4 K-theory as the universal localising invariant
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In the last lecture we generalised K to the pair Ky, K; by moving from the set
Proj(R) =~ to the groupoid Proj(R)=. In this lecture we generalise this process to
get higher Ky, K1, Ks, ... by considering co-groupoids. These form an co-category.

4.1 Simplicial sets

References for simplicial sets and oo-groupoids (which used to be called Kan com-
plexes):

1. May, Simplicial objects in algebraic topology.
2. Bousfield-Kan, Homotopy limits, completions and localizations.

3. Goerss—Jardine, Simplicial homotopy theory.

Groups C Groupoids C  Categories — Directed graphs
(groupoids. with > categories for which
one object every morphism
is invertible

00-groups C oo-groupoids C  oo-categories C  Simplicial sets

Recall that a directed graph consists of a set G of vertices, a set G of edges
and two morphisms

do,d1 : G1 = G()

which associate to each edge e € Gy a source die € Gy and a target dpe € Gj.



We can generalise this in higher dimensions by allowing “n-dimensional edges”
for all n € N. The information of all these higher edges and how they are related
to each other is organised in the concept of a simplicial set.

Definition 4.1.1. We write A C LinOrdSet for the full subcategory of the cat-
egory LinOrdSet of linearly ordered sets whose objects are finite and non-empty.
In other words, those linearly ordered sets which are isomorphic to the linearly
ordered set [n] = {0 < 1 < .-+ < n} for some n > 0. Morphisms are those
morphisms of sets p : [n] — [m] such that i <j7 = p(i) < p(j).

Example 4.1.2. For each 0 < j <n with n # 0, the face morphism ¢; : [n—1] —
[n] are defined as the unique injection which does not have j in its image.

0 I ... j=1 j  j+1 ... n—1
b D NN AN
0 1 ... =1 4§ §4+1 j+2 ... =

Example 4.1.3. For each 0 < j < n the degeneracy morphism o; : [n+1] — [n]
is defined as the unique surjection which sends both j and j+1 to j.

0 1 ... §  j+1 j+2 ... n+l
b Vv v /
0 1 ... § 4+l ... =

Exercise. Show that every morphism [n] — [m] can be written as a composi-
tion of face and degeneracy morphisms.

Definition 4.1.4. The category of simplicial sets Seta is the category of functors
AP — Set, so
SetA = PSh(A)

Given such a functor X : A — Set we write X,, := X([n]). Elements of X,, are
called n-simplices of X ..

Example 4.1.5. For any simplicial set X : A’ — Set the morphisms
dj : Xn — Xn—l-

corresponding to the ¢; are called face morphisms. For € X, we call d;z the jth
face of x. The morphisms
S; Xn — Xn—o—l‘

corresponding to the o; are called degeneracy morphisms.

Example 4.1.6 (A"). For each n, the functor A" := homa(—,[n]) : A®? — Set
defines a simplicial set. By Yoneda’s Lemma, for any X € Seta,

homget, (A", X) = X,,.
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Example 4.1.7 (OA™). Consider the morphisms of simplicial sets §; : A"~1 — A"
We define

OA" = | ] o;(Am)
j=0

as the union of these faces. Explicitly, (0A™); C (A"); = homa([j], [n]) is the set
of morphisms [j] — [n] of linearly ordered sets which are not surjective. This can
also be described as the colimit

OA"™ = lim A

[i][n]

In particular, for any other simplicial set X we have

hom(0A™, X) = hm X,
icin]
n—2<i<n—1
That is, a morphism 0A™ — X is the same thing as a set of (n—1)-simplicies
Loy.oo 3 Ty € Xn—l satisfying diZL'j = djl’z

Definition 4.1.8 (A}). For 0 < j < n we define the jth horn as the union

A7 = Jaamh.
i#]
Equivalently, (A%); C (A"); = homa([i],[n]) is the set of those [i] — [n] whose
image does not contain the subset {0,1,...,j—1,7+1,...,n}.

Example 4.1.9 (Sing X). Define

Ay = {(xo,...,xn) [0<2; <)) x= 1} C R™!

=0

to be the convex hull of the standard basis vectors e; = (0,...,0,1,0,...,0). So
AP, is a point, A{ s a line segment, A? | is a triangle, A} is a tetrahedron, ...

Any morphism p : [n] — [m] in A defines an R-linear morphism R"*! — R™ 1
e; — €y(;), which restricts to a continuous morphism Af, & — A . In this way we
get a functor

A — Top; [n] — A7

top

from A to the category of topological spaces. For any other topological space X,
the assignment
Sing X : [n] — homyo, (AL, X)

top?

defines a simplicial set. Explicitly,



1. Sing, X is the set of points of X,
Sing; X is the set of paths in X,

Sing, X is the set of triangles in X,
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Example 4.1.10 (Product of simplicial sets). For simplicial sets X and Y, their
product X x Y is defined by

(X xY), =X, xY,
with structure morphisms acting componentwise.

Example 4.1.11 (Mapping simplicial sets). For simplicial sets X and Y, the
mapping simplicial set Map(X,Y’) has n-simplices given by

MapSetA (X7 Y)n = homSetA (X X An, Y)

The maps associated to [n] — [m] are induced by the corresponding A™ — A™.

4.2 Infinity groupoids

Definition 4.2.1 (Kan fibration). A morphism f: X — Y of simplicial sets is a
Kan fibration if for every 0 < j < n with 0 # n and commutative square

A?—>X



a dashed morphism exists making two triangles commutative. A simplicial set X
is an oo-groupoid if the canonical morphism X — A is a Kan fibration.

Example 4.2.2. If X is a topological space, then Sing X is an oo-groupoid. In
fact, by the homotopy hypothesis, there is an equivalence of co-categories between
the oo-category of topological spaces and the oco-category of oco-groupoids.

Definition 4.2.3 (Homotopy groups). For an oco-groupoid X and a basepoint
x € Xy, the nth homotopy group m,(X, z) is defined as follows. Consider

OA" ——

Tpa = A" 5 X l

El

l commutes
AL x

We define an equivalence relation on Z,, ,: two morphisms f, g € Z,, , are equivalent

if there exists a morphism H : A" — X such that

H’(;O(An) = f
H(gi(An):iC 221, ,n—l
Hl|s,any =g

Then
(X, 2) =2,/ ~ .

Remark 4.2.4. The lifting property defining oo-groupoids ensures this actually
is an equivalence relation. It is not an equivalence relation in a general simplicial
set.

Example 4.2.5. If n = 0 then (X, z) is the set of connected components of the
oo-groupoid X.

Example 4.2.6. Suppose p : E — B is a Kan fibration between oo-groupoids,
e€ E,b=p(e),and F = {b} xg E. Then there is a long exact sequence of groups

o T (B, b) = mp(Fre) = m,(E e) = m(B,b) — ...
for n > 0 ending with an exact sequence of pointed sets
<o = (B, b) = mo(F,e) = mo(E,e) — mo(B,b).
Here, a sequence (A, a) EN (B,b) % (C, ¢) of pointed sets is exact if f(A) = g~'(c).

Definition 4.2.7 (Weak equivalence). A morphism f : X — Y of co-groupoids
is a weak equivalence if it induces isomorphisms on all homotopy groups:

T fyx)  mo (X, z) = (Y, f(2))

is a bijection for all n > 0 and all basepoints = € X, and mo X — mY is surjective.
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Example 4.2.8. In the notation of Example 4.2.6, if all homotopy groups of F
are trivial and mo(E) — mo(B) is surjective, then £ — B is a weak equivalence.

Example 4.2.9. The inclusion
X={z€C||z|=1} > C\{0} =Y

induces a weak equivalence Sing X — Sing Y of oco-groupoids. Indeed, the exis-
tence of a deformation retract Y — X; z +— z/|z| implies all homotopy groups are
isomorphic.

Example 4.2.10 (Homotopy equivalence). Two oo-groupoids X and Y are homo-
topy equivalent if there exist morphisms f: X — Y and g : Y — X such that go f
and fog are homotopic to the respective identity morphisms. Here, two morphisms
a,b : A — B are homotopic if there exists a morphism H : A x A' — B such
that H|axqoy = a and H|axq1y = b. By Whitehead’s theorem for co-groupoids, a
morphism is a homotopy equivalence if and only if it is a weak equivalence.

4.3 Infinity categories

The standard reference for oo-categories is [Lurie, Higher Topos Theory].
There are also a number of other texts, e.g., [Haugseng, Yet another introduc-
tion to infinity categories|.

Definition 4.3.1 (Boardman, Vogt, 1973). An oco-category is a simplicial set C
such that for every 0 < ¢ < n and each diagram

A —C
4
7/
| -
s/
ATL
there exists a (not necessarily unique) dashed arrow making a commutative trian-

gle.

Example 4.3.2. If I € Seta and C' € Caty,, then Map([, C) € Caty. A morphism
D — C between two oo-categories is called a functor.

(Exercise: Show that for any X € Seta, if Y is an oo-groupoid, resp. oo-
category, then so is Mapg, (X,Y))

Example 4.3.3. Let C' be a small category. Considering the ordered sets [n] as
categories! {0 —+ 1 — --- — n} the assignment

N : [n] = Fun([n],C)

1So, for 0 < i,5 < n there is exactly one morphism i — j if i < j, and no morphisms
otherwise.



sending [n] to the set of functors [n] — C' defines a simplicial set. This is called
the nerve of C'. Explicitly,

1.
2.
3.

N(C)y is the set of objects of C,
N(C); is the set of (all) morphisms in C,

The two morphisms N(C); = N(C), induced by the two functors [0] = [1]
send morphisms in N(C'); to their source and target.

xLy)y - XY

The morphism N(C')y — N(C); induced by [1] — [0] sends each object to
its identity morphism.

X =  (X%Xx

N(C)s is the set of composable morphisms X Ly S g

The three maps do, dy, dy : N(C),=N(C); induced by the three faithful func-
tors [1]2]2] send EREN g, go f, and f respectively.

—

Y
N - (Y52, X%y, x4y

Xgon

More generally, N(C),, is the set of sequences of n composable morphisms

B 1% and the various maps N(C),, = N(C),, come from various combi-
nations of composition and inserting identities.

Definition 4.3.4. Let C € Cat,,. Elements of C are called objects and elements
of C are called 1-morphisms, or often just morphisms. Given two morphisms
f,g € Cy such that dy f = dg (equivalently, a morphism of simplicial sets A} — ('),

for any factorisation A2 — A2 -Z5 € the morphism dyo € C; will be called a
composition of g and f. For any object X € Cj, the morphism sqX € (] is called
the identity morphism of X, and written idy.

Example 4.3.5. A morphism f : X — Y in an oco-category is called an equivalence
if there exists a morphism ¢ : Y — X and 2-cells o and 7 of the form

idy

f Y g Y
N N
X——X X

idx

Y




Definition 4.3.6 (Mapping space). For an oo-category C' and objects x,y € Cyp,
the mapping space Map,(x,y) is defined as the pullback

Mapg(z, y) := {z} xc Mapg,, (A", C) x¢ {y}

in the l-category Seta where the fiber products are taken with respect to the
source and target maps dy, dy : Cy — Cy. The morphism set is

home(z,y) = mo Mapq(z, y).

Example 4.3.7. Any oo-groupoid is an oo-category. In particular, for any topo-
logical space X, the simplicial set Sing X is an oo-category.

Example 4.3.8. There exists an oo-category Gpd, whose objects are small oo-
groupoids and whose mapping spaces are equivalent to the mapping simplicial set
defined above.

NIapgpdoo (X’ Y) = MapSetA (X7 Y)

Example 4.3.9. For any co-category C, there is a maximal sub-co-groupoid
c=cc

called the core of C. It has the same objects as C, but only the invertible mor-
phisms. More precisely, (C¥),, consists of those n-simplices x € C,, such that all
images of x in ) are invertible morphisms in C'.

Example 4.3.10. There exists an oo-category Cat,, whose objects are small oo-
categories and whose mapping spaces are equivalent to

NIapCatOO (07 D) = MapSetA (Cv D)%

Example 4.3.11. Let R € Ring. A bounded chain complex of projectives is a
sequence of morphisms

LM p i s ]
in Proj(R) such that d,_1d, = 0 and only finitely many P, are non-zero. A
morphism of chain complexes f, : Py — Qo is a sequence a morphisms f, : P, —
@, making commutative squares. A homotopy of morphisms h : f, ~ g, is a
sequence of morphisms h,, : P, = ()41 such that f, — g, = d, 1 1hy + hp_1d,,.
There exists an co-category D?(R) whose objects are bounded chain complexes
of projectives and morphisms are

{fo: Po = Qu}
homotopy

home(R)(P., Q.) =
For more details on this example, see [Lurie, Higher Algebra, §1.3.1 and §1.3.2].
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Example 4.3.12. The simplicial set A! is an co-category but not an oo-groupoid
(the unique non-identity morphism is not invertible). The pushout A® Liga1 Al of
simplicial sets is not an oo-category. (The unique non-degenerate 1-simplex cannot
be composed with itself).

4.4 Limits

Definition 4.4.1 (Limits in oco-categories). Let C' € Cat, and I € Seta. Given

an object X € C, write y(X) € Fun(I,C) for the constant functor I — A° A c.
For a morphism F': I — C, a limit of F is an object @F € C together with a
morphism 7(@1 F) — F in Fun(/, C) such that for any object X € C, the natural
map
Mape (X, I&HF) — Mappyy1,0)(V(X), F)

is an equivalence of co-groupoids. Dually, a colimit of F' is an object lim F' € C
together with a natural transformation F — ’y(hﬂ F) such that for any object
X € C, the natural map

MapC(hg F’ X) — MapFun(I,C) (F7 V(X))
is an equivalence of co-groupoids.

Example 4.4.2 (Initial and terminal objects). An initial object &, resp. terminal
object %, in an oo-category C' is a limit, resp. colimit, of the unique functor
@ — C from the empty oo-category. Equivalently, it is an object such that for
any X € C, the mapping space Mapq (@, X), resp. Mapq(X,*), is contractible,
i.e., all homotopy groups are trivial, or equivalently, Map = A°.

1. In the oco-category of oco-groupoids Gpd:

e Initial object &, resp. terminal object x: the empty oco-groupoid, resp.
the point A°. Note that just as we can have very large categories which
are equivalent to the punctual category, we can have quite large oo-
groupoids which are terminal objects. For example,

(a) for any n, the co-groupoid Sing R"™ is a terminal object of Gpd .
(b) Forany X € Gpd, and z € X, the co-groupoid Map(A!, X)x y{x}
of paths towards x is a terminal object of Gpd .

2. In the oo-category of pointed co-groupoids:

e Initial and terminal object: A (the point, which is both initial and
terminal, making this a pointed category)



3. In the oco-category Cat., of co-categories:

e Initial object &, resp. terminal object *x: the empty oo-category o,
resp. the terminal co-category A with one object and only identity
morphisms

e Terminal object: * (the terminal co-category with one object and only
identity morphisms)

4. In the derived category D°(R):

e Initial object: 0 (the zero chain complex)

e Terminal object: 0 (the zero chain complex)

As in gpd,, we can have “large” objects which are also initial / terminal.
For example [+ -+ 0 — P — P — 0 — ...] is equivalent to 0 for any P.
So it is also an intial / terminal object.

Example 4.4.3 (Products and disjoint unions). Products and Coproducts are
limits and colimits over Al = A% L1 A”.

1. In Gpd,, and Cat.,, products and coproducts are as in the 1-category Seta.

2. In D*(R) coproducts and products are isomorphic:
(Po XQo)n:Pn@Qn: (Poqu)n‘

Example 4.4.4 (Pullbacks).

1. In gpd,, the limit of a diagram X — Z < Y is modelled by the simplicial
set
X Xz Map(Al,Z) XzY.
If X ={z} =Y is a vertex of Z, then the limit {z} x {z} in Gpd, is the
space of loops from z to z.

2. In Caty,: The limit of a diagram C' — D < F is modelled by the simplicial
set

C xp Map(Iso(A'), D) xp E.

where Iso(A!) is the free oo-groupoid generated by Al. Explicitly, we have
Iso(A'),, = Hie[m]{0> 1}
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3. In D°(R): For chain complexes P, EN Re & Q,, the limit is modelled by the
complex

Cone(P, & Q, (:39) R.)[—1].

Here, for a general morphism of complexes A, EN B, one defines
Cone(A, EN Be)n=B,® A,
with differential [¢7 f;A] and

A, [m}n = An—m

Example 4.4.5. Suppose that a quasi-projective variety X is the union of two
basic opens X = U U V. Then the derived category D’(X) is equivalent to the
pullback

D*(X) = D"(U) X pbUunv) D*(V)

in Cat., where we define D*(Y') := D?(Oy(Y)) for affine varieties. More generally,
it X is a union of finitely many basic opens X = U} ,U; then the derived category
is the limit

DX)= lim D"(UyN---NU,)

1< <im

Pushouts in Cat,, and Gpd_, are not so explicit in general.

Example 4.4.6. The pushout of a diagram P, <— R, — (), in Db(R) is modelled
by the chain complex
Cone(Ry — Py @ Q).

4.5 Stable infinity categories

Definition 4.5.1. An oco-category C'is stable if it satisfies the following conditions:

(Sta0) It is pointed. That is, it admits both an initial object @ and a final object
x and an equivalence @ = x. We write 0 for such an object.

(Stal) It admits fibres and cofibres. That is, for every f: X — Y, both
fib(f) ;=X xy 0 and cof(f)=0UxY

exist.

11



(Sta2) A commutative square of the form

x Loy (1)
| ;
0——7

is cartesian if and only if it is cocartesian.

Example 4.5.2. For R € Ring the category D’(R) is stable.

Example 4.5.3. Suppose that C'is a pointed co-category. The stabilisation Sp(C')
is defined as the limit

Sp(C) =lim(... 5 C 3 ¢ 5 C)

in Cat,, where QX := % xXx *. Every object in Sp(C') gives rise to a sequence of
objects Ey, By, ... in C equipped with equivalences E,_; — QF,. We also have a
canonical functor

Q> :Sp(C) = C
namely, projection to the last component.

Proposition 4.5.4 ([HA, Cor.1.4.2.23]). Let C be an oo-category which admits
finite limits, and T a stable quasi-cateqory. Then composition with the functor 2>
induces an equivalence of co-categories

Fun™“*(T, Sp(C)) — Fun™*(T, C)

where Fun™®® means the full subcategory of functors sending finite limits to finite

limaits, i.e., left exact functors.

Definition 4.5.5. The stabilisation of the category of pointed oo-groupoids is
called the category of spectra and is denoted

Spt = Sp(Gpd., .)-
Remark 4.5.6. The equivalences E,, = QF,,; induces isomorphisms
B, = i1 Byt
Given a spectrum E we define
ml = i i B 1 €7
for any j such that the right hand side is defined.
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Example 4.5.7. Suppose that C' C D in CatZ is a full sub-oco-category closed
under finite limits and finite colimits. The Verdier localisation D/C' is a stable
oo-category with the same objects as D and mapping spaces

Mapp,o(X,Y) = lim Map (X', Y)
X'—-X
where the colimit is over the oo-category of morphisms s : X’ — X such that

fib(s) € C.

Example 4.5.8. The canonical functor D?(Z) — D®(Q) identifies D°(Q) with the

Verdier quotient of D®(Z) by the full sub-oo-category D°(Z)i,, € D°(Z) of those

_ ker(Pn—=Ppn—1)

complexes P, whose homology groups H,(P) = (P P, Are torsion.

D"(Z)/D*(Z)sor = D"(Q).

Example 4.5.9. Let X € QProj. The coherent Opn-modules O, O(1),...,0(n)
induce a sequence of stable sub-oo-categories

0=C,CcCyC---CC,=D"P"xX).
Namely, C; is generated by O, ..., O(i). We have equivalences
C;/Ci_1 =2 DV(X).
via the functors

DP(X) — D*(P"x X)
F— O@G)®pF

4.6 Localising invariants

The original reference for the characterisation of algebraic K-theory as the univer-
sal localising invariant is [Antieau-Gepner-Tabuada]. For a course about this see
[Hebestreit-Wagner, Algebraic and Hermitian K-Theory, Winter Term 2020/21,
University of Bonn]
Write
Catey

for the oo-category whose objects are stably co-categories and morphisms are exact
functors. That is, functors which preserve finite limits and finite colimits.
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Definition 4.6.1 (Idempotent completion). A stable oco-category C'is idempotent
complete if every idempotent endomorphism p: X — X (i.e., pop ~ p) admits a
splitting. That is, there exists an isomorphism

X=YpZ

such that p is identified with the composition X — Y — X. We write CatPe C
CatZ for the full subcategory of idempotent complete stable co-categories. The
inclusion admits a left adjoint

. f
(—)F: Cat®™ — CatP
called idempotent completion.

Proposition 4.6.2. A square
C—~D
.
0——F

of small stable co-categories is a bifibre square in Cate if it is a cartesian square
in Cats and E is (equivalent to) the Verdier localisation D/C' of D along C. Such
a square is a fibre square in CatPs if E = (D/C)".

Definition 4.6.3. A functor F : CatP — Spt is called a localising invariant if
it sends bifibre squares to bifibre squares.

4.7 K-theory

Theorem 4.7.1. The oo-category of localising functors F : CatP™ — Spt equipped
with a natural transformation

(—)T = Q°F
admits an initial object K.

Remark 4.7.2. That is, K is the localising invariant “as close as possible” to
the core functor which sends C' € CatP! to its associated oo-groupoid C=. Note
that in a precise mathematical sense, D°(R) is the closest stable co-category to
Proj(R), [Lurie, Higher Algebra, Thm.1.3.3.2, Thm.1.3.3.8].

Theorem 4.7.3. For n <1 and R € Ring, the homotopy groups
T, K (D°(R))

are the groups K,(R) we saw last time.
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Example 4.7.4. Using the decomposition associated to O, O(1),...,0(n), we

have
n

K,(F,)=0 forn<-1 (2)
Ko(F,) > Z (3)
Ki(Fy) =F; =Z/(q—1)Z (4)
Ky(F,) =0 fori>1 (5)
Ko 1(F) 2 Z/(¢ —1)Z fori>1 (6)

The pattern in positive degrees follows from Quillen’s computation, while negative
K-groups vanish since F, has finite global dimension.

Example 4.7.6. For the field of rational numbers Q:

K,(Q)=0 forn<-1 (7)

Ko(Q) = Z (8)

K1(Q) = Q" (9)

KQ) =@y < ] @/ (10)
p odd prime

The computation of K5(Q) is due to Tate and follows from Gauss’s first proof of
quadratic reciprocity. For higher K-groups, Borel proved that (modulo torsion):

Kyp1(Z)/tors =7 for k >0
Ki(Z)/tors =0 fori>2;i#4k+1

Example 4.7.7 (Matsumoto’s theorem). For any field k£, Matsumoto’s theorem
states that the second K-group is given by

kX Rz kX

ket = i a0

The relations a ® (1 — a) = 0 are called the Steinberg relations.
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