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Recall that if X ⊆ An is an affine variety, then all information (except the
embedding into An) is contained in the ring OX(X). That is, up to isomorphism,
we can reconstruct the variety X from the ring OX(X). More precisely, we have
an equivalence of categories:

{affine k-varieties} ' {finitely generated k-algebras}op

In this lecture I want to work with the larger category of affine schemes. This
is equivalent to, and sometimes defined as, the opposite of the category Ring of
commutative rings with unit. That is, in this lecture we will work with rings. If
I want to think of a ring as a geometric object I will write Spec(R), but in this
lecture you should just think of this as notation. I don’t want to talk about locally
ringed topological spaces.

{affine schemes} ∼= Ringop

Spec(R)↔ R

3.1 K0

Last time we considered G0(X). For a ring R, this is defined as:

G0(R) =

Z
[

finitely generated
R-modules

]
〈

[M ]− [L]− [N ]

∣∣∣∣ 0→ L→M → N → 0
is exact

〉
The group G0 is good for many things, but not everything.

Example 3.1.1 (Limitations of G0).

1. G0 doesn’t detect nilpotent elements: Consider R = k[x]/(x2) where k
is a field. Every M ∈ Coh(R) is a finite direct sum of copies of

M = k[x]/(x2) = R or M ′ = R/(x) ∼= k.
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We have an exact sequence 0 → k
x−→ R → k → 0, so in G0(R) we get

[R] = [k] + [k] = 2[k]. Thus G0(R) ∼= Z ∼= G0(k). More generally, for a
Noetherian ring R with nilradical Nil(R), we have

G0(R) ∼= G0(R/Nil(R)).

We will see below that for local rings R we have K1(R) = R∗. In particular,
K1 can see nilpotents.

2. G0 cannot see certain singularities. For example, consider the cusp X =
V (y2−x3) ⊆ A2 and the affine line Y = A1. Both have G0(X) ∼= G0(Y ) ∼= Z,
even though X has a cusp singularity while Y is smooth. However, for
integral Noetherian rings of (Krull) dimension one, we have K0(R) ∼= Z ⊕
Pic(R), [Weibel II.2.6.3]. Since Pic(X) 6= 0 while Pic(A1) = 0, we get
K0(X) 6= K0(A1), so K0 (defined below) can distinguish these cases where
G0 cannot.

3. Functoriality: The functor G0 has functoriality of a cohomology with com-
pact support rather than a “cohomology theory”. More precisely, G0 is co-
variant G0(X) → G0(Y ) for projective morphisms X → Y of varieties, and
contravariant G0(X) → G0(Y ) for flat morphisms Y → X, but it is not
contravariant for all morphisms.

4. No ring structure in general: The semiring structure on Coh(X)/∼= com-
ing from ⊗ does not descend in general to a ring structure on G0(X).

In this lecture instead of all coherent sheaves we will focus on vector bundles.

Definition 3.1.2. A vector bundle on a variety X is a coherent sheaf E that is
locally of constant rank, meaning that for every point x ∈ X, there exists a basic
open U 3 x such that E|U ∼= O⊕rU for some integer r ≥ 0.

Example 3.1.3 (Examples of vector bundles).

1. The structure sheaf OX is a vector bundle of rank 1.

2. The O(D) (for D ∈ Zd−1(X) on a smooth irreducible X of dimension d) are
vector bundles of rank 1.

3. The O(d) in Coh(Pn) are vector bundles of rank 1.

4. A variety X is smooth of dimension d if and only if ΩX is a vector bundle of
rank d.

5. If E and F are vector bundles, then E ⊕ F is a vector bundle.
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6. If E ⊕ F ∼= G where G is a vector bundle, then both E and F are vector
bundles.

Recall that for affine varieties (and more generally, for affine schemes) the
category of Coh(X) is equivalent to the category of finitely generated OX(X)-
modules. We can also identify the subcategory of vector bundles.

Proposition 3.1.4. Let X be an affine variety and R = OX(X). Then we have
an equivalence of categories:{

vector bundles
on X

}
'
{

finitely generated
projective R-modules

}
Note that a module P is finitely generated and projective if and only if there exists
some Q and an isomorphism P ⊕Q ∼= R⊕n.

Algebraic K-theory of a ring R is then defined as follows.

Definition 3.1.5 (K0). For a ring R, we define K0(R) as:

K0(R) =

Z
[

finitely generated
projective R-modules

]
〈

[P ]− [N ]− [Q] :
0→ N → P → Q→ 0 exact

with N,P,Q projective

〉
Remark 3.1.6. Since surjections P →→ Q towards projective modules Q have
sections P ←↩ Q, for sequences as above we have P ∼= N ⊕ Q and so K0(R) can
also be defined as:

K0(R) =

Z
[

finitely generated
projective R-modules

]
〈[P ⊕Q]− [P ]− [Q]〉

This description shows that K0(R) is the group completion of the abelian monoid
(Proj(R)/∼=,⊕) of isomorphism classes of projective R-modules. That is, the map
(Proj(R)/∼=,⊕) → K0(R) is the unique homomorphism of abelian monoids such
that for every abelian group A,

homAb(K0(R), A)
∼→ homCommMon(Proj(R)/∼=, A)

Definition 3.1.7 (Regular ring). A Noetherian ring R is called regular if every
finitely generated R-module admits a finite resolution by finitely generated pro-
jective R-modules. That is, for every M ∈ Coh(R) there exists an exact sequence

0→ P0 → P1 → · · · → Pn →M → 0

with each Pi ∈ Proj(R).
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Remark 3.1.8. Usually regularity is defined in terms of regular sequences. The
equivalence to the above definition is an actual theorem requiring substantial com-
mutative algebra, [Stacks Project, Tag 00O7].

Corollary 3.1.9. For regular Noetherian rings R, e.g., R = OX(X) when X is a
smooth affine variety, we have

G0(R) = K0(R).

Remark 3.1.10 (Sketch of proof). By induction, we see that for resolutions as
in the above definition, we have [M ] =

∑n
i=0(−1)i[Pi] in G0(R). In particular,

K0(R)→ G0(R) is surjective. Similarly, any relation in G0(R) can be replaced by
a relation in K0(R) only involving projective modules.

3.2 K1

Definition 3.2.1 (Milnor square, [[Weibel, Exam.I.2.6]). A Milnor square is a
pullback square of surjections

R
p // //

��

R′

��
S q

// // S ′

Remark 3.2.2.

1. Explicitly, we are asking that R = ker(S ⊕R′ → S ′).

2. Often in the definition of Milnor squares there is the condition that ker(p) ∼=
ker(q), but this is automatic from the above formulation.

Remark 3.2.3. Surjections of rings correspond to closed immersions of schemes,
and pullbacks of rings correspond to pushouts of schemes. That is R = S ×S′ R′

means Spec(R) = Spec(S) tSpec(S′) Spec(R′).

Theorem 3.2.4 ([Weibel, Thm.II.2.9]). Suppose we have a Milnor square as
above. Then there is a long exact sequence

GL∞(S ′)→ K0(R)→ K0(S)⊕K0(R
′)→ K0(S

′)

where GL∞(S ′) = lim−→(GL1(S
′)→ GL2(S

′)→ GL3(S
′)→ . . . ).

Remark 3.2.5. In fact, one might expect that such a sequence exists because the
category Proj(R) is equivalent to a category whose objects are triples (P,Q, φ)
consisting of an S-module P , an R′-module Q and an isomorphism φ : P ⊗S S

′ ∼=
Q⊗R′ S ′, [Weibel, Theorem I.2.7].
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The failure of injectivity suggests that we need to keep track of more informa-
tion than just isomorphism classes. Automorphisms seem to be important.

Observation 3.2.6.

1. K0(R) is the group completion of the monoid (Proj(R)/∼=,⊕).

2. Automorphisms seem to be important (Theorem 3.2.4).

Instead of working with isomorphism classes Proj(R)/∼=, let’s consider the
groupoid

Proj(R)
∼=.

This is the category whose objects are finitely generated projective modules and
whose morphisms are isomorphisms.

The groupoid Proj(R)
∼= has a symmetric monoidal structure

Proj(R)
∼= × Proj(R)

∼= → Proj(R)
∼=

given by direct sum ⊕ and the isomorphisms P ⊕ Q ∼= Q ⊕ P . We want to form
its group completion. That is, a universal functor

Proj(R)
∼= → G

towards a grouplike symmetric monoidal groupoid. That is, a symmetric monoidal
groupoid such that for every object X the functor X ⊕− is an equivalence. Uni-
versal means that for any grouplike symmetric monoidal groupoid G ′ it should
induce an equivalence of groupoids

Fun(G,G ′) ∼→ Fun(Proj(R)
∼=,G ′)

where Fun is the groupoid of monoidal functors.

Observation 3.2.7. Suppose that Φ : Proj(R)
∼= → G is a functor towards a

grouplike symmetric monoidal groupoid. Use ⊕ for operations on both groupoids
and O for the unit object. So −⊕O is isomorphic to the identity functor.

1. Since X ⊕− : G → G is an equivalence for any X, we have

AutG(O) ∼= AutG(X)

for all objects X.

2. For each n, we have a group homomorphism GLn(R) = Aut(R⊕n)→ AutG(Φ(R⊕n)) ∼=
AutG(O) compatible with inclusions GLn(R)→ GLn+1(R). This gives a map

GL∞(R)→ AutG(O).
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3. By the Eckmann-Hilton argument, since composition ◦ and direct sum ⊕
both give operations on the set Aut(O), and they distribute over each other:

(α⊕ β) ◦ (γ ⊕ δ) = (α ◦ γ)⊕ (β ◦ δ)

the group Aut(O) is abelian. Therefore we get a group homomorphism

GL∞(R)

[GL∞(R),GL∞(R)]
→ AutG(O)

Here we write [G,G] = 〈ghg−1h−1〉 for the commutator subgroup of a group
G. So G→ G/[G,G] is the largest abelien quotient of G.

Definition 3.2.8 (K1). For a ring R, we define:

K1(R) =
GL∞(R)

[GL∞(R),GL∞(R)]
.

Here is some evidence that this is a good definition.

Theorem 3.2.9 ([Weibel, Thm.III.2.6]). Suppose we have a Milnor square as
above. Then there is a long exact sequence

K1(R) // K1(S)⊕K1(R
′) // K1(S

′)

// K0(R) // K0(S)⊕K0(R
′) // K0(S

′)

3.3 K<0

Now we move on to negative K-theory. One motivation for negative K-theory
comes from trying to extend exact sequence to the right.

Here is our (admittedly weak) hint as to what a good definition might be.

Theorem 3.3.1 (Fundamental Theorem for K1, [Weibel, III.3.6]). For every ring
R, there is an exact sequence

0→ K1(R) −→ K1(R[t])⊕K1(R[t−1]) −→ K1(R[t, t−1]) −→ K0(R)→ 0.

Definition 3.3.2 (Negative K-theory). For a ring R and n > 0, we inductively
define K−n(R) to be the cokernel

K−n(R) := coker

(
K−n+1(R[t])⊕K−n+1(R[t−1])→ K−n+1(R[t, t−1]

)
.
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Theorem 3.3.3 ([Weibel, III.4.3]). Suppose we are given a Milnor square as above.
Then the sequence of Theorem 3.2.9 continues as :

. . . // K0(R) // K0(S)⊕K0(R
′) // K0(S

′)

// K−1(R) // K−1(S)⊕K−1(R′) // K−1(S
′)

. . .

00 K−n(R) // . . .
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