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5.1 Weibel’s Conjecture

Theorem 5.1.1 (Weibel’s Conjecture [Wei80], Kerz—Strunk—-Tamme [KST18]).
For a Noetherian scheme X of finite Krull dimension d, we have K;(X) = 0 for
all i < —d.

There were many previous partial cases of Theorem 5.1.1. A non-exhaustive
list is: [Bas68], [Wei89], [Hae04], [KrilOal, [Cis13], [Kell4], [KS17], [KS22]. Many
of them relied on versions of Theorem 5.1.2.

Theorem 5.1.2 (Descent for blow-ups in regular centres [SGAT1, Exposé VII],
[TT90]). Suppose Z — X is a reqular immersion of classical schemes. Then there
1S a cartesian square

K(X)—— K(Z)

L

K(Blx7Z)—— K(F)
where Blx Z is the blow-up of X along Z, and E s the exceptional divisor.

If Z — X is not regular, then the above theorem fails! This can be corrected by
using formal completions. The idea to use formal completions can be considered as
a version of Grothendieck’s theorem on formal functions. Such formal completions
in K-theory were considered by many authors such as [KS02], [Cor06], [Kril0Ob],
[GHO06], [GH11], [Mor16], [Mor18].

Theorem 5.1.3 ([KST18, Thm. A]). Suppose X is a Noetherian scheme, Y — X
is proper, Z — X is a closed immersion, and the induced morphism Y\ E — X\ Z



18 an isomorphism, then

K(Y)—lim K(E,)

1s a cartesian square of spectra, where Y, and E, denote the nth infinitesimal
thickenings of Z in X and E in'Y respectively.

Theorem 5.1.3 was proven using derived schemes. These are schemes where
instead of rings, we use derived rings such as simplicial rings or animated rings.

5.2 Prismatic cohomology and K-theory of finite rings

Theorem 5.2.1 (Antieau—Krause—Nikolaus, [AKN22]). We can now calculate the
K -theory of rings of the form Z/p* to quite high degrees using computers.

As K(Z/p*;Z,) ~ 70TC(Z/p*;Z,) by [DGM13, HMO03], it is enough to de-
termine T'C' of these rings. To do so, we use the filtration on T'C' constructed
by Bhatt—-Morrow—Scholze in [BMS19]. If R is a quasisyntomic ring, there is a
complete decreasing filtration F=*T'C(R;Z,) with associated graded pieces

syn

FZITC(R; Z,) ~ Z,(i)(R)[2i),

syn

where Z,(i)(R) is the weight ¢ syntomic cohomology of R introduced in [BMS19].
The syntomic complexes provide a p-adic analogue of the motivic filtration on
K-theory.

There is a spectral sequence which larger vanishes and we end up with a three
term complex.

Theorem 5.2.2 (Antieau-Krause-Nikolaus [AKN22|). For i > 1, there is an ex-
plicit cochain complex

in—1 SYTo 2(in—1) SY™u in—1
L, — L, — Z
quasi-isomorphic to Z,(i)(Z/p™). The terms are free Z,-modules of the given ranks
in cohomological degrees 0, 1, and 2.
This can be put into a computer. A new theorem coming out of this is:

Theorem 5.2.3 (Even vanishing theorem [AKN22]). Ifi > g (p" — 1), then
H*(Z,()(Z/p"™)) = 0 and hence Ky _o(Z/p™) = 0 if additionally i > 2.
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This gives a quantitative bound on the vanishing of even K-groups, extending
earlier results of Angeltveit [Angll].

Corollary 5.2.4 (Order formula [AKN22]). For any Z/p",

# K21 (Z/p" Zy) i)

H#Koio(Z)p™; Zy)

5.3 Failure of the telescope conjecture

The telescope conjecture was one of the seven Ravenel conjectures from 1984 con-
cerning the stable homotopy groups of spheres and chromatic homotopy theory.
While six of the seven conjectures were eventually proven, the telescope conjecture
remained open until 2023.

One way to understand the objects appearing in the conjecture is in terms of
tensor triangulated geometry. The category of spectra Spt as a monoidal structure,
and we can pretend it is D?(X) for some (hypothetical) topological space X. The
points of the topological space Spec(Spt) correspond to certain monoid objects in
Spt. These are indexed by primes p and a natural number n. In this setting one
implicitly fixes a prime p, and talks about the n-th Morava K-theory K(n). Just
as with D°(R) in scheme theory, we can perform certain “localisations” in Spt.

Conjecture 5.3.1 (Ravenel’s telescope conjecture, [Rav84]). For each prime p and
height n > 0, the telescopic localization Ly, agrees with the K(n)-localization
Lk on the category of spectra.

Here, T'(n) denotes the nth telescope, a spectrum built from the Bousfield-
Kuhn functor, and K (n) is the nth Morava K-theory spectrum.

Theorem 5.3.2 (Burklund-Hahn-Levy-Schlank, [BHLS23]). The telescope con-
jecture s false. For each prime p and height n+ 1 > 2, there exist spectra X such
that L1y X 2 Ly X

Proof sketch. The authors construct explicit counterexamples using algebraic K-
theory. They show that the T'(n + 1)-localized algebraic K-theory of BP(n)"%) is
not K(n + 1)-local, where BP{n)"*) denotes a certain truncated Brown-Peterson
spectrum with additional structure. O

5.4 Atiyah-Hirzebruch spectral sequence

There is a generalisation of the Grothendieck—-Riemann-Roch isomorphism that
was conjectured by Lichtenbaum, Quillen, and Beilinson in various forms. It was
constructed by multiple authors. See [Weibel, VI.4.4] for a historical account.
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Theorem 5.4.1. For X smooth over a field, there are functors Z(n) : Sm7¥ —
D(Z) and a spectral sequence

H™9 (X, Z(~q)) = K-y o(X)
which degenerates rationally to give isomorphisms
Ko(X)o = &L H* "(X,Q()) = & yCHyi(X,n)q.

Here, Bloch’s higher Chow groups C'H,(X,n) are more general versions of
the Chow groups A,(X) from the second lecture. The group C'H;(X,n) is gen-
erated by cycles in Z;(X x A}]) which intersect the boundary properly. Here
A? = V(> x, —1) € A" and the boundary is the intersection with the axes

V(wory ... x,) (Similar to Al from the last lecture).

Example 5.4.2.
1. Z(n) =0;n <0
2. Z(0) = Z;
3. Z(1) =2 Gu[1].

There are a number of models for the complexes Z(n). As mentioned above,
one of them is via Bloch’s higher Chow groups, [Blo86]. Another is via the slice
filtration, [Voe02]. This is a sequence of presheaves of spectra

o= o K — fuK — - — foK = K € PSh(Smy, Spt)

such that
Z(n)[2n] = cofib(f,11 K — fuK),

[Lev08]. The presheaf f,, K is essentially, the colimit of all maps the form (P!, 0c0)""A
(3X*°X,)[i] — K in the Morel-Voevodsky stable homotopy category.

We would like to extend this spectral sequence to non-smooth schemes. In
fact, there is a version for quasi-projective varieties converging to G-theory, but
we would like one that captures K-theory.

Definition 5.4.3. A presheaf of spectra F' is a procdh sheaf if it sends formal
abstract blowup squares to cartesian squares of spectra.!

"'We also require that it be a Nisnevich sheaf, but I don’t want to get distracted with that
here.



The canonical forgetful functor admits a left adjoint
Shvrocan ({acqs schemes}) < PSh(Sm) : Lyrocan

The following theorem is a combination of an observation of Bhatt—Lurie, and
a result of K.-Saito.

Theorem 5.4.4 ([KS24, Thm. 1.8)). The left adjoint sends K -theory to K -theory.

If we push the slice filtration through this left adjoint, then we obtain a spectral
sequence with graded pieces Ly,ocanZ(n)[2n]. Consequently, we obtain a spectral
sequence.

Corollary 5.4.5 ([KS24]). For any Noetherian scheme of finite dimension there
1S a convergent spectral sequence

H2 3 (X 28 procan) = K;(X)

procdh

Remark 5.4.6. [EM23] (over a field), [Bou24] (mixed characteristic), show that
Z(1%) procan, can be obtained from Z(%).q, and Z(i)T¢, and also prove many properties
about this (e.g., projective bundle formula).

5.5 Open problems

Here is a somewhat random selection of open conjectures.

Conjecture 5.5.1 (Parshin’s conjecture). For any smooth projective variety X
defined over a finite field, the higher algebraic K-groups vanish up to torsion:

Conjecture 5.5.2 (Finite generation conjecture for K-theory). For any ring R
that is finitely generated over Z, the groups K, (R) should be finitely generated.

Conjecture 5.5.3 (Beilinson—Soulé vanishing). For X a smooth variety, for all
1 < 0 one has

H'(X,Z(n)) = 0.

Conjecture 5.5.4 (Vandiver’s conjecture, see [Weil3, Conj.VI.10.8]). If ¢ is an
irregular prime, then the group Pic(Z[(, + ¢, ') has no ¢-torsion.

Vandiver’s conjecture has been verified for all primes up to 163 million.



Theorem 5.5.5 (Connection to K-theory, [Weil3, Thm.VI1.10.10]). If Vandiver’s
conjecture holds for ¢, then the (-primary torsion subgroup of Kyx_o(7Z) is cyclic
for all k.

If Vandiver’s congecture holds for all €, then the groups Kx_o(Z) are cyclic for
all k.

Conjecture 5.5.6 ((One of) Beilinson’s conjecture(s), [Nek94, Conj.6.5(2)]). Let
X be a smooth projective variety over Q. Then

OrdS:nL(h?nil(X), S) = dlmQ OHn(X)o & @

where L(h*"71(X),s) is the L-function associated to the motive h?"~}(X), and
CH"(X)o denotes the Chow group of codimension n cycles on X that are homo-
logically equivalent to zero.
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