg D. This follows from the definition.

o td(Tx) = 1+ e1(Tx) = 1 — 3K where K = div(Qx). This follows from the
definitions.
o td(7y) = 1.

We have deg K = 2g — 2. This can be obtained in various ways, but all of them
involve some kind of theorem.

So for L = O(D), the square in the statement becomes

L———1+D

. 1—-1K).—
I Z@PiC(X)i>Z®A0(XSQ_lZ@AO(X>
] i L(O,deg)
dim HO(X,L) id id
—dim HO(X,Hom(L,Qx)) z z 8

and the GRR formula becomes:

dim H°(X, L)— dim H°(X, Hom(L,Qx))
= ch(f[L]) - td(Ty)

Y f(ch([L]) - td(Tx))
= f.(1+D)- (1 3K))
= f.(1+ D — 1K)
=degD — %degK
=deg(D)+1—g

Remark 2.8.3 (Sketch of proof). The proof proceeds by:

1. Reducing to the case where f is a closed embedding or a projection using the
factorization of projective morphisms

2. For closed embeddings, use deformation to the normal cone to reduce to the case
of a regular closed immersion. That is, a closed immersion which locally looks like
a zero section Z — Z x A°. In this case, one does a concrete calculation.

3. For projections P" x Y — Y, one uses the explicit description of Go(P" x Y') and the
fact that td(Qpn) = (1 + H + H? + ...+ H™) where H is the class of a hyperplane.
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3 Ka

A reference for this lecture is [Weil3].

Recall that if X C A" is an affine variety, then all information (except the embedding
into A") is contained in the ring Ox(X). That is, up to isomorphism, we can reconstruct
the variety X from the ring Ox(X). More precisely, we have an equivalence of categories:

{affine k-varieties} ~ {finitely generated k-algebras}°”

In this lecture I want to work with the larger category of affine schemes. This is
equivalent to, and sometimes defined as, the opposite of the category Ring of commutative
rings with unit. That is, in this lecture we will work with rings. If I want to think of a
ring as a geometric object I will write Spec(R), but in this lecture you should just think
of this as notation. I don’t want to talk about locally ringed topological spaces.

{affine schemes} = Ring®

Spec(R) <> R

3.1 Ky
Last time we considered Go(X). For a ring R, this is defined as:

R-modules
O—>L—>M—>N—>0>

7 [ finitely generated ]

is exact
The group Gy is good for many things, but not everything.
Example 3.1.1 (Limitations of Gy).

1. Gy doesn’t detect nilpotent elements: Consider R = k[z]/(z?) where k is a
field. Every M € Coh(R) is a finite direct sum of copies of

M =k[z]/(x*) =R or M' = R/(z) k.

We have an exact sequence 0 — k = R — k — 0, so in Go(R) we get [R] =
[k] + [k] = 2[k]. Thus Go(R) = Z = Gy(k). More generally, for a Noetherian ring R
with nilradical Nil(R), we have

Go(R) = Go(R/ Nil(R)).

We will see below that for local rings R we have K;(R) = R*. In particular, K; can
see nilpotents.

2. Gy cannot see certain singularities. For example, consider the cusp X = V (y?—
23) C A% and the affine line Y = A!. Both have Go(X) = Go(Y) = Z, even though
X has a cusp singularity while Y is smooth. However, for integral Noetherian rings
of (Krull) dimension one, we have Ky(R) = Z @ Pic(R), [Weibel 11.2.6.3]. Since
Pic(X) # 0 while Pic(A') = 0, we get Ko(X) # Ko(A'), so K (defined below) can

distinguish these cases where GGy cannot.
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3. Functoriality: The functor Gy has functoriality of a cohomology with compact sup-
port rather than a “cohomology theory”. More precisely, Gy is covariant Go(X) —
Go(Y) for projective morphisms X — Y of varieties, and contravariant Go(X) —
Go(Y) for flat morphisms Y — X, but it is not contravariant for all morphisms.

4. No ring structure in general: The semiring structure on Coh(X),~ coming from
® does not descend in general to a ring structure on Go(X).

In this lecture instead of all coherent sheaves we will focus on vector bundles.

Definition 3.1.2. A vector bundle on a variety X is a coherent sheaf £ that is locally of
constant rank, meaning that for every point x € X, there exists a basic open U 3 x such
that E|y = O,EJB’" for some integer r > 0.

Example 3.1.3 (Examples of vector bundles).
1. The structure sheaf Ox is a vector bundle of rank 1.

2. The O(D) (for D € Z;_1(X) on a smooth irreducible X of dimension d) are vector
bundles of rank 1.

3. The O(d) in Coh(P") are vector bundles of rank 1.

4. A variety X is smooth of dimension d if and only if Qx is a vector bundle of rank d.
5. If E and F' are vector bundles, then ' @& F' is a vector bundle.

6. If E&® F = G where G is a vector bundle, then both F and F' are vector bundles.

Recall that for affine varieties (and more generally, for affine schemes) the category of
Coh(X) is equivalent to the category of finitely generated Ox (X )-modules. We can also
identify the subcategory of vector bundles.

Proposition 3.1.4. Let X be an affine variety and R = Ox(X). Then we have an
equivalence of categories:

vector bundles | _ finitely generated
on X | projective R-modules

Note that a module P is finitely generated and projective if and only if there exists some
Q and an isomorphism P ® Q = R®".

Algebraic K-theory of a ring R is then defined as follows.

Definition 3.1.5 (Kj). For a ring R, we define K((R) as:

7 finitely generated
projective R-modules

0= N—=P—Q — 0 exact
<[P] = [N] - Q] with NV, P, () projective >
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Remark 3.1.6. Since surjections P — () towards projective modules () have sections
P < @, for sequences as above we have P = N & Q) and so Ky(R) can also be defined as:

finitely generated
projective R-modules

(PeQ] - [P -[Q])

This description shows that Ky(R) is the group completion of the abelian monoid (Proj(R) =, ®)
of isomorphism classes of projective R-modules. That is, the map (Proj(R)/~,®) —

Ky(R) is the unique homomorphism of abelian monoids such that for every abelian group
A,

Ko(R) =

hom g, (Ko(R), A) = homcommmon (PToj(R) =, A)

Definition 3.1.7 (Regular ring). A Noetherian ring R is called regular if every finitely
generated R-module admits a finite resolution by finitely generated projective R-modules.
That is, for every M € Coh(R) there exists an exact sequence

O—-F—+P—= =P —-M=0
with each P; € Proj(R).

Remark 3.1.8. Usually regularity is defined in terms of regular sequences. The equiv-

alence to the above definition is an actual theorem requiring substantial commutative
algebra, [Sta25, Tag 0007].

Corollary 3.1.9. For reqular Noetherian rings R, e.g., R = Ox(X) when X is a smooth
affine variety, we have

Go(R) = Ko(R).

Remark 3.1.10 (Sketch of proof). By induction, we see that for resolutions as in the
above definition, we have [M] = >"" (=1)'[P;] in Go(R). In particular, Ko(R) — Go(R)
is surjective. Similarly, any relation in Go(R) can be replaced by a relation in Ky(R) only
involving projective modules.

3.2 K;

Definition 3.2.1 (Milnor square, [Weil3, Exam.I.2.6]). A Milnor square is a pullback
square of surjections

Remark 3.2.2.
1. Explicitly, we are asking that R = ker(S @& R’ — 5').

2. Often in the definition of Milnor squares there is the condition that ker(p) = ker(q),
but this is automatic from the above formulation.

Remark 3.2.3. Surjections of rings correspond to closed immersions of schemes, and
pullbacks of rings correspond to pushouts of schemes. That is R = S Xg R’ means
Spec(R) = Spec(S) Uspec(sr) Spec(R').
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Theorem 3.2.4 ([Weil3, Thm.I1.2.9]). Suppose we have a Milnor square as above. Then
there 1s a long exact sequence

GLx(S") = Ko(R) = Ko(S) ® Ko(R') = Ko(5")
where GLy(S") = liﬂ(GLl(S’) — GLy(S") = GL3(S") — ...).

Remark 3.2.5. In fact, one might expect that such a sequence exists because the category
Proj(R) is equivalent to a category whose objects are triples (P, @, ¢) consisting of an S-
module P, an R’-module @ and an isomorphism ¢ : P®gS' = Q ®@p S’, [Weil3, Theorem
1.2.7].

The failure of injectivity suggests that we need to keep track of more information than
just isomorphism classes. Automorphisms seem to be important.

Observation 3.2.6.
1. Ko(R) is the group completion of the monoid (Proj(R)/~,®).
2. Automorphisms seem to be important (Theorem 3.2.4).

Instead of working with isomorphism classes Proj(R) =, let’s consider the groupoid
Proj(R)=.

This is the category whose objects are finitely generated projective modules and whose
morphisms are isomorphisms.
The groupoid Proj(R)™ has a symmetric monoidal structure

Proj(R)~ x Proj(R)® — Proj(R)~

given by direct sum & and the isomorphisms P& Q) = (Q & P. We want to form its group
completion. That is, a universal functor

Proj(R)~ — G

towards a grouplike symmetric monoidal groupoid. That is, a symmetric monoidal groupoid
such that for every object X the functor X @& — is an equivalence. Universal means that
for any grouplike symmetric monoidal groupoid G’ it should induce an equivalence of
groupoids

Fun(G, G') = Fun(Proj(R)=,G’)

where Fun is the groupoid of monoidal functors.

Observation 3.2.7. Suppose that ® : Proj(R)= — G is a functor towards a grouplike
symmetric monoidal groupoid. Use & for operations on both groupoids and O for the
unit object. So — @ O is isomorphic to the identity functor.

1. Since X @ — : G — G is an equivalence for any X, we have
Autg (@) = Autg(X)

for all objects X.
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2. For each n, we have a group homomorphism GL,, (R) = Aut(R®") — Autg(P(R™)) =
Autg(QO) compatible with inclusions GL,,(R) — GL,41(R), in the sense that we have
commutative triangles

GLi(R) —= GL3(R) — GLs(R)

Autg (@)

This gives a map
GLw(R) — Autg(O).

3. By the Eckmann-Hilton argument, since composition o and direct sum & both give
operations on the set Aut(Q), and they distribute over each other:

(@@ f)o(y®0) = (o) ®(609)
the group Aut(Q) is abelian. Therefore we get a group homomorphism

GLw(R)
[GLo (R), GLoo (R)]

— Autg(@))
Here we write [G,G] = (ghg 'h™!) for the commutator subgroup of a group G. So
G — G/[G,G] is the largest abelien quotient of G.

Definition 3.2.8 (K). For a ring R, we define:

GL.(R)
[GLo(R), GLoo(R)]

Kl(R> =

Here is some evidence that this is a good definition.

Theorem 3.2.9 ([Weil3, Thm.II1.2.6]). Suppose we have a Milnor square as above. Then
there is a long exact sequence

Ki(R) —= Ki(5) ® Ki(R') — K1 (5) >

<—> Ko(R) — Ko(S5) ® Ko(R') — Ko(S')

3-3 K<O

Now we move on to negative K-theory. One motivation for negative K-theory comes from
trying to extend exact sequence to the right.
Here is our (admittedly weak) hint as to what a good definition might be.

Theorem 3.3.1 (Fundamental Theorem for K, [Weil3, I11.3.6]). For every ring R, there
is an ezact sequence

0 — K (R) = K (R[t]) ® Ki(R[t™"]) = K\(R[t,t™']) = Kyo(R) — 0.
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Definition 3.3.2 (Negative K-theory). For a ring R and n > 0, we inductively define
K_,(R) to be the cokernel

K _.(R):= coker(K_n+1(R[t]) © K o1 (R[tT]) = K_ 1 (R[E, t—l]).

Theorem 3.3.3 ([Weil3, I11.4.3]). Suppose we are given a Milnor square as above. Then
the sequence of Theorem 3.2.9 continues as :

.. ——Ky(R)

Ko(S) ® Ko(R)

Ko(S") >
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4 K-theory as the universal localising invariant

In the last lecture we generalised K to the pair Ky, Ky by moving from the set Proj(R) /=

to the groupoid Proj(R)~. In this lecture we generalise this process to get higher Ky, K1, Ko, . ..

by considering oo-groupoids. These form an oo-category.

Remark 4.0.1 (Historical development). Jumping directly to localising invariants is a bit
misleading. The development of algebraic K-theory has several key phases: Grothendieck
introduced K for vector bundles in the 1950s; Bass [Bas68] extended this to K of rings
and introduced K; in 1968; Milnor defined K, using the Steinberg group in the early
1970s; Bass also introduced negative K-theory in the 1970s; Quillen revolutionized the
field with his “plus construction” giving higher K-groups in the mid-1970s; Waldhausen
developed K-theory for categories with cofibrations and weak equivalences in the 1980s;
and Thomason—Trobaugh [TT90] established K-theory for schemes using perfect com-
plexes.

4.1 Simplicial sets

References for simplicial sets and oo-groupoids (which used to be called Kan complexes):
1. May, Simplicial objects in algebraic topology, [May67].
2. Bousfield-Kan, Homotopy limits, completions and localizations, [BK72].

3. Goerss—Jardine, Simplicial homotopy theory, [GJ99].

Groups C Groupoids C  Categories — Directed graphs
(groupoidS. with ) categories for which
one object every morphism
is invertible

0O-groups C oo-groupoids C oco-categories C  Simplicial sets

Recall that a directed graph consists of a set G of vertices, a set G of edges and two
morphisms

do,dy : G1 = Gy

which associate to each edge e € Gy a source die € Gy and a target dpe € Gj.

We can generalise this in higher dimensions by allowing “n-dimensional edges” for all
n € N. The information of all these higher edges and how they are related to each other
is organised in the concept of a simplicial set.

Definition 4.1.1. We write A C LinOrdSet for the full subcategory of the category
LinOrdSet of linearly ordered sets whose objects are finite and non-empty. In other
words, those linearly ordered sets which are isomorphic to the linearly ordered set [n] =
{0 <1< --- < n} for some n > 0. Morphisms are those morphisms of sets p : [n] — [m]
such that i < j = p(i) < p(j).

Example 4.1.2. For each 0 < j <n with n # 0, the face morphism §; : [n—1] — [n] are
defined as the unique injection which does not have j in its image.

0 1 ... j=1 4§  j+1 ... n-1
b b\ AN
0 1 ... j=1 § §+1 j4+2 ... n
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Example 4.1.3. For each 0 < j < n the degeneracy morphism o; : [n+1] — [n] is defined
as the unique surjection which sends both j and 741 to j.

0 1 ... § j41 j+2 ... n+l
b Yavd v
0 1 ... § g+l ... =

Exercise. Show that every morphism [n] — [m] can be written as a composition of
face and degeneracy morphisms.

Definition 4.1.4. The category of simplicial sets Seta is the category of functors A? —
Set, so
SetA = PSh(A)

Given such a functor X : A®? — Set we write X,, := X([n]). Elements of X,, are called
n-simplices of X ..

Example 4.1.5. For any simplicial set X : A%’ — Set the morphisms
d]' : Xn — anl-

corresponding to the d; are called face morphisms. For x € X,, we call d;x the jth face
of x. The morphisms
S; X, — Xn—o—l‘

corresponding to the o; are called degeneracy morphisms.

Example 4.1.6 (A"). For each n, the functor A" := homa(—, [n]) : A®? — Set defines
a simplicial set. By Yoneda’s Lemma, for any X € Seta,

homget, (A", X) = X,,.

Example 4.1.7 (9A™). Consider the morphisms of simplicial sets §; : A"t — A", We
define

OA™ = | ] o;(Am)
j=0

as the union of these faces. Explicitly, (0A"); C (A™); = homa([j],[n]) is the set of
morphisms [j| — [n] of linearly ordered sets which are not surjective. This can also be
described as the colimit

OA"™ = hﬂ A’
[i]S[n]
In particular, for any other simplicial set X we have
hom(0A"™, X) = hm  X;.

[i&n]
n—2<i<n—1

That is, a morphism 0A™ — X is the same thing as a set of (n—1)-simplices x, ..., x, €
Xp—1 satisfying d;z; = d;x;.

Definition 4.1.8 (A}). For 0 < j < n we define the jth horn as the union
A7 = Ja(am ).
i#]
Equivalently, (A}); C (A"); = homa (], []) is the set of those [i] — [n] whose image does
not contain the subset {0,1,...,7—1,j4+1,...,n}.
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Example 4.1.9 (Sing X ). Define

top 1= {(a:o,...,a:n) |0<uz; < 1;in: 1} C R

=0

to be the convex hull of the standard basis vectors e; = (0,...,0,1,0,...,0). So A?Op is

a point, A{ is a line segment, A7 is a triangle, A} is a tetrahedron, ...

Any morphism p : [n] — [m] in A defines an R-linear morphism R"* — R™*+!
€; — €p(i), which restricts to a continuous morphism Af, = — A . In this way we get a

functor
A — Top; [n] — Al

from A to the category of topological spaces. For any other topological space X, the

assignment
Sing X : [n] = hom7o, (AL, X)

defines a simplicial set. Explicitly,
1. Sing, X is the set of points of X,
2. Sing; X is the set of paths in X,
3. Sing, X is the set of triangles in X,

4. ...

\\\i
AN
S N
2VAVAR A\
%VAVAVA‘V}\‘N

NV IAEITS,
SN RSN 2o\
\ =
— B e YA Ry
"%Z%‘%zezezez%ﬂ%szuﬁﬂ‘§!V"‘
,/

Source: Wikimedia Commons, CC BY-SA license

Example 4.1.10 (Product of simplicial sets). For simplicial sets X and Y, their product

X x Y is defined by
(X xY),=X,xY,

with structure morphisms acting componentwise.

Example 4.1.11 (Mapping simplicial sets). For simplicial sets X and Y, the mapping
simplicial set Map(X,Y") has n-simplices given by

MapSetA <X7 Y)n = hOHlSetA (X X An, Y)

The maps associated to [n] — [m] are induced by the corresponding A™ — A™.
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4.2 Infinity groupoids

Definition 4.2.1 (Kan fibration). A morphism f : X — Y of simplicial sets is a Kan
fibration if for every 0 < j < n with 0 # n and commutative square

AT — X

P
|
A" ——=Y

a dashed morphism exists making two triangles commutative. A simplicial set X is an
oo-groupoid if the canonical morphism X — A is a Kan fibration.

Example 4.2.2. If X is a topological space, then Sing X is an oo-groupoid. In fact, by
the homotopy hypothesis, there is an equivalence of co-categories between the co-category
of topological spaces and the oo-category of co-groupoids.

Definition 4.2.3 (Homotopy groups). For an oo-groupoid X and a basepoint x € X,

the nth homotopy group =, (X, z) is defined as follows. Consider
OA" ——x

Ips = A" 5 X l l commutes

A x

We define an equivalence relation on Z, ,: two morphisms f,g € Z, , are equivalent if
there exists a morphism H : A"t — X such that

Hsoamy = f
H(gi(An):.T 221, ,n—l
Hls,(any =g

Then
(X, 2) = Zy o/ ~ .

Remark 4.2.4. The lifting property defining co-groupoids ensures this actually is an
equivalence relation. It is not an equivalence relation in a general simplicial set.

Example 4.2.5. If n = 0 then m(X, x) is the set of connected components of the oo-
groupoid X.

Example 4.2.6. Suppose p : E — B is a Kan fibration between co-groupoids, e € F,
b=p(e), and F' = {b} xp E. Then there is a long exact sequence of groups

o Tl (B,b) = mp(Fre) = mo(E e) = m(B,b) — ...
for n > 0 ending with an exact sequence of pointed sets

- = m(B,b) = m(F,e) = mo(E,e) — mo(B,b).

Here, a sequence (A, a) EN (B,b) % (O, ¢) of pointed sets is exact if f(A) = g~'(c).
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Definition 4.2.7 (Weak equivalence). A morphism f : X — Y of co-groupoids is a weak
equivalence if it induces isomorphisms on all homotopy groups:

To(fx) : (X, 2) = mu (Y, f ()
is a bijection for all n > 0 and all basepoints z € X, and 71y X — mY is surjective.

Example 4.2.8. In the notation of Example 4.2.6, if all homotopy groups of F' are trivial
and 7y(FE) — mo(B) is surjective, then F — B is a weak equivalence.

Example 4.2.9. The inclusion
X={ze€C||z|=1} =2 C\{0} =Y

induces a weak equivalence Sing X — Sing Y of co-groupoids. Indeed, the existence of a
deformation retract Y — X; z +— z/|z| implies all homotopy groups are isomorphic.

Example 4.2.10 (Homotopy equivalence). Two oo-groupoids X and Y are homotopy
equivalent if there exist morphisms f: X — Y and g : Y — X such that go f and fog
are homotopic to the respective identity morphisms. Here, two morphisms a,b: A — B
are homotopic if there exists a morphism H : A x A — B such that H|ax0; = a and
H|axpy = b. By Whitehead’s theorem for oco-groupoids, a morphism is a homotopy
equivalence if and only if it is a weak equivalence.

4.3 Infinity categories

The standard reference for co-categories is Lurie, Higher Topos Theory, [Lur09]. There are
also a number of other texts, e.g., Haugseng, Yet another introduction to oo-categories,
[Hau25].

Definition 4.3.1 (Boardman, Vogt, 1973). An oco-category is a simplicial set C' such that
for every 0 < ¢ < n and each diagram

A —C
7
7/
| -
7/
ATL
there exists a (not necessarily unique) dashed arrow making a commutative triangle.

Example 4.3.2. If [ € Seta and C' € Caty, then Map(/,C) € Caty. A morphism
D — C between two oo-categories is called a functor.

(Exercise: Show that for any X € Seta, if Y is an oo-groupoid, resp. oo-category,
then so is Mapg,, (X,Y))

Example 4.3.3. Let C be a small category. Considering the ordered sets [n] as categories®

{0 =1 — .-+ — n} the assignment
N : [n] = Fun([n],C)

sending [n] to the set of functors [n] — C' defines a simplicial set. This is called the nerve
of C'. Explicitly,

5So, for 0 < 7,7 < n there is exactly one morphism i — j if i < j, and no morphisms otherwise.
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1. N(C)o is the set of objects of C,
2. N(C); is the set of (all) morphisms in C,

3. The two morphisms N(C); = N(C), induced by the two functors [0] =2 [1] send
morphisms in N(C); to their source and target.

xLy) — XY

4. The morphism N(C)y — N(C); induced by [1] — [0] sends each object to its
identity morphism.
X =  (X%X

5. N(C), is the set of composable morphisms X Ly 4 g7

6. The three maps do,d;,dy : N(C)2s=3N(C); induced by the three faithful functors
[1]3[2] send ERENF g, go f, and f respectively.

—

Y
N = Y52, xYy), xLy)

Xgon

7. More generally, N(C'),, is the set of sequences of n composable morphisms oI
and the various maps N(C'),, — N(C),, come from various combinations of compo-
sition and inserting identities.

Definition 4.3.4. Let C' € Cat,,. Elements of Cj are called objects and elements of Cy
are called 1-morphisms, or often just morphisms. Given two morphisms f,g € C such
that dof = dig (equivalently, a morphism of simplicial sets A? — ('), for any factorisation
A2 - A? -%5 €, the morphism dio € C; will be called a composition of g and f. For
any object X € Cj, the morphism s, X € (] is called the identity morphism of X, and
written idy.

Example 4.3.5. A morphism f : X — Y in an oco-category is called an equivalence if
there exists a morphism ¢ : Y — X and 2-cells ¢ and 7 of the form

idy

f Y g Y
N NS
X——X X

ldX

Y

Definition 4.3.6 (Mapping space). For an oo-category C' and objects x,y € Cjy, the
mapping space Mapq(x,y) is defined as the pullback

MapC(xng = {1:} Xc MapSetA<A17 C) Xc {y}

in the 1-category Seta where the fiber products are taken with respect to the source and
target maps dy, dy : Cy — Cy. The morphism set is

home(z,y) = mo Mape(z, y).
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Example 4.3.7. Any oco-groupoid is an oo-category. In particular, for any topological
space X, the simplicial set Sing X is an oco-category.

Example 4.3.8. There exists an oo-category Gpd., whose objects are small co-groupoids
and whose mapping spaces are equivalent to the mapping simplicial set defined above.

MapglodOO (X,Y) ~ Map e, (X,Y).
Example 4.3.9. For any oco-category C, there is a maximal sub-oco-groupoid
c=cc

called the core of C'. It has the same objects as C, but only the invertible morphisms.
More precisely, (C=),, consists of those n-simplices = € C,, such that all images of z in C;
are invertible morphisms in C'.

Example 4.3.10. There exists an co-category Cat., whose objects are small co-categories
and whose mapping spaces are equivalent to

MapCatoo(C7 D) = MapSetA(C7 D>g

Example 4.3.11. Let R € Ring. A bounded chain complex of projectives is a sequence

of morphisms
dn—l

L. p, o, s ]
in Proj(R) such that d,,_1d, = 0 and only finitely many P, are non-zero. A morphism
of chain complexes f, : P, — @, is a sequence a morphisms f, : P, — @, making
commutative squares. A homotopy of morphisms h : f, ~ g, is a sequence of morphisms
hy : Py — Qny1 such that f, — g, = dpi1hy + hy1d,,.
There exists an oo-category DP(R) whose objects are bounded chain complexes of
projectives and morphisms are

AL Po—= Q4
hOme(R)(P" Qo) = homotopy

For more details on this example, see Lurie, Higher Algebra, [Lurl7, §1.3.1 and §1.3.2].

Example 4.3.12. The simplicial set A® is an co-category but not an oo-groupoid (the
unique non-identity morphism is not invertible). The pushout A°® Lga1 Al of simplicial
sets is not an oo-category. (The unique non-degenerate 1-simplex cannot be composed
with itself).

4.4 Limits

Definition 4.4.1 (Limits in co-categories). Let C' € Caty and I € Seta. Given an object

X € O, write v(X) € Fun(I, C) for the constant functor I — A° 5 c.
For a morphism F : I — C, a limit of F is an object anF € C together with a
morphism 7(1&1 F) — F in Fun(/, C) such that for any object X € C, the natural map

Mapc (X, ILH F) — Mappyn(r,c) (v(X), F)

is an equivalence of co-groupoids. Dually, a colimit of F' is an object th € C together
with a natural transformation F' — ’y(hg F') such that for any object X € C', the natural
map

Mapc(lign Fv X) — MapFun(I,C) (F7 7(X>>

is an equivalence of co-groupoids.
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Example 4.4.2 (Initial and terminal objects). An initial object @, resp. terminal object
%, in an oco-category C'is a limit, resp. colimit, of the unique functor @ — C from the
empty oo-category. Equivalently, it is an object such that for any X € C, the mapping
space Map (@, X), resp. Mapq (X, *), is contractible, i.e., all homotopy groups are trivial,
or equivalently, Map = A°.

1. In the oco-category of oo-groupoids Gpd,:

e Initial object @, resp. terminal object x: the empty oco-groupoid, resp. the
point A°. Note that just as we can have very large categories which are equiv-
alent to the punctual category, we can have quite large co-groupoids which are
terminal objects. For example,

(a) for any n, the co-groupoid Sing R™ is a terminal object of Gpd...
(b) For any X € Gpd, and x € X, the co-groupoid Map(A!, X) x x {z} of
paths towards x is a terminal object of Gpd.

2. In the oo-category of pointed oco-groupoids:

e Initial and terminal object: AY (the point, which is both initial and terminal,
making this a pointed category)

3. In the oo-category Cat., of co-categories:

e Initial object &, resp. terminal object *: the empty oco-category &, resp. the
terminal oo-category AY with one object and only identity morphisms

e Terminal object: * (the terminal co-category with one object and only identity
morphisms)

4. In the derived category D°(R):

e Initial object: 0 (the zero chain complex)

e Terminal object: 0 (the zero chain complex)

As in Gpd,, we can have “large” objects which are also initial / terminal. For
example [--- — 0 — P = P — 0 — ...] is equivalent to 0 for any P. So it is also
an intial / terminal object.

Example 4.4.3 (Products and disjoint unions). Products and Coproducts are limits and
colimits over Al = A% L A”,

1. In Gpd, and Cat, products and coproducts are as in the 1-category Seta.
2. In D*(R) coproducts and products are isomorphic:
(Po X Qo) = P @ Qn = (P UQa)n.
Example 4.4.4 (Pullbacks).
1. In Gpd,, the limit of a diagram X — Z < Y is modelled by the simplicial set
X xzMap(A', Z) x5 Y.

If X ={z} =Y is a vertex of Z, then the limit {z} x 7 {2} in Gpd,, is the space of
loops from z to z.
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2. In Caty,: The limit of a diagram C' — D < FE is modelled by the simplicial set
C xp Map(Iso(A'), D) xp E.
where Iso(A!) is the free co-groupoid generated by Al. Explicitly, we have Iso(Al),, =
[Ticim{0. 1}
3. In Db(R): For chain complexes P, i> R, & (., the limit is modelled by the complex
Cone(P, @ Qo "5 RJ)[-1).
Here, for a general morphism of complexes A, i> B, one defines
Cone(A, EN Be)n =B, ® A,

with differential 7 Z;A] and
A- [m}n = An—m

Example 4.4.5. Suppose that a quasi-projective variety X is the union of two basic
opens X = U U V. Then the derived category D’(X) is equivalent to the pullback

Db(X) = Db(U) X pb(Uunv) Db(v)

in Cat,, where we define D*(Y) := D?(Oy(Y)) for affine varieties. More generally, if X
is a union of finitely many basic opens X = U} ;U; then the derived category is the limit

D'(X)= lm D'(Uyn---NU,)

ig<-++<im
Pushouts in Cat,, and Gpd,, are not so explicit in general.
Example 4.4.6. The pushout of a diagram P, + R, — Q, in D’(R) is modelled by the
chain complex
Cone(Re — Py @ Q).
4.5 Stable infinity categories
Definition 4.5.1. An co-category C' is stable if it satisfies the following conditions:

(Sta0) It is pointed. That is, it admits both an initial object @ and a final object * and
an equivalence @ = %. We write 0 for such an object.

(Stal) It admits fibres and cofibres. That is, for every f: X — Y, both
fib(f) ;=X xy 0 and cof(f)=0UxY
exist.

(Sta2) A commutative square of the form
Ty 9)

ls

— 7

X
0
is cartesian if and only if it is cocartesian.
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Example 4.5.2. For R € Ring the category D°(R) is stable.

Example 4.5.3. Suppose that C' is a pointed oco-category. The stabilisation Sp(C) is
defined as the limit
Sp(C) =lim(... 5 C 3 ¢ 5 C)

in Caty, where QX := x X x x. Every object in Sp(C') gives rise to a sequence of objects
Fy, Ei,... in C equipped with equivalences E,_; — QF,. We also have a canonical
functor

Q> :Sp(C) — C
namely, projection to the last component.

Proposition 4.5.4 ([HA, Cor.1.4.2.23]). Let C be an oo-category which admits finite
limits, and T a stable quasi-category. Then composition with the functor Q°° induces an
equivalence of co-categories

Fun™**(T, Sp(C)) — Fun™**(T, C)

where Fun™® means the full subcategory of functors sending finite limits to finite limits,

1.e., left exact functors.

Definition 4.5.5. The stabilisation of the category of pointed oo-groupoids is called the
category of spectra and is denoted

Spt = Sp(Gpd,, .)-
Remark 4.5.6. The equivalences E,, = QF, ., induces isomorphisms
ik, = Tit1Eny1
Given a spectrum F we define
milE =i By 1€ L
for any j such that the right hand side is defined.

Example 4.5.7. Suppose that C' C D in CatZ is a full sub-oco-category closed under
finite limits and finite colimits. The Verdier localisation D/C' is a stable co-category with
the same objects as D and mapping spaces

MapD/C<X7Y) = %ﬂ MapD(X/,Y)
X=X

where the colimit is over the oo-category of morphisms s : X’ — X such that fib(s) € C.

Example 4.5.8. The canonical functor D*(Z) — D*(Q) identifies D*(Q) with the Verdier
quotient of D®(Z) by the full sub-oo-category D?(Z)i: C DP(Z) of those complexes P,

— ker(PnoPn1)

whose homology groups H,(P) = (PP, are torsion.

DY(Z)/D"(Z)or = D*(Q).
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Example 4.5.9. Let X € QProj. The coherent Opn-modules O, O(1),...,O(n) induce
a sequence of stable sub-co-categories

0=C_,CCyC---CC,=D"(P"xX).
Namely, C; is generated by O, ..., O(i). We have equivalences
C;/Ci_1 =2 DP(X).
via the functors

DY(X) — D*(P"x X)
F—0@)@pF

4.6 Localising invariants

The original reference for the characterisation of algebraic K-theory as the universal
localising invariant is [BGT13]. For a graduate course about this see [HW21]
Write
Catsy
for the co-category whose objects are stably co-categories and morphisms are exact func-
tors. That is, functors which preserve finite limits and finite colimits.

Definition 4.6.1 (Idempotent completion). A stable co-category C' is idempotent com-
plete if every idempotent endomorphism p : X — X (i.e., pop ~ p) admits a splitting.
That is, there exists an isomorphism

X=YpZ

such that p is identified with the composition X — Y — X. We write CatP! C Cat® for
the full subcategory of idempotent complete stable co-categories. The inclusion admits a
left adjoint

(—)F: Cat™ — CatP

called idempotent completion.

Proposition 4.6.2. A square
C—~D
b
0——F

of small stable co-categories is a bifibre square in Catsl if it is a cartesian square in Cato
and E is (equivalent to) the Verdier localisation D/C of D along C. Such a square is a
fibre square in CatPt if E = (D/C)".

Definition 4.6.3. A functor F : CatP™ — Spt is called a localising invariant if it sends
bifibre squares to bifibre squares.
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4.7 K-theory

Theorem 4.7.1. The oo-category of localising functors F : CatP®™ — Spt equipped with
a natural transformation

(—)T = Q°F
admits an initial object K.

Remark 4.7.2. That is, K is the localising invariant “as close as possible” to the core
functor which sends C' € CatP! to its associated oo-groupoid C=. Note that in a pre-
cise mathematical sense, D°(R) is the closest stable oo-category to Proj(R), [Lurl?,
Thm.1.3.3.2, Thm.1.3.3.8].

Theorem 4.7.3. For n <1 and R € Ring, the homotopy groups
Tl (D°(R))
are the groups K,(R) we saw last time.

Example 4.7.4. Using the decomposition associated to O, O(1),...,O(n), we have

K(DY(P%)) @K
Example 4.7.5. For a finite field [F, with ¢ elements, we have:
Kn(IF):O forn < -1 (10)
Ko(Fy) = (11)
K (F,) = FX ~7/(q—1)Z (12)
Ky(F,) =0 for 1>1 (13)
Koy 1(F) 2 Z/(¢ —1)Z fori>1 (14)

The pattern in positive degrees follows from Quillen’s computation, while negative K-
groups vanish since [F; has finite global dimension.

Example 4.7.6. For the field of rational numbers Q:

K,(Q)=0 forn<-1 (15)
Ko(Q)=Z (16)
K,(Q) = Q* (17)
Q) = (z/4) < [ @/ (18)

p odd prime

The computation of K5(Q) is due to Tate and follows from Gauss’s first proof of quadratic
reciprocity. For higher K-groups, Borel proved that (modulo torsion):

K1 (Z) [tors =7 for k>0

Ki(Z)/tors =0 fori > 2;i#4k+1
Example 4.7.7 (Matsumoto’s theorem). For any field k, Matsumoto’s theorem states
that the second K-group is given by
L Rz kX

(a®(1—a)|a#0,1)

The relations a ® (1 — a) = 0 are called the Steinberg relations.

Ky(k) =
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5 Recent advances; open problems

5.1 Weibel’s Conjecture

Theorem 5.1.1 (Weibel’s Conjecture [Wei80], Kerz—Strunk-Tamme [KST18]). For a
Noetherian scheme X of finite Krull dimension d, we have K;(X) =0 for all i < —d.

There were many previous partial cases of Theorem 5.1.1. A non-exhaustive list is:
[Bas68], [Wei89], [Hae04], [KrilOa], [Cis13], [Kell4], [KS17], [KS22]. Many of them relied
on versions of Theorem 5.1.2.

Theorem 5.1.2 (Descent for blow-ups in regular centres [SGAT1, Exposé VII], [TT90]).
Suppose Z — X is a reqular immersion of classical schemes. Then there is a cartesian
square

K(X)——K(Z)

|

K(BixZ)—— K(E)
where BlxZ is the blow-up of X along Z, and E is the exceptional divisor.

If Z — X is not regular, then the above theorem fails! This can be corrected by using
formal completions. The idea to use formal completions can be considered as a version of
Grothendieck’s theorem on formal functions. Such formal completions in K-theory were
considered by many authors such as [KS02], [Cor06], [KrilOb], [GH06], [GH11], [Mor16],
[Mor18].

Theorem 5.1.3 ([KST18, Thm. A]). Suppose X is a Noetherian scheme, ¥ — X is
proper, Z — X is a closed immersion, and the induced morphism Y \ E — X \ Z is an
1somorphism, then

K(X)—lm K(Z,)

| |

K(Y) —lim K(E,)

18 a cartesian square of spectra, where'Y, and E, denote the nth infinitesimal thickenings
of Z in X and E in'Y respectively.

Theorem 5.1.3 was proven using derived schemes. These are schemes where instead of
rings, we use derived rings such as simplicial rings or animated rings.

5.2 Prismatic cohomology and K-theory of finite rings

Theorem 5.2.1 (Antieau-Krause—Nikolaus, [AKN22]). We can now calculate the K-
theory of rings of the form Z/p* to quite high degrees using computers.

As K(Z/p*;Z,) ~ m>0TC(Z/p*;Z,) by [DGM13, HM03], it is enough to determine
T'C of these rings. To do so, we use the filtration on 7'C' constructed by Bhatt-Morrow—
Scholze in [BMS19]. If R is a quasisyntomic ring, there is a complete decreasing filtration
F2rTC(R;Z,) with associated graded pieces

syn

FoZTC (R Zy) =~ Zy(i) (R)([2i],

syn
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where Z,(i)(R) is the weight ¢ syntomic cohomology of R introduced in [BMS19]. The
syntomic complexes provide a p-adic analogue of the motivic filtration on K-theory.

There is a spectral sequence which larger vanishes and we end up with a three term
complex.

Theorem 5.2.2 (Antieau-Krause-Nikolaus [AKN22]). For i > 1, there is an explicit
cochain complex
in—1 SY0  r2(in—1) SY™M, rmin—1
Zin—t 2 g2tin=h) L 7k
quasi-isomorphic to Z,(i)(Z/p"). The terms are free Z,-modules of the given ranks in

cohomological degrees 0, 1, and 2.

This can be put into a computer. A new theorem coming out of this is:

Theorem 5.2.3 (Even vanishing theorem [AKN22]). Ifi > 2(p’+1)2(p"—1), then H*(Z,(i)(Z/p™)) =
0 and hence Ky;_o(Z/p™) = 0 if additionally i > 2.

This gives a quantitative bound on the vanishing of even K-groups, extending earlier
results of Angeltveit [Angll].

Corollary 5.2.4 (Order formula [AKN22]). For any Z/p",

# K21 (Z/p" Lp) — in-n)

H#Koio(Z)p™; Zy)

5.3 Failure of the telescope conjecture

The telescope conjecture was one of the seven Ravenel conjectures from 1984 concerning
the stable homotopy groups of spheres and chromatic homotopy theory. While six of the
seven conjectures were eventually proven, the telescope conjecture remained open until
2023.

One way to understand the objects appearing in the conjecture is in terms of tensor
triangulated geometry. The category of spectra Spt as a monoidal structure, and we
can pretend it is D*(X) for some (hypothetical) topological space X. The points of the
topological space Spec(Spt) correspond to certain monoid objects in Spt. These are
indexed by primes p and a natural number n. In this setting one implicitly fixes a prime
p, and talks about the n-th Morava K -theory K (n). Just as with D’(R) in scheme theory,
we can perform certain “localisations” in Spt.

Conjecture 5.3.1 (Ravenel’s telescope conjecture, [Rav84]). For each prime p and height
n > 0, the telescopic localization Ly,) agrees with the K(n)-localization Ly, on the
category of spectra.

Here, T'(n) denotes the nth telescope, a spectrum built from the Bousfield-Kuhn func-
tor, and K (n) is the nth Morava K-theory spectrum.

Theorem 5.3.2 (Burklund-Hahn-Levy-Schlank, [BHLS23]). The telescope conjecture is
false. For each prime p and height n+1 > 2, there exist spectra X such that Lypg,11)X #
LgmynX.

Proof sketch. The authors construct explicit counterexamples using algebraic K-theory.
They show that the T'(n 4 1)-localized algebraic K-theory of BP{(n)"%) is not K(n +
1)-local, where BP{n)("2) denotes a certain truncated Brown-Peterson spectrum with
additional structure. O
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5.4 Stable homotopy groups of spheres

There should be a section here about recent work of Isaksen, Wang, and Xu [ITWX20,
IWX23] calculating stable homotopy groups of spheres using motivic homotopy theory.
However, I can’t possibly improve on Piotr Pstragowski’s beautiful talk: https://www.
ms.u-tokyo.ac.jp/video/conference/2023Motives_in_Tokyo/cf2022-111.html so you
should just go watch that.

5.5 Atiyah-Hirzebruch spectral sequence

There is a generalisation of the Grothendieck-Riemann-Roch isomorphism that was con-
jectured by Lichtenbaum, Quillen, and Beilinson in various forms. It was constructed by
multiple authors. See [Weibel, VI.4.4] for a historical account.

Theorem 5.5.1. For X smooth over a field, there are functors Z(n) : Sm;* — D(Z) and
a spectral sequence
HP (X, 2(~q) — Ky oX)

which degenerates rationally to give isomorphisms
Ko(X)q = &L H* (X, Qi) = &_eCHai(X, n)q.

Here, Bloch’s higher Chow groups C'H,(X,n) are more general versions of the Chow
groups A,(X) from the second lecture. The group C'H;(X,n) is generated by cycles in
Z;(X x A}) which intersect the boundary properly. Here A} = V(3 x,, — 1) C A"*!
and the boundary is the intersection with the axes V(zoz;...x,) (Similar to Af, from
the last lecture).

Example 5.5.2.
1. Z(n) =0;n <0
2. 7(0) = Z;
3. Z(1) = G,[1].

There are a number of models for the complexes Z(n). As mentioned above, one
of them is via Bloch’s higher Chow groups, [Blo86]. Another is via the slice filtration,
[Voe02]. This is a sequence of presheaves of spectra

o= fonn K = UK — - = foK = K € PSh(Smy, Spt)

such that
Z(n)[2n| = cofib(fr1 K — [, K),

[Lev08]. The presheaf f,K is essentially, the colimit of all maps the form (P!, c0)™ A
(3X° X, )[i]] = K in the Morel-Voevodsky stable homotopy category.

We would like to extend this spectral sequence to non-smooth schemes. In fact, there
is a version for quasi-projective varieties converging to G-theory, but we would like one
that captures K-theory.

Definition 5.5.3. A presheaf of spectra F' is a procdh sheaf if it sends formal abstract
blowup squares to cartesian squares of spectra.b

6We also require that it be a Nisnevich sheaf, but I don’t want to get distracted with that here.

43



The canonical forgetful functor admits a left adjoint
Shvrocan({acgs schemes}) < PSh(Sm) @ Lyrocdn

The following theorem is a combination of an observation of Bhatt—Lurie, and a result
of K.-Saito.

Theorem 5.5.4 ([KS24, Thm.1.8]). The left adjoint sends K-theory to K -theory.

If we push the slice filtration through this left adjoint, then we obtain a spectral
sequence with graded pieces LyocdnZ(n)[2n]. Consequently, we obtain a spectral sequence.

Corollary 5.5.5 ([KS24]). For any Noetherian scheme of finite dimension there is a
convergent spectral sequence

H2 9 (X, Z(0) procan) = K;(X)

procdh

Remark 5.5.6. [EM23] (over a field), [Bou24| (mixed characteristic), show that Z()yrocdn
can be obtained from Z(i).q, and Z(i)T, and also prove many properties about this (e.g.,
projective bundle formula).

5.6 Open problems

Here is a somewhat random selection of open conjectures.

Conjecture 5.6.1 (Parshin’s conjecture). For any smooth projective variety X defined
over a finite field, the higher algebraic K-groups vanish up to torsion:

Conjecture 5.6.2 (Finite generation conjecture for K-theory). For any ring R that is
finitely generated over Z, the groups K, (R) should be finitely generated.

Conjecture 5.6.3 (Beilinson—Soulé vanishing). For X a smooth variety, for all i < 0 one
has .
H'(X,Z(n)) = 0.

Conjecture 5.6.4 (Vandiver’s conjecture, see [Weil3, Conj.VI.10.8]). If £ is an irregular
prime, then the group Pic(Z[¢, + ¢; !]) has no ¢-torsion.

Vandiver’s conjecture has been verified for all primes up to 163 million.

Theorem 5.6.5 (Connection to K-theory, [Weil3, Thm.VI1.10.10]). If Vandiver’s conjec-
ture holds for ¢, then the (-primary torsion subgroup of Ku,_o(Z) is cyclic for all k.
If Vandiver’s conjecture holds for all ¢, then the groups Ky._o(Z) are cyclic for all k.

Conjecture 5.6.6 ((One of) Beilinson’s conjecture(s), [Nek94, Conj.6.5(2)]). Let X be
a smooth projective variety over Q. Then

ordy—, L(h*" (X)), s) = dimg CH"(X), ® Q

where L(h?"71(X), s) is the L-function associated to the motive h?"~1(X), and CH"(X),
denotes the Chow group of codimension n cycles on X that are homologically equivalent
to zero.
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