4 K-theory as the universal localising invariant

Contents

4		heory as the universal localising invariant	
	4.1	Simplicial sets	1
	4.2	Infinity groupoids	4
	4.3	Infinity categories	6
	4.4	Limits	9
	4.5	Stable infinity categories	11
	4.6	Localising invariants	13
	4.7	K-theory	14

In the last lecture we generalised K_0 to the pair K_0 , K_1 by moving from the set $\operatorname{Proj}(R)_{/\cong}$ to the groupoid $\operatorname{Proj}(R)^{\cong}$. In this lecture we generalise this process to get higher K_0, K_1, K_2, \ldots by considering ∞ -groupoids. These form an ∞ -category.

4.1 Simplicial sets

References for simplicial sets and ∞ -groupoids (which used to be called Kan complexes):

- 1. May, Simplicial objects in algebraic topology.
- 2. Bousfield–Kan, Homotopy limits, completions and localizations.
- 3. Goerss–Jardine, Simplicial homotopy theory.

Recall that a directed graph consists of a set G_0 of vertices, a set G_1 of edges and two morphisms

$$d_0, d_1: G_1 \rightrightarrows G_0$$

which associate to each edge $e \in G_1$ a source $d_1e \in G_0$ and a target $d_0e \in G_0$.

We can generalise this in higher dimensions by allowing "n-dimensional edges" for all $n \in \mathbb{N}$. The information of all these higher edges and how they are related to each other is organised in the concept of a *simplicial set*.

Definition 4.1.1. We write $\Delta \subseteq \text{LinOrdSet}$ for the full subcategory of the category LinOrdSet of linearly ordered sets whose objects are finite and non-empty. In other words, those linearly ordered sets which are isomorphic to the linearly ordered set $[n] = \{0 < 1 < \cdots < n\}$ for some $n \ge 0$. Morphisms are those morphisms of sets $p: [n] \to [m]$ such that $i \le j \implies p(i) \le p(j)$.

Example 4.1.2. For each $0 \le j \le n$ with $n \ne 0$, the *face* morphism $\delta_j : [n-1] \to [n]$ are defined as the unique injection which does not have j in its image.

Example 4.1.3. For each $0 \le j \le n$ the degeneracy morphism $\sigma_j : [n+1] \to [n]$ is defined as the unique surjection which sends both j and j+1 to j.

Exercise. Show that every morphism $[n] \to [m]$ can be written as a composition of face and degeneracy morphisms.

Definition 4.1.4. The category of simplicial sets \mathcal{S} et_{Δ} is the category of functors $\Delta^{op} \to \mathcal{S}$ et, so

$$\operatorname{Set}_{\Delta} := \operatorname{PSh}(\Delta)$$

Given such a functor $X : \Delta^{op} \to \mathcal{S}$ et we write $X_n := X([n])$. Elements of X_n are called *n-simplices* of X..

Example 4.1.5. For any simplicial set $X : \Delta^{op} \to \mathcal{S}$ et the morphisms

$$d_j: X_n \to X_{n-1}.$$

corresponding to the δ_j are called *face* morphisms. For $x \in X_n$ we call $d_j x$ the *jth* face of x. The morphisms

$$s_j: X_n \to X_{n+1}$$
.

corresponding to the σ_j are called degeneracy morphisms.

Example 4.1.6 (Δ^n) . For each n, the functor $\Delta^n := \hom_{\Delta}(-, [n]) : \Delta^{op} \to \mathcal{S}$ et defines a simplicial set. By Yoneda's Lemma, for any $X \in \mathcal{S}$ et_{Δ},

$$\hom_{\mathcal{S}\operatorname{et}_{\Delta}}(\Delta^n, X) \cong X_n.$$

Example 4.1.7 $(\partial \Delta^n)$. Consider the morphisms of simplicial sets $\delta_j : \Delta^{n-1} \to \Delta^n$. We define

$$\partial \Delta^n = \bigcup_{j=0}^n \delta_j(\Delta^{n-1})$$

as the union of these faces. Explicitly, $(\partial \Delta^n)_j \subseteq (\Delta^n)_j = \hom_{\Delta}([j], [n])$ is the set of morphisms $[j] \to [n]$ of linearly ordered sets which are not surjective. This can also be described as the colimit

$$\partial \Delta^n = \varinjlim_{[i] \subseteq [n]} \Delta^i$$

In particular, for any other simplicial set X we have

$$hom(\partial \Delta^n, X) = \varprojlim_{\substack{[i] \subseteq [n] \\ n-2 \le i \le n-1}} X_i.$$

That is, a morphism $\partial \Delta^n \to X$ is the same thing as a set of (n-1)-simplicies $x_0, \ldots, x_n \in X_{n-1}$ satisfying $d_i x_j = d_j x_i$.

Definition 4.1.8 (Λ_i^n) . For $0 \le j \le n$ we define the *jth horn* as the union

$$\Lambda_j^n = \bigcup_{i \neq j} \delta_i(\Delta^{n-1}).$$

Equivalently, $(\Lambda_j^n)_i \subseteq (\Delta^n)_i = \hom_{\Delta}([i], [n])$ is the set of those $[i] \to [n]$ whose image does not contain the subset $\{0, 1, \ldots, j-1, j+1, \ldots, n\}$.

Example 4.1.9 (Sing X). Define

$$\Delta_{\text{top}}^{n} := \left\{ (x_0, \dots, x_n) \mid 0 \le x_i \le 1; \sum_{i=0}^{n} x_i = 1 \right\} \subseteq \mathbb{R}^{n+1}$$

to be the convex hull of the standard basis vectors $e_i = (0, \dots, 0, 1, 0, \dots, 0)$. So Δ_{top}^0 is a point, Δ_{top}^1 is a line segment, Δ_{top}^2 is a triangle, Δ_{top}^3 is a tetrahedron, ... Any morphism $p:[n] \to [m]$ in Δ defines an \mathbb{R} -linear morphism $\mathbb{R}^{n+1} \to \mathbb{R}^{m+1}$;

Any morphism $p:[n] \to [m]$ in Δ defines an \mathbb{R} -linear morphism $\mathbb{R}^{n+1} \to \mathbb{R}^{m+1}$; $e_i \mapsto e_{p(i)}$, which restricts to a continuous morphism $\Delta_{\text{top}}^n \to \Delta_{\text{top}}^m$. In this way we get a functor

$$\Delta \to \mathcal{T}$$
op; $[n] \mapsto \Delta_{\text{top}}^n$

from Δ to the category of topological spaces. For any other topological space X, the assignment

$$\operatorname{Sing} X : [n] \mapsto \operatorname{hom}_{\mathcal{T}op}(\Delta_{\operatorname{top}}^n, X)$$

defines a simplicial set. Explicitly,

- 1. $\operatorname{Sing}_0 X$ is the set of points of X,
- 2. $\operatorname{Sing}_1 X$ is the set of paths in X,
- 3. $\operatorname{Sing}_2 X$ is the set of triangles in X,
- 4. ...

Source: Wikimedia Commons, CC BY-SA license

Example 4.1.10 (Product of simplicial sets). For simplicial sets X and Y, their product $X \times Y$ is defined by

$$(X \times Y)_n = X_n \times Y_n$$

with structure morphisms acting componentwise.

Example 4.1.11 (Mapping simplicial sets). For simplicial sets X and Y, the mapping simplicial set Map(X,Y) has n-simplices given by

$$\operatorname{Map}_{\operatorname{Set}_{\Delta}}(X,Y)_n = \operatorname{hom}_{\operatorname{Set}_{\Delta}}(X \times \Delta^n, Y)$$

The maps associated to $[n] \to [m]$ are induced by the corresponding $\Delta^n \to \Delta^m$.

4.2 Infinity groupoids

Definition 4.2.1 (Kan fibration). A morphism $f: X \to Y$ of simplicial sets is a $Kan\ fibration$ if for every $0 \le j \le n$ with $0 \ne n$ and commutative square

a dashed morphism exists making two triangles commutative. A simplicial set X is an ∞ -groupoid if the canonical morphism $X \to \Delta^0$ is a Kan fibration.

Example 4.2.2. If X is a topological space, then Sing X is an ∞ -groupoid. In fact, by the homotopy hypothesis, there is an equivalence of ∞ -categories between the ∞ -category of topological spaces and the ∞ -category of ∞ -groupoids.

Definition 4.2.3 (Homotopy groups). For an ∞ -groupoid X and a basepoint $x \in X_0$, the nth homotopy group $\pi_n(X, x)$ is defined as follows. Consider

$$Z_{n,x} := \left\{ \Delta^n \xrightarrow{f} X \middle| \begin{array}{c} \partial \Delta^n \longrightarrow x \\ \downarrow & \downarrow \\ \Delta^n \xrightarrow{f} X \end{array} \right. \text{commutes} \right\}$$

We define an equivalence relation on $Z_{n,x}$: two morphisms $f, g \in Z_{n,x}$ are equivalent if there exists a morphism $H: \Delta^{n+1} \to X$ such that

$$H|_{\delta_0(\Delta^n)} = f$$

 $H|_{\delta_i(\Delta^n)} = x$ $i = 1, \dots, n-1$
 $H|_{\delta_n(\Delta^n)} = g$

Then

$$\pi_n(X,x) = Z_{n,x}/\sim$$
.

Remark 4.2.4. The lifting property defining ∞ -groupoids ensures this actually is an equivalence relation. It is not an equivalence relation in a general simplicial set.

Example 4.2.5. If n = 0 then $\pi_0(X, x)$ is the set of connected components of the ∞ -groupoid X.

Example 4.2.6. Suppose $p: E \to B$ is a Kan fibration between ∞ -groupoids, $e \in E$, b = p(e), and $F = \{b\} \times_B E$. Then there is a long exact sequence of groups

$$\dots \pi_{n+1}(B,b) \to \pi_n(F,e) \to \pi_n(E,e) \to \pi_n(B,b) \to \dots$$

for n > 0 ending with an exact sequence of pointed sets

$$\cdots \rightarrow \pi_1(B,b) \rightarrow \pi_0(F,e) \rightarrow \pi_0(E,e) \rightarrow \pi_0(B,b).$$

Here, a sequence $(A, a) \xrightarrow{f} (B, b) \xrightarrow{g} (C, c)$ of pointed sets is exact if $f(A) = g^{-1}(c)$.

Definition 4.2.7 (Weak equivalence). A morphism $f: X \to Y$ of ∞ -groupoids is a *weak equivalence* if it induces isomorphisms on all homotopy groups:

$$\pi_n(f,x):\pi_n(X,x)\to\pi_n(Y,f(x))$$

is a bijection for all $n \geq 0$ and all basepoints $x \in X_0$, and $\pi_0 X \to \pi_0 Y$ is surjective.

Example 4.2.8. In the notation of Example 4.2.6, if all homotopy groups of F are trivial and $\pi_0(E) \to \pi_0(B)$ is surjective, then $E \to B$ is a weak equivalence.

Example 4.2.9. The inclusion

$$X = \{ z \in \mathbb{C} \mid |z| = 1 \} \to \mathbb{C} \setminus \{ 0 \} = Y$$

induces a weak equivalence Sing $X \to \operatorname{Sing} Y$ of ∞ -groupoids. Indeed, the existence of a deformation retract $Y \to X$; $z \mapsto z/|z|$ implies all homotopy groups are isomorphic.

Example 4.2.10 (Homotopy equivalence). Two ∞ -groupoids X and Y are homotopy equivalent if there exist morphisms $f: X \to Y$ and $g: Y \to X$ such that $g \circ f$ and $f \circ g$ are homotopic to the respective identity morphisms. Here, two morphisms $a, b: A \to B$ are homotopic if there exists a morphism $H: A \times \Delta^1 \to B$ such that $H|_{A \times \{0\}} = a$ and $H|_{A \times \{1\}} = b$. By Whitehead's theorem for ∞ -groupoids, a morphism is a homotopy equivalence if and only if it is a weak equivalence.

4.3 Infinity categories

The standard reference for ∞ -categories is [Lurie, Higher Topos Theory].

There are also a number of other texts, e.g., [Haugseng, Yet another introduction to infinity categories].

Definition 4.3.1 (Boardman, Vogt, 1973). An ∞ -category is a simplicial set C such that for every 0 < i < n and each diagram

there exists a (not necessarily unique) dashed arrow making a commutative triangle.

Example 4.3.2. If $I \in Set_{\Delta}$ and $C \in Cat_{\infty}$, then $Map(I, C) \in Cat_{\infty}$. A morphism $D \to C$ between two ∞ -categories is called a *functor*.

(Exercise: Show that for any $X \in \mathcal{S}et_{\Delta}$, if Y is an ∞ -groupoid, resp. ∞ -category, then so is $\operatorname{Map}_{\mathcal{S}et_{\Delta}}(X,Y)$)

Example 4.3.3. Let C be a small category. Considering the ordered sets [n] as categories $\{0 \to 1 \to \cdots \to n\}$ the assignment

$$N:[n]\mapsto \operatorname{Fun}([n],C)$$

The So, for $0 \le i, j \le n$ there is exactly one morphism $i \to j$ if $i \le j$, and no morphisms otherwise.

sending [n] to the set of functors $[n] \to C$ defines a simplicial set. This is called the *nerve* of C. Explicitly,

- 1. $N(C)_0$ is the set of objects of C,
- 2. $N(C)_1$ is the set of (all) morphisms in C,
- 3. The two morphisms $N(C)_1 \rightrightarrows N(C)_0$ induced by the two functors $[0] \rightrightarrows [1]$ send morphisms in $N(C)_1$ to their source and target.

$$(X \xrightarrow{f} Y) \qquad \mapsto \qquad X, Y$$

4. The morphism $N(C)_0 \to N(C)_1$ induced by $[1] \to [0]$ sends each object to its identity morphism.

$$X \mapsto (X \stackrel{\mathrm{id}_X}{\to} X)$$

- 5. $N(C)_2$ is the set of composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$.
- 6. The three maps $d_0, d_1, d_2 : N(C)_2 \xrightarrow{\Rightarrow} N(C)_1$ induced by the three faithful functors $[1] \xrightarrow{\Rightarrow} [2]$ send $\xrightarrow{f} \xrightarrow{g}$ to $g, g \circ f$, and f respectively.

$$X \xrightarrow{g \circ f} Z \qquad \mapsto \qquad (Y \xrightarrow{g} Z), \quad (X \xrightarrow{g \circ f} Y), \quad (X \xrightarrow{f} Y)$$

7. More generally, $N(C)_n$ is the set of sequences of n composable morphisms $\xrightarrow{f_1} \dots \xrightarrow{f_n}$ and the various maps $N(C)_n \to N(C)_m$ come from various combinations of composition and inserting identities.

Definition 4.3.4. Let $C \in \mathcal{C}at_{\infty}$. Elements of C_0 are called *objects* and elements of C_1 are called 1-morphisms, or often just *morphisms*. Given two morphisms $f, g \in C_1$ such that $d_0 f = d_1 g$ (equivalently, a morphism of simplicial sets $\Lambda_1^2 \to C$), for any factorisation $\Lambda_1^2 \to \Delta^2 \xrightarrow{\sigma} C$, the morphism $d_1 \sigma \in C_1$ will be called a composition of g and f. For any object $X \in C_0$, the morphism $s_0 X \in C_1$ is called the *identity morphism* of X, and written id_X .

Example 4.3.5. A morphism $f: X \to Y$ in an ∞ -category is called an *equivalence* if there exists a morphism $g: Y \to X$ and 2-cells σ and τ of the form

Definition 4.3.6 (Mapping space). For an ∞ -category C and objects $x, y \in C_0$, the mapping space $\text{Map}_C(x, y)$ is defined as the pullback

$$\operatorname{Map}_{C}(x, y) := \{x\} \times_{C} \operatorname{Map}_{\operatorname{Set}_{\Delta}}(\Delta^{1}, C) \times_{C} \{y\}$$

in the 1-category Set_{Δ} where the fiber products are taken with respect to the source and target maps $d_1, d_0: C_1 \to C_0$. The morphism set is

$$hom_C(x, y) = \pi_0 \operatorname{Map}_C(x, y).$$

Example 4.3.7. Any ∞ -groupoid is an ∞ -category. In particular, for any topological space X, the simplicial set Sing X is an ∞ -category.

Example 4.3.8. There exists an ∞ -category $\mathcal{G}pd_{\infty}$ whose objects are small ∞ -groupoids and whose mapping spaces are equivalent to the mapping simplicial set defined above.

$$\operatorname{Map}_{\mathcal{G}\operatorname{pd}_{\infty}}(X,Y) \simeq \operatorname{Map}_{\mathcal{S}\operatorname{et}_{\Delta}}(X,Y).$$

Example 4.3.9. For any ∞ -category C, there is a maximal sub- ∞ -groupoid

$$C^{\cong} \subset C$$

called the *core* of C. It has the same objects as C, but only the invertible morphisms. More precisely, $(C^{\cong})_n$ consists of those n-simplices $x \in C_n$ such that all images of x in C_1 are invertible morphisms in C.

Example 4.3.10. There exists an ∞ -category $\mathcal{C}at_{\infty}$ whose objects are small ∞ -categories and whose mapping spaces are equivalent to

$$\operatorname{Map}_{\mathcal{C}at_{\infty}}(C, D) \simeq \operatorname{Map}_{\mathcal{S}et_{\Lambda}}(C, D)^{\cong}.$$

Example 4.3.11. Let $R \in \mathcal{R}$ ing. A bounded chain complex of projectives is a sequence of morphisms

$$\left[\dots \stackrel{d_{n+1}}{\to} P_n \stackrel{d_n}{\to} P_{n-1} \stackrel{d_{n-1}}{\to} \dots \right]$$

in $\operatorname{Proj}(R)$ such that $d_{n-1}d_n=0$ and only finitely many P_n are non-zero. A morphism of chain complexes $f_{\bullet}: P_{\bullet} \to Q_{\bullet}$ is a sequence a morphisms $f_n: P_n \to Q_n$ making commutative squares. A homotopy of morphisms $h: f_{\bullet} \sim g_{\bullet}$ is a sequence of morphisms $h_n: P_n \to Q_{n+1}$ such that $f_n - g_n = d_{n+1}h_n + h_{n-1}d_n$.

There exists an ∞ -category $D^b(R)$ whose objects are bounded chain complexes of projectives and morphisms are

$$\hom_{D^b(R)}(P_{\bullet}, Q_{\bullet}) \cong \frac{\{f_{\bullet} : P_{\bullet} \to Q_{\bullet}\}}{\text{homotopy}}$$

For more details on this example, see [Lurie, Higher Algebra, §1.3.1 and §1.3.2].

Example 4.3.12. The simplicial set Δ^1 is an ∞ -category but not an ∞ -groupoid (the unique non-identity morphism is not invertible). The pushout $\Delta^0 \sqcup_{\partial \Delta^1} \Delta^1$ of simplicial sets is not an ∞ -category. (The unique non-degenerate 1-simplex cannot be composed with itself).

4.4 Limits

Definition 4.4.1 (Limits in ∞ -categories). Let $C \in \mathcal{C}at_{\infty}$ and $I \in \mathcal{S}et_{\Delta}$. Given an object $X \in C$, write $\gamma(X) \in \operatorname{Fun}(I,C)$ for the constant functor $I \to \Delta^0 \stackrel{X}{\to} C$.

For a morphism $F: I \to C$, a limit of F is an object $\varprojlim F \in C$ together with a morphism $\gamma(\varprojlim F) \to F$ in $\operatorname{Fun}(I,C)$ such that for any object $X \in C$, the natural map

$$\operatorname{Map}_{C}(X, \underline{\lim} F) \to \operatorname{Map}_{\operatorname{Fun}(I,C)}(\gamma(X), F)$$

is an equivalence of ∞ -groupoids. Dually, a *colimit* of F is an object $\varinjlim F \in C$ together with a natural transformation $F \to \gamma(\varinjlim F)$ such that for any object $X \in C$, the natural map

$$\operatorname{Map}_{C}(\varinjlim F, X) \to \operatorname{Map}_{\operatorname{Fun}(I,C)}(F, \gamma(X))$$

is an equivalence of ∞ -groupoids.

Example 4.4.2 (Initial and terminal objects). An initial object \varnothing , resp. terminal object *, in an ∞ -category C is a limit, resp. colimit, of the unique functor $\varnothing \to C$ from the empty ∞ -category. Equivalently, it is an object such that for any $X \in C$, the mapping space $\operatorname{Map}_C(\varnothing, X)$, resp. $\operatorname{Map}_C(X, *)$, is contractible, i.e., all homotopy groups are trivial, or equivalently, $\operatorname{Map} \cong \Delta^0$.

- 1. In the ∞ -category of ∞ -groupoids $\mathcal{G}pd_{\infty}$:
 - Initial object \varnothing , resp. terminal object *: the empty ∞ -groupoid, resp. the point Δ^0 . Note that just as we can have very large categories which are equivalent to the punctual category, we can have quite large ∞ -groupoids which are terminal objects. For example,
 - (a) for any n, the ∞ -groupoid Sing \mathbb{R}^n is a terminal object of $\mathcal{G}pd_{\infty}$.
 - (b) For any $X \in \mathcal{G}pd_{\infty}$ and $x \in X$, the ∞ -groupoid $Map(\Delta^1, X) \times_X \{x\}$ of paths towards x is a terminal object of $\mathcal{G}pd_{\infty}$.
- 2. In the ∞ -category of pointed ∞ -groupoids:
 - Initial and terminal object: Δ^0 (the point, which is both initial and terminal, making this a pointed category)

- 3. In the ∞ -category $\mathcal{C}at_{\infty}$ of ∞ -categories:
 - Initial object \varnothing , resp. terminal object *: the empty ∞ -category \varnothing , resp. the terminal ∞ -category Δ^0 with one object and only identity morphisms
 - Terminal object: * (the terminal ∞-category with one object and only identity morphisms)
- 4. In the derived category $D^b(R)$:
 - Initial object: 0 (the zero chain complex)
 - Terminal object: 0 (the zero chain complex)

As in $\mathcal{G}pd_{\infty}$ we can have "large" objects which are also initial / terminal. For example $[\cdots \to 0 \to P \xrightarrow{\equiv} P \to 0 \to \ldots]$ is equivalent to 0 for any P. So it is also an initial / terminal object.

Example 4.4.3 (Products and disjoint unions). Products and Coproducts are limits and colimits over $\Delta^1 = \Delta^0 \sqcup \Delta^0$.

- 1. In $\mathcal{G}pd_{\infty}$ and $\mathcal{C}at_{\infty}$, products and coproducts are as in the 1-category $\mathcal{S}et_{\Delta}$.
- 2. In $D^b(R)$ coproducts and products are isomorphic:

$$(P_{\bullet} \times Q_{\bullet})_n = P_n \oplus Q_n = (P_{\bullet} \sqcup Q_{\bullet})_n.$$

Example 4.4.4 (Pullbacks).

1. In $\mathcal{G}\mathrm{pd}_{\infty}$ the limit of a diagram $X \to Z \leftarrow Y$ is modelled by the simplicial set

$$X \times_Z \operatorname{Map}(\Delta^1, Z) \times_Z Y$$
.

If $X = \{z\} = Y$ is a vertex of Z, then the limit $\{z\} \times_Z \{z\}$ in $\mathcal{G}pd_{\infty}$ is the space of loops from z to z.

2. In $\mathcal{C}\mathrm{at}_{\infty}$: The limit of a diagram $C \to D \leftarrow E$ is modelled by the simplicial set

$$C \times_D \operatorname{Map}(\operatorname{Iso}(\Delta^1), D) \times_D E$$
.

where $\operatorname{Iso}(\Delta^1)$ is the free ∞ -groupoid generated by Δ^1 . Explicitly, we have $\operatorname{Iso}(\Delta^1)_m = \prod_{i \in [m]} \{0, 1\}$

3. In $D^b(R)$: For chain complexes $P_{\bullet} \xrightarrow{f} R_{\bullet} \xleftarrow{g} Q_{\bullet}$, the limit is modelled by the complex

$$\operatorname{Cone}(P_{\bullet} \oplus Q_{\bullet} \stackrel{(f,-g)}{\to} R_{\bullet})[-1].$$

Here, for a general morphism of complexes $A_{\bullet} \xrightarrow{f} B_{\bullet}$ one defines

$$\operatorname{Cone}(A_{\bullet} \xrightarrow{f} B_{\bullet})_n = B_n \oplus A_{n-1}$$

with differential $\begin{bmatrix} d_B & f \\ 0 & d_A \end{bmatrix}$ and

$$A_{\bullet}[m]_n = A_{n-m}$$

Example 4.4.5. Suppose that a quasi-projective variety X is the union of two basic opens $X = U \cup V$. Then the derived category $D^b(X)$ is equivalent to the pullback

$$D^b(X) = D^b(U) \times_{D^b(U \cap V)} D^b(V)$$

in Cat_{∞} where we define $D^b(Y) := D^b(\mathcal{O}_Y(Y))$ for affine varieties. More generally, if X is a union of finitely many basic opens $X = \bigcup_{i=1}^n U_i$ then the derived category is the limit

$$D^b(X) = \varprojlim_{i_0 < \dots < i_m} D^b(U_{i_0} \cap \dots \cap U_{i_n})$$

Pushouts in $\mathcal{C}at_{\infty}$ and $\mathcal{G}pd_{\infty}$ are not so explicit in general.

Example 4.4.6. The pushout of a diagram $P_{\bullet} \leftarrow R_{\bullet} \rightarrow Q_{\bullet}$ in $D^b(R)$ is modelled by the chain complex

$$\operatorname{Cone}(R_{\bullet} \to P_{\bullet} \oplus Q_{\bullet}).$$

4.5 Stable infinity categories

Definition 4.5.1. An ∞ -category C is stable if it satisfies the following conditions:

- (Sta0) It is pointed. That is, it admits both an initial object \varnothing and a final object * and an equivalence $\varnothing \cong *$. We write 0 for such an object.
- (Sta1) It admits fibres and cofibres. That is, for every $f: X \to Y$, both

$$\operatorname{fib}(f) := X \times_Y 0$$
 and $\operatorname{cof}(f) = 0 \sqcup_X Y$

exist.

(Sta2) A commutative square of the form

$$\begin{array}{ccc}
X & \xrightarrow{f} Y \\
\downarrow & & \downarrow g \\
0 & \longrightarrow Z
\end{array} \tag{1}$$

is cartesian if and only if it is cocartesian.

Example 4.5.2. For $R \in \mathcal{R}$ ing the category $D^b(R)$ is stable.

Example 4.5.3. Suppose that C is a pointed ∞ -category. The stabilisation $\operatorname{Sp}(C)$ is defined as the limit

$$\operatorname{Sp}(C) = \varprojlim(\dots \stackrel{\Omega}{\to} C \stackrel{\Omega}{\to} C \stackrel{\Omega}{\to} C)$$

in Cat_{∞} where $\Omega X := * \times_X *$. Every object in Sp(C) gives rise to a sequence of objects E_0, E_1, \ldots in C equipped with equivalences $E_{n-1} \stackrel{\sim}{\to} \Omega E_n$. We also have a canonical functor

$$\Omega^{\infty}: \operatorname{Sp}(C) \to C$$

namely, projection to the last component.

Proposition 4.5.4 ([HA, Cor.1.4.2.23]). Let C be an ∞ -category which admits finite limits, and T a stable quasi-category. Then composition with the functor Ω^{∞} induces an equivalence of ∞ -categories

$$\operatorname{Fun}^{Lex}(T,\operatorname{Sp}(C)) \to \operatorname{Fun}^{Lex}(T,C)$$

where Fun^{Lex} means the full subcategory of functors sending finite limits to finite limits, i.e., left exact functors.

Definition 4.5.5. The stabilisation of the category of pointed ∞ -groupoids is called the category of *spectra* and is denoted

$$Spt = Sp(\mathcal{G}pd_{\infty,*}).$$

Remark 4.5.6. The equivalences $E_n \stackrel{\sim}{\to} \Omega E_{n+1}$ induces isomorphisms

$$\pi_i E_n \stackrel{\sim}{\to} \pi_{i+1} E_{n+1}.$$

Given a spectrum E we define

$$\pi_i E := \pi_{i+j} E_i; \qquad i \in \mathbb{Z}$$

for any j such that the right hand side is defined.

Example 4.5.7. Suppose that $C \subseteq D$ in $\mathcal{C}at_{\infty}^{\mathrm{ex}}$ is a full sub- ∞ -category closed under finite limits and finite colimits. The *Verdier localisation* D/C is a stable ∞ -category with the same objects as D and mapping spaces

$$\operatorname{Map}_{D/C}(X,Y) = \varinjlim_{X' \to X} \operatorname{Map}_D(X',Y)$$

where the colimit is over the ∞ -category of morphisms $s: X' \to X$ such that $\mathrm{fib}(s) \in C$.

Example 4.5.8. The canonical functor $D^b(\mathbb{Z}) \to D^b(\mathbb{Q})$ identifies $D^b(\mathbb{Q})$ with the Verdier quotient of $D^b(\mathbb{Z})$ by the full sub- ∞ -category $D^b(\mathbb{Z})_{\text{tor}} \subseteq D^b(\mathbb{Z})$ of those complexes P_{\bullet} whose homology groups $H_n(P) = \frac{\ker(P_n \to P_{n-1})}{\operatorname{im}(P_{n+1} \to P_n)}$ are torsion.

$$D^b(\mathbb{Z})/D^b(\mathbb{Z})_{\text{tor}} \cong D^b(\mathbb{Q}).$$

Example 4.5.9. Let $X \in \mathcal{Q}\operatorname{Proj}$. The coherent $\mathcal{O}_{\mathbb{P}^n}$ -modules $\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n)$ induce a sequence of stable sub- ∞ -categories

$$0 = C_{-1} \subset C_0 \subset \cdots \subset C_n = D^b(\mathbb{P}^n \times X).$$

Namely, C_i is generated by $\mathcal{O}, \ldots, \mathcal{O}(i)$. We have equivalences

$$C_i/C_{i-1} \cong D^b(X).$$

via the functors

$$D^b(X) \to D^b(\mathbb{P}^n \times X)$$

 $F \mapsto \mathcal{O}(i) \otimes p^* F$

4.6 Localising invariants

The original reference for the characterisation of algebraic K-theory as the universal localising invariant is [Antieau–Gepner–Tabuada]. For a course about this see [Hebestreit–Wagner, Algebraic and Hermitian K-Theory, Winter Term 2020/21, University of Bonn]

Write

$$\mathcal{C}\mathrm{at}_\infty^\mathrm{ex}$$

for the ∞ -category whose objects are stably ∞ -categories and morphisms are exact functors. That is, functors which preserve finite limits and finite colimits.

Definition 4.6.1 (Idempotent completion). A stable ∞ -category C is *idempotent complete* if every idempotent endomorphism $p: X \to X$ (i.e., $p \circ p \simeq p$) admits a splitting. That is, there exists an isomorphism

$$X \cong Y \oplus Z$$

such that p is identified with the composition $X \to Y \to X$. We write $\mathcal{C}at_{\infty}^{perf} \subseteq \mathcal{C}at_{\infty}^{ex}$ for the full subcategory of idempotent complete stable ∞ -categories. The inclusion admits a left adjoint

$$(-)^{\natural}: \mathcal{C}at_{\infty}^{\mathrm{ex}} \to \mathcal{C}at_{\infty}^{\mathrm{perf}}$$

called idempotent completion.

Proposition 4.6.2. A square

$$\begin{array}{ccc}
C & \xrightarrow{i} & D \\
\downarrow & & \downarrow p \\
0 & \xrightarrow{} & E
\end{array}$$

of small stable ∞ -categories is a bifibre square in $\operatorname{Cat}_{\infty}^{\operatorname{ex}}$ if it is a cartesian square in $\operatorname{Cat}_{\infty}$ and E is (equivalent to) the Verdier localisation D/C of D along C. Such a square is a fibre square in $\operatorname{Cat}_{\infty}^{\operatorname{perf}}$ if $E \cong (D/C)^{\natural}$.

Definition 4.6.3. A functor $F: \mathcal{C}at_{\infty}^{perf} \to \mathcal{S}pt$ is called a *localising invariant* if it sends bifibre squares to bifibre squares.

4.7 K-theory

Theorem 4.7.1. The ∞ -category of localising functors $F: \mathcal{C}at_{\infty}^{perf} \to \mathcal{S}pt$ equipped with a natural transformation

$$(-)^{\cong} \to \Omega^{\infty} F$$

admits an initial object K.

Remark 4.7.2. That is, K is the localising invariant "as close as possible" to the core functor which sends $C \in \mathcal{C}at_{\infty}^{perf}$ to its associated ∞ -groupoid C^{\cong} . Note that in a precise mathematical sense, $D^b(R)$ is the closest stable ∞ -category to Proj(R), [Lurie, Higher Algebra, Thm.1.3.3.2, Thm.1.3.3.8].

Theorem 4.7.3. For $n \leq 1$ and $R \in \mathcal{R}ing$, the homotopy groups

$$\pi_n K(D^b(R))$$

are the groups $K_n(R)$ we saw last time.

Example 4.7.4. Using the decomposition associated to $\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n)$, we have

$$K(D^b(\mathbb{P}^n_R)) \cong \bigoplus_{i=0}^n K(R).$$

Example 4.7.5. For a finite field \mathbb{F}_q with q elements, we have:

$$K_n(\mathbb{F}_q) = 0 \quad \text{for } n \le -1$$
 (2)

$$K_0(\mathbb{F}_q) \cong \mathbb{Z}$$
 (3)

$$K_1(\mathbb{F}_q) \cong \mathbb{F}_q^{\times} \cong \mathbb{Z}/(q-1)\mathbb{Z}$$
 (4)

$$K_{2i}(\mathbb{F}_q) = 0 \quad \text{for } i \ge 1 \tag{5}$$

$$K_{2i-1}(\mathbb{F}_q) \cong \mathbb{Z}/(q^i - 1)\mathbb{Z} \quad \text{for } i \ge 1$$
 (6)

The pattern in positive degrees follows from Quillen's computation, while negative K-groups vanish since \mathbb{F}_q has finite global dimension.

Example 4.7.6. For the field of rational numbers \mathbb{Q} :

$$K_n(\mathbb{Q}) = 0 \quad \text{for } n \le -1$$
 (7)

$$K_0(\mathbb{Q}) \cong \mathbb{Z}$$
 (8)

$$K_1(\mathbb{Q}) \cong \mathbb{Q}^{\times}$$
 (9)

$$K_2(\mathbb{Q}) \cong (\mathbb{Z}/4)^* \times \prod_{p \text{ odd prime}} (\mathbb{Z}/p)^*$$
 (10)

The computation of $K_2(\mathbb{Q})$ is due to Tate and follows from Gauss's first proof of quadratic reciprocity. For higher K-groups, Borel proved that (modulo torsion):

$$K_{4k+1}(\mathbb{Z})/\text{tors} = \mathbb{Z} \quad \text{for } k > 0$$

 $K_i(\mathbb{Z})/\text{tors} = 0 \quad \text{for } i > 2; i \neq 4k + 1$

Example 4.7.7 (Matsumoto's theorem). For any field k, Matsumoto's theorem states that the second K-group is given by

$$K_2(k) = \frac{k^{\times} \otimes_{\mathbb{Z}} k^{\times}}{\langle a \otimes (1-a) \mid a \neq 0, 1 \rangle}.$$

The relations $a \otimes (1-a) = 0$ are called the *Steinberg relations*.