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In the last lecture we generalised K0 to the pair K0, K1 by moving from the set
Proj(R)/∼= to the groupoid Proj(R)

∼=. In this lecture we generalise this process to
get higher K0, K1, K2, . . . by considering∞-groupoids. These form an∞-category.

4.1 Simplicial sets

References for simplicial sets and∞-groupoids (which used to be called Kan com-
plexes):

1. May, Simplicial objects in algebraic topology.

2. Bousfield–Kan, Homotopy limits, completions and localizations.

3. Goerss–Jardine, Simplicial homotopy theory.

Groups(
groupoids with

one object

) ⊆ Groupoids(
categories for which

every morphism
is invertible

) ⊆ Categories → Directed graphs

∞-groups ⊆ ∞-groupoids ⊆ ∞-categories ⊆ Simplicial sets

Recall that a directed graph consists of a set G0 of vertices, a set G1 of edges
and two morphisms

d0, d1 : G1 ⇒ G0

which associate to each edge e ∈ G1 a source d1e ∈ G0 and a target d0e ∈ G0.
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We can generalise this in higher dimensions by allowing “n-dimensional edges”
for all n ∈ N. The information of all these higher edges and how they are related
to each other is organised in the concept of a simplicial set.

Definition 4.1.1. We write ∆ ⊆ LinOrdSet for the full subcategory of the cat-
egory LinOrdSet of linearly ordered sets whose objects are finite and non-empty.
In other words, those linearly ordered sets which are isomorphic to the linearly
ordered set [n] = {0 < 1 < · · · < n} for some n ≥ 0. Morphisms are those
morphisms of sets p : [n]→ [m] such that i ≤ j =⇒ p(i) ≤ p(j).

Example 4.1.2. For each 0 ≤ j ≤ n with n 6= 0, the face morphism δj : [n−1]→
[n] are defined as the unique injection which does not have j in its image.

0

��

1

��

. . . j−1

��

j

��

j+1

��

. . . n−1

��
0 1 . . . j−1 j j+1 j+2 . . . n

Example 4.1.3. For each 0 ≤ j ≤ n the degeneracy morphism σj : [n+1] → [n]
is defined as the unique surjection which sends both j and j+1 to j.

0

��

1

��

. . . j

��

j+1

��

j+2

��

. . . n+1

��
0 1 . . . j j+1 . . . n

Exercise. Show that every morphism [n]→ [m] can be written as a composi-
tion of face and degeneracy morphisms.

Definition 4.1.4. The category of simplicial sets Set∆ is the category of functors
∆op → Set, so

Set∆ := PSh(∆)

Given such a functor X : ∆op → Set we write Xn := X([n]). Elements of Xn are
called n-simplices of X..

Example 4.1.5. For any simplicial set X : ∆op → Set the morphisms

dj : Xn → Xn−1.

corresponding to the δj are called face morphisms. For x ∈ Xn we call djx the jth
face of x. The morphisms

sj : Xn → Xn+1.

corresponding to the σj are called degeneracy morphisms.

Example 4.1.6 (∆n). For each n, the functor ∆n := hom∆(−, [n]) : ∆op → Set
defines a simplicial set. By Yoneda’s Lemma, for any X ∈ Set∆,

homSet∆
(∆n, X) ∼= Xn.
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Example 4.1.7 (∂∆n). Consider the morphisms of simplicial sets δj : ∆n−1 → ∆n.
We define

∂∆n =
n⋃
j=0

δj(∆
n−1)

as the union of these faces. Explicitly, (∂∆n)j ⊆ (∆n)j = hom∆([j], [n]) is the set
of morphisms [j]→ [n] of linearly ordered sets which are not surjective. This can
also be described as the colimit

∂∆n = lim−→
[i]([n]

∆i

In particular, for any other simplicial set X we have

hom(∂∆n, X) = lim←−
[i]([n]

n−2≤i≤n−1

Xi.

That is, a morphism ∂∆n → X is the same thing as a set of (n−1)-simplicies
x0, . . . , xn ∈ Xn−1 satisfying dixj = djxi.

Definition 4.1.8 (Λn
j ). For 0 ≤ j ≤ n we define the jth horn as the union

Λn
j =

⋃
i 6=j

δi(∆
n−1).

Equivalently, (Λn
j )i ⊆ (∆n)i = hom∆([i], [n]) is the set of those [i] → [n] whose

image does not contain the subset {0, 1, . . . , j−1, j+1, . . . , n}.

Example 4.1.9 (SingX). Define

∆n
top :=

{
(x0, . . . , xn) | 0 ≤ xi ≤ 1;

n∑
i=0

xi = 1

}
⊆ Rn+1

to be the convex hull of the standard basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0). So
∆0

top is a point, ∆1
top is a line segment, ∆2

top is a triangle, ∆3
top is a tetrahedron, . . .

Any morphism p : [n]→ [m] in ∆ defines an R-linear morphism Rn+1 → Rm+1;
ei 7→ ep(i), which restricts to a continuous morphism ∆n

top → ∆m
top. In this way we

get a functor
∆→ T op; [n] 7→ ∆n

top

from ∆ to the category of topological spaces. For any other topological space X,
the assignment

SingX : [n] 7→ homT op(∆n
top, X)

defines a simplicial set. Explicitly,
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1. Sing0X is the set of points of X,

2. Sing1X is the set of paths in X,

3. Sing2X is the set of triangles in X,

4. . . .

Source: Wikimedia Commons, CC BY-SA license

Example 4.1.10 (Product of simplicial sets). For simplicial sets X and Y , their
product X × Y is defined by

(X × Y )n = Xn × Yn

with structure morphisms acting componentwise.

Example 4.1.11 (Mapping simplicial sets). For simplicial sets X and Y , the
mapping simplicial set Map(X, Y ) has n-simplices given by

MapSet∆
(X, Y )n = homSet∆

(X ×∆n, Y )

The maps associated to [n]→ [m] are induced by the corresponding ∆n → ∆m.

4.2 Infinity groupoids

Definition 4.2.1 (Kan fibration). A morphism f : X → Y of simplicial sets is a
Kan fibration if for every 0 ≤ j ≤ n with 0 6= n and commutative square

Λn
j

//

��

X

��
∆n //

>>

Y
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a dashed morphism exists making two triangles commutative. A simplicial set X
is an ∞-groupoid if the canonical morphism X → ∆0 is a Kan fibration.

Example 4.2.2. If X is a topological space, then SingX is an ∞-groupoid. In
fact, by the homotopy hypothesis, there is an equivalence of∞-categories between
the ∞-category of topological spaces and the ∞-category of ∞-groupoids.

Definition 4.2.3 (Homotopy groups). For an ∞-groupoid X and a basepoint
x ∈ X0, the nth homotopy group πn(X, x) is defined as follows. Consider

Zn,x :=

∆n f→ X

∣∣∣∣∣∣∣
∂∆n //

��

x

��
∆n f // X

commutes


We define an equivalence relation on Zn,x: two morphisms f, g ∈ Zn,x are equivalent
if there exists a morphism H : ∆n+1 → X such that

H|δ0(∆n) = f
H|δi(∆n) = x i = 1, . . . , n− 1
H|δn(∆n) = g

Then
πn(X, x) = Zn,x/ ∼ .

Remark 4.2.4. The lifting property defining ∞-groupoids ensures this actually
is an equivalence relation. It is not an equivalence relation in a general simplicial
set.

Example 4.2.5. If n = 0 then π0(X, x) is the set of connected components of the
∞-groupoid X.

Example 4.2.6. Suppose p : E → B is a Kan fibration between ∞-groupoids,
e ∈ E, b = p(e), and F = {b}×B E. Then there is a long exact sequence of groups

. . . πn+1(B, b)→ πn(F, e)→ πn(E, e)→ πn(B, b)→ . . .

for n > 0 ending with an exact sequence of pointed sets

· · · → π1(B, b)→ π0(F, e)→ π0(E, e)→ π0(B, b).

Here, a sequence (A, a)
f→ (B, b)

g→ (C, c) of pointed sets is exact if f(A) = g−1(c).

Definition 4.2.7 (Weak equivalence). A morphism f : X → Y of ∞-groupoids
is a weak equivalence if it induces isomorphisms on all homotopy groups:

πn(f, x) : πn(X, x)→ πn(Y, f(x))

is a bijection for all n ≥ 0 and all basepoints x ∈ X0, and π0X → π0Y is surjective.
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Example 4.2.8. In the notation of Example 4.2.6, if all homotopy groups of F
are trivial and π0(E)→ π0(B) is surjective, then E → B is a weak equivalence.

Example 4.2.9. The inclusion

X = {z ∈ C | |z| = 1} → C \ {0} = Y

induces a weak equivalence SingX → Sing Y of ∞-groupoids. Indeed, the exis-
tence of a deformation retract Y → X; z 7→ z/|z| implies all homotopy groups are
isomorphic.

Example 4.2.10 (Homotopy equivalence). Two∞-groupoids X and Y are homo-
topy equivalent if there exist morphisms f : X → Y and g : Y → X such that g ◦f
and f◦g are homotopic to the respective identity morphisms. Here, two morphisms
a, b : A → B are homotopic if there exists a morphism H : A × ∆1 → B such
that H|A×{0} = a and H|A×{1} = b. By Whitehead’s theorem for ∞-groupoids, a
morphism is a homotopy equivalence if and only if it is a weak equivalence.

4.3 Infinity categories

The standard reference for ∞-categories is [Lurie, Higher Topos Theory].
There are also a number of other texts, e.g., [Haugseng, Yet another introduc-

tion to infinity categories].

Definition 4.3.1 (Boardman, Vogt, 1973). An ∞-category is a simplicial set C
such that for every 0 < i < n and each diagram

Λn
i

//

��

C

∆n

>>

there exists a (not necessarily unique) dashed arrow making a commutative trian-
gle.

Example 4.3.2. If I ∈ Set∆ and C ∈ Cat∞, then Map(I, C) ∈ Cat∞. A morphism
D → C between two ∞-categories is called a functor.

(Exercise: Show that for any X ∈ Set∆, if Y is an ∞-groupoid, resp. ∞-
category, then so is MapSet∆

(X, Y ))

Example 4.3.3. Let C be a small category. Considering the ordered sets [n] as
categories1 {0→ 1→ · · · → n} the assignment

N : [n] 7→ Fun([n], C)

1So, for 0 ≤ i, j ≤ n there is exactly one morphism i → j if i ≤ j, and no morphisms
otherwise.
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sending [n] to the set of functors [n] → C defines a simplicial set. This is called
the nerve of C. Explicitly,

1. N(C)0 is the set of objects of C,

2. N(C)1 is the set of (all) morphisms in C,

3. The two morphisms N(C)1 ⇒ N(C)0 induced by the two functors [0]⇒ [1]
send morphisms in N(C)1 to their source and target.

(X
f→ Y ) 7→ X, Y

4. The morphism N(C)0 → N(C)1 induced by [1] → [0] sends each object to
its identity morphism.

X 7→ (X
idX→ X)

5. N(C)2 is the set of composable morphisms X
f→ Y

g→ Z.

6. The three maps d0, d1, d2 : N(C)2→→
→
N(C)1 induced by the three faithful func-

tors [1]→→
→

[2] send
f→ g→ to g, g ◦ f , and f respectively.

Y
g

��
X

f ??

g◦f
// Z

7→ (Y
g→ Z), (X

g◦f→ Y ), (X
f→ Y )

7. More generally, N(C)n is the set of sequences of n composable morphisms
f1→ . . .

fn→ and the various maps N(C)n → N(C)m come from various combi-
nations of composition and inserting identities.

Definition 4.3.4. Let C ∈ Cat∞. Elements of C0 are called objects and elements
of C1 are called 1-morphisms, or often just morphisms. Given two morphisms
f, g ∈ C1 such that d0f = d1g (equivalently, a morphism of simplicial sets Λ2

1 → C),

for any factorisation Λ2
1 → ∆2 σ

99K C, the morphism d1σ ∈ C1 will be called a
composition of g and f . For any object X ∈ C0, the morphism s0X ∈ C1 is called
the identity morphism of X, and written idX .

Example 4.3.5. A morphism f : X → Y in an∞-category is called an equivalence
if there exists a morphism g : Y → X and 2-cells σ and τ of the form

Y
g
��σ

Y
idY //

g ��

Y

X

f ??

idX

// X X
f

??
τ
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Definition 4.3.6 (Mapping space). For an ∞-category C and objects x, y ∈ C0,
the mapping space MapC(x, y) is defined as the pullback

MapC(x, y) := {x} ×C MapSet∆
(∆1, C)×C {y}

in the 1-category Set∆ where the fiber products are taken with respect to the
source and target maps d1, d0 : C1 → C0. The morphism set is

homC(x, y) = π0 MapC(x, y).

Example 4.3.7. Any ∞-groupoid is an ∞-category. In particular, for any topo-
logical space X, the simplicial set SingX is an ∞-category.

Example 4.3.8. There exists an ∞-category Gpd∞ whose objects are small ∞-
groupoids and whose mapping spaces are equivalent to the mapping simplicial set
defined above.

MapGpd∞
(X, Y ) ' MapSet∆

(X, Y ).

Example 4.3.9. For any ∞-category C, there is a maximal sub-∞-groupoid

C
∼= ⊆ C

called the core of C. It has the same objects as C, but only the invertible mor-
phisms. More precisely, (C

∼=)n consists of those n-simplices x ∈ Cn such that all
images of x in C1 are invertible morphisms in C.

Example 4.3.10. There exists an ∞-category Cat∞ whose objects are small ∞-
categories and whose mapping spaces are equivalent to

MapCat∞(C,D) ' MapSet∆
(C,D)

∼=.

Example 4.3.11. Let R ∈ Ring. A bounded chain complex of projectives is a
sequence of morphisms

[. . .
dn+1→ Pn

dn→ Pn−1
dn−1→ . . . . . . ]

in Proj(R) such that dn−1dn = 0 and only finitely many Pn are non-zero. A
morphism of chain complexes f• : P• → Q• is a sequence a morphisms fn : Pn →
Qn making commutative squares. A homotopy of morphisms h : f• ∼ g• is a
sequence of morphisms hn : Pn → Qn+1 such that fn − gn = dn+1hn + hn−1dn.

There exists an∞-category Db(R) whose objects are bounded chain complexes
of projectives and morphisms are

homDb(R)(P•, Q•) ∼=
{f• : P• → Q•}

homotopy

For more details on this example, see [Lurie, Higher Algebra, §1.3.1 and §1.3.2].
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Example 4.3.12. The simplicial set ∆1 is an∞-category but not an∞-groupoid
(the unique non-identity morphism is not invertible). The pushout ∆0 t∂∆1 ∆1 of
simplicial sets is not an∞-category. (The unique non-degenerate 1-simplex cannot
be composed with itself).

4.4 Limits

Definition 4.4.1 (Limits in ∞-categories). Let C ∈ Cat∞ and I ∈ Set∆. Given

an object X ∈ C, write γ(X) ∈ Fun(I, C) for the constant functor I → ∆0 X→ C.
For a morphism F : I → C, a limit of F is an object lim←−F ∈ C together with a

morphism γ(lim←−F )→ F in Fun(I, C) such that for any object X ∈ C, the natural
map

MapC(X, lim←−F )→ MapFun(I,C)(γ(X), F )

is an equivalence of ∞-groupoids. Dually, a colimit of F is an object lim−→F ∈ C
together with a natural transformation F → γ(lim−→F ) such that for any object
X ∈ C, the natural map

MapC(lim−→F,X)→ MapFun(I,C)(F, γ(X))

is an equivalence of ∞-groupoids.

Example 4.4.2 (Initial and terminal objects). An initial object ∅, resp. terminal
object ∗, in an ∞-category C is a limit, resp. colimit, of the unique functor
∅ → C from the empty ∞-category. Equivalently, it is an object such that for
any X ∈ C, the mapping space MapC(∅, X), resp. MapC(X, ∗), is contractible,
i.e., all homotopy groups are trivial, or equivalently, Map ∼= ∆0.

1. In the ∞-category of ∞-groupoids Gpd∞:

• Initial object ∅, resp. terminal object ∗: the empty ∞-groupoid, resp.
the point ∆0. Note that just as we can have very large categories which
are equivalent to the punctual category, we can have quite large ∞-
groupoids which are terminal objects. For example,

(a) for any n, the ∞-groupoid SingRn is a terminal object of Gpd∞.

(b) For anyX ∈ Gpd∞ and x ∈ X, the∞-groupoid Map(∆1, X)×X{x}
of paths towards x is a terminal object of Gpd∞.

2. In the ∞-category of pointed ∞-groupoids:

• Initial and terminal object: ∆0 (the point, which is both initial and
terminal, making this a pointed category)
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3. In the ∞-category Cat∞ of ∞-categories:

• Initial object ∅, resp. terminal object ∗: the empty ∞-category ∅,
resp. the terminal ∞-category ∆0 with one object and only identity
morphisms

• Terminal object: ∗ (the terminal ∞-category with one object and only
identity morphisms)

4. In the derived category Db(R):

• Initial object: 0 (the zero chain complex)

• Terminal object: 0 (the zero chain complex)

As in Gpd∞ we can have “large” objects which are also initial / terminal.
For example [· · · → 0 → P

=→ P → 0 → . . . ] is equivalent to 0 for any P .
So it is also an intial / terminal object.

Example 4.4.3 (Products and disjoint unions). Products and Coproducts are
limits and colimits over ∆1 = ∆0 t∆0.

1. In Gpd∞ and Cat∞, products and coproducts are as in the 1-category Set∆.

2. In Db(R) coproducts and products are isomorphic:

(P• ×Q•)n = Pn ⊕Qn = (P• tQ•)n.

Example 4.4.4 (Pullbacks).

1. In Gpd∞ the limit of a diagram X → Z ← Y is modelled by the simplicial
set

X ×Z Map(∆1, Z)×Z Y.

If X = {z} = Y is a vertex of Z, then the limit {z} ×Z {z} in Gpd∞ is the
space of loops from z to z.

2. In Cat∞: The limit of a diagram C → D ← E is modelled by the simplicial
set

C ×D Map(Iso(∆1), D)×D E.

where Iso(∆1) is the free ∞-groupoid generated by ∆1. Explicitly, we have
Iso(∆1)m =

∏
i∈[m]{0, 1}
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3. In Db(R): For chain complexes P•
f→ R•

g← Q•, the limit is modelled by the
complex

Cone(P• ⊕Q•
(f,−g)→ R•)[−1].

Here, for a general morphism of complexes A•
f→ B• one defines

Cone(A•
f→ B•)n = Bn ⊕ An−1

with differential [dB0
f
dA

] and

A•[m]n = An−m

Example 4.4.5. Suppose that a quasi-projective variety X is the union of two
basic opens X = U ∪ V . Then the derived category Db(X) is equivalent to the
pullback

Db(X) = Db(U)×Db(U∩V ) D
b(V )

in Cat∞ where we define Db(Y ) := Db(OY (Y )) for affine varieties. More generally,
if X is a union of finitely many basic opens X = ∪ni=1Ui then the derived category
is the limit

Db(X) = lim←−
i0<···<im

Db(Ui0 ∩ · · · ∩ Uin)

Pushouts in Cat∞ and Gpd∞ are not so explicit in general.

Example 4.4.6. The pushout of a diagram P• ← R• → Q• in Db(R) is modelled
by the chain complex

Cone(R• → P• ⊕Q•).

4.5 Stable infinity categories

Definition 4.5.1. An∞-category C is stable if it satisfies the following conditions:

(Sta0) It is pointed. That is, it admits both an initial object ∅ and a final object
∗ and an equivalence ∅ ∼= ∗. We write 0 for such an object.

(Sta1) It admits fibres and cofibres. That is, for every f : X → Y , both

fib(f) := X ×Y 0 and cof(f) = 0 tX Y

exist.
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(Sta2) A commutative square of the form

X
f //

��

Y

g
��

0 // Z

(1)

is cartesian if and only if it is cocartesian.

Example 4.5.2. For R ∈ Ring the category Db(R) is stable.

Example 4.5.3. Suppose that C is a pointed∞-category. The stabilisation Sp(C)
is defined as the limit

Sp(C) = lim←−(. . .
Ω→ C

Ω→ C
Ω→ C)

in Cat∞ where ΩX := ∗ ×X ∗. Every object in Sp(C) gives rise to a sequence of
objects E0, E1, . . . in C equipped with equivalences En−1

∼→ ΩEn. We also have a
canonical functor

Ω∞ : Sp(C)→ C

namely, projection to the last component.

Proposition 4.5.4 ([HA, Cor.1.4.2.23]). Let C be an ∞-category which admits
finite limits, and T a stable quasi-category. Then composition with the functor Ω∞

induces an equivalence of ∞-categories

FunLex(T, Sp(C))→ FunLex(T,C)

where FunLex means the full subcategory of functors sending finite limits to finite
limits, i.e., left exact functors.

Definition 4.5.5. The stabilisation of the category of pointed ∞-groupoids is
called the category of spectra and is denoted

Spt = Sp(Gpd∞,∗).

Remark 4.5.6. The equivalences En
∼→ ΩEn+1 induces isomorphisms

πiEn
∼→ πi+1En+1.

Given a spectrum E we define

πiE := πi+jEj; i ∈ Z

for any j such that the right hand side is defined.
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Example 4.5.7. Suppose that C ⊆ D in Catex
∞ is a full sub-∞-category closed

under finite limits and finite colimits. The Verdier localisation D/C is a stable
∞-category with the same objects as D and mapping spaces

MapD/C(X, Y ) = lim−→
X′→X

MapD(X ′, Y )

where the colimit is over the ∞-category of morphisms s : X ′ → X such that
fib(s) ∈ C.

Example 4.5.8. The canonical functor Db(Z)→ Db(Q) identifies Db(Q) with the
Verdier quotient of Db(Z) by the full sub-∞-category Db(Z)tor ⊆ Db(Z) of those

complexes P• whose homology groups Hn(P ) = ker(Pn→Pn−1)
im(Pn+1→Pn)

are torsion.

Db(Z)/Db(Z)tor
∼= Db(Q).

Example 4.5.9. Let X ∈ QProj. The coherent OPn-modules O,O(1), . . . ,O(n)
induce a sequence of stable sub-∞-categories

0 = C−1 ⊂ C0 ⊂ · · · ⊂ Cn = Db(Pn×X).

Namely, Ci is generated by O, . . . ,O(i). We have equivalences

Ci/Ci−1
∼= Db(X).

via the functors

Db(X)→ Db(Pn×X)

F 7→ O(i)⊗ p∗F

4.6 Localising invariants

The original reference for the characterisation of algebraic K-theory as the univer-
sal localising invariant is [Antieau–Gepner–Tabuada]. For a course about this see
[Hebestreit–Wagner, Algebraic and Hermitian K-Theory, Winter Term 2020/21,
University of Bonn]

Write
Catex

∞

for the∞-category whose objects are stably∞-categories and morphisms are exact
functors. That is, functors which preserve finite limits and finite colimits.
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Definition 4.6.1 (Idempotent completion). A stable∞-category C is idempotent
complete if every idempotent endomorphism p : X → X (i.e., p ◦ p ' p) admits a
splitting. That is, there exists an isomorphism

X ∼= Y ⊕ Z

such that p is identified with the composition X → Y → X. We write Catperf
∞ ⊆

Catex
∞ for the full subcategory of idempotent complete stable ∞-categories. The

inclusion admits a left adjoint

(−)\ : Catex
∞ → Catperf

∞

called idempotent completion.

Proposition 4.6.2. A square

C i //

��

D

p
��

0 // E

of small stable ∞-categories is a bifibre square in Catex
∞ if it is a cartesian square

in Cat∞ and E is (equivalent to) the Verdier localisation D/C of D along C. Such
a square is a fibre square in Catperf

∞ if E ∼= (D/C)\.

Definition 4.6.3. A functor F : Catperf
∞ → Spt is called a localising invariant if

it sends bifibre squares to bifibre squares.

4.7 K-theory

Theorem 4.7.1. The∞-category of localising functors F : Catperf
∞ → Spt equipped

with a natural transformation

(−)
∼= → Ω∞F

admits an initial object K.

Remark 4.7.2. That is, K is the localising invariant “as close as possible” to
the core functor which sends C ∈ Catperf

∞ to its associated ∞-groupoid C
∼=. Note

that in a precise mathematical sense, Db(R) is the closest stable ∞-category to
Proj(R), [Lurie, Higher Algebra, Thm.1.3.3.2, Thm.1.3.3.8].

Theorem 4.7.3. For n ≤ 1 and R ∈ Ring, the homotopy groups

πnK(Db(R))

are the groups Kn(R) we saw last time.
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Example 4.7.4. Using the decomposition associated to O,O(1), . . . ,O(n), we
have

K(Db(PnR)) ∼=
n⊕
i=0

K(R).

Example 4.7.5. For a finite field Fq with q elements, we have:

Kn(Fq) = 0 for n ≤ −1 (2)

K0(Fq) ∼= Z (3)

K1(Fq) ∼= F×q ∼= Z/(q − 1)Z (4)

K2i(Fq) = 0 for i ≥ 1 (5)

K2i−1(Fq) ∼= Z/(qi − 1)Z for i ≥ 1 (6)

The pattern in positive degrees follows from Quillen’s computation, while negative
K-groups vanish since Fq has finite global dimension.

Example 4.7.6. For the field of rational numbers Q:

Kn(Q) = 0 for n ≤ −1 (7)

K0(Q) ∼= Z (8)

K1(Q) ∼= Q× (9)

K2(Q) ∼= (Z/4)∗ ×
∏

p odd prime

(Z/p)∗ (10)

The computation of K2(Q) is due to Tate and follows from Gauss’s first proof of
quadratic reciprocity. For higher K-groups, Borel proved that (modulo torsion):

K4k+1(Z)/tors = Z for k > 0

Ki(Z)/tors = 0 for i > 2; i 6= 4k + 1

Example 4.7.7 (Matsumoto’s theorem). For any field k, Matsumoto’s theorem
states that the second K-group is given by

K2(k) =
k× ⊗Z k

×

〈a⊗ (1− a) | a 6= 0, 1〉
.

The relations a⊗ (1− a) = 0 are called the Steinberg relations.
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