3 $K_{<1}$

Contents

3	$K_{\leq 1}$	(1	1
	3.1	K_0	 1
	3.2	K_1	 4
	3.3	$K_{<0}$	 6

Recall that if $X \subseteq \mathbb{A}^n$ is an affine variety, then all information (except the embedding into \mathbb{A}^n) is contained in the ring $\mathcal{O}_X(X)$. That is, up to isomorphism, we can reconstruct the variety X from the ring $\mathcal{O}_X(X)$. More precisely, we have an equivalence of categories:

{affine k-varieties}
$$\simeq$$
 {finitely generated k-algebras} op

In this lecture I want to work with the larger category of affine schemes. This is equivalent to, and sometimes defined as, the opposite of the category \mathcal{R} ing of commutative rings with unit. That is, in this lecture we will work with rings. If I want to think of a ring as a geometric object I will write $\operatorname{Spec}(R)$, but in this lecture you should just think of this as notation. I don't want to talk about locally ringed topological spaces.

{affine schemes}
$$\cong \mathcal{R}ing^{op}$$

Spec $(R) \leftrightarrow R$

3.1 K_0

Last time we considered $G_0(X)$. For a ring R, this is defined as:

$$G_0(R) = \frac{\mathbb{Z} \begin{bmatrix} \text{finitely generated} \\ R\text{-modules} \end{bmatrix}}{\left\langle [M] - [L] - [N] \mid \begin{array}{c} 0 \to L \to M \to N \to 0 \\ \text{is exact} \end{array} \right\rangle}$$

The group G_0 is good for many things, but not everything.

Example 3.1.1 (Limitations of G_0).

1. G_0 doesn't detect nilpotent elements: Consider $R = k[x]/(x^2)$ where k is a field. Every $M \in Coh(R)$ is a finite direct sum of copies of

$$M = k[x]/(x^2) = R$$
 or $M' = R/(x) \cong k$.

We have an exact sequence $0 \to k \xrightarrow{x} R \to k \to 0$, so in $G_0(R)$ we get [R] = [k] + [k] = 2[k]. Thus $G_0(R) \cong \mathbb{Z} \cong G_0(k)$. More generally, for a Noetherian ring R with nilradical Nil(R), we have

$$G_0(R) \cong G_0(R/\operatorname{Nil}(R)).$$

We will see below that for local rings R we have $K_1(R) = R^*$. In particular, K_1 can see nilpotents.

- 2. G_0 cannot see certain singularities. For example, consider the cusp $X = V(y^2 x^3) \subseteq \mathbb{A}^2$ and the affine line $Y = \mathbb{A}^1$. Both have $G_0(X) \cong G_0(Y) \cong \mathbb{Z}$, even though X has a cusp singularity while Y is smooth. However, for integral Noetherian rings of (Krull) dimension one, we have $K_0(R) \cong \mathbb{Z} \oplus \operatorname{Pic}(R)$, [Weibel II.2.6.3]. Since $\operatorname{Pic}(X) \neq 0$ while $\operatorname{Pic}(\mathbb{A}^1) = 0$, we get $K_0(X) \neq K_0(\mathbb{A}^1)$, so K_0 (defined below) can distinguish these cases where G_0 cannot.
- 3. **Functoriality**: The functor G_0 has functoriality of a cohomology with compact support rather than a "cohomology theory". More precisely, G_0 is covariant $G_0(X) \to G_0(Y)$ for projective morphisms $X \to Y$ of varieties, and contravariant $G_0(X) \to G_0(Y)$ for flat morphisms $Y \to X$, but it is not contravariant for all morphisms.
- 4. No ring structure in general: The semiring structure on $Coh(X)_{\cong}$ coming from \otimes does not descend in general to a ring structure on $G_0(X)$.

In this lecture instead of all coherent sheaves we will focus on vector bundles.

Definition 3.1.2. A vector bundle on a variety X is a coherent sheaf \mathcal{E} that is locally of constant rank, meaning that for every point $x \in X$, there exists a basic open $U \ni x$ such that $\mathcal{E}|_{U} \cong \mathcal{O}_{U}^{\oplus r}$ for some integer $r \geq 0$.

Example 3.1.3 (Examples of vector bundles).

- 1. The structure sheaf \mathcal{O}_X is a vector bundle of rank 1.
- 2. The $\mathcal{O}(D)$ (for $D \in \mathcal{Z}_{d-1}(X)$ on a smooth irreducible X of dimension d) are vector bundles of rank 1.
- 3. The $\mathcal{O}(d)$ in $Coh(\mathbb{P}^n)$ are vector bundles of rank 1.
- 4. A variety X is smooth of dimension d if and only if Ω_X is a vector bundle of rank d.
- 5. If E and F are vector bundles, then $E \oplus F$ is a vector bundle.

6. If $E \oplus F \cong G$ where G is a vector bundle, then both E and F are vector bundles.

Recall that for affine varieties (and more generally, for affine schemes) the category of Coh(X) is equivalent to the category of finitely generated $\mathcal{O}_X(X)$ -modules. We can also identify the subcategory of vector bundles.

Proposition 3.1.4. Let X be an affine variety and $R = \mathcal{O}_X(X)$. Then we have an equivalence of categories:

$$\left\{\begin{array}{c} vector\ bundles\\ on\ X \end{array}\right\} \simeq \left\{\begin{array}{c} finitely\ generated\\ projective\ R\text{-}modules \end{array}\right\}$$

Note that a module P is finitely generated and projective if and only if there exists some Q and an isomorphism $P \oplus Q \cong R^{\oplus n}$.

Algebraic K-theory of a ring R is then defined as follows.

Definition 3.1.5 (K_0) . For a ring R, we define $K_0(R)$ as:

$$K_0(R) = \frac{\mathbb{Z} \left[\begin{array}{c} \text{finitely generated} \\ \text{projective } R\text{-modules} \end{array} \right]}{\left\langle [P] - [N] - [Q] : \begin{array}{c} 0 \to N \to P \to Q \to 0 \text{ exact} \\ \text{with } N, P, Q \text{ projective} \end{array} \right\rangle}$$

Remark 3.1.6. Since surjections $P \to Q$ towards projective modules Q have sections $P \leftarrow Q$, for sequences as above we have $P \cong N \oplus Q$ and so $K_0(R)$ can also be defined as:

$$K_0(R) = \frac{\mathbb{Z} \left[\begin{array}{c} \text{finitely generated} \\ \text{projective } R\text{-modules} \end{array} \right]}{\langle [P \oplus Q] - [P] - [Q] \rangle}$$

This description shows that $K_0(R)$ is the group completion of the abelian monoid $(\operatorname{Proj}(R)_{/\cong}, \oplus)$ of isomorphism classes of projective R-modules. That is, the map $(\operatorname{Proj}(R)_{/\cong}, \oplus) \to K_0(R)$ is the unique homomorphism of abelian monoids such that for every abelian group A,

$$\hom_{\mathcal{A}\mathrm{b}}(K_0(R),A) \xrightarrow{\sim} \hom_{\mathrm{CommMon}}(\mathrm{Proj}(R)_{/\cong},A)$$

Definition 3.1.7 (Regular ring). A Noetherian ring R is called *regular* if every finitely generated R-module admits a finite resolution by finitely generated projective R-modules. That is, for every $M \in Coh(R)$ there exists an exact sequence

$$0 \to P_0 \to P_1 \to \cdots \to P_n \to M \to 0$$

with each $P_i \in \text{Proj}(R)$.

Remark 3.1.8. Usually regularity is defined in terms of regular sequences. The equivalence to the above definition is an actual theorem requiring substantial commutative algebra, [Stacks Project, Tag 0007].

Corollary 3.1.9. For regular Noetherian rings R, e.g., $R = \mathcal{O}_X(X)$ when X is a smooth affine variety, we have

$$G_0(R) = K_0(R).$$

Remark 3.1.10 (Sketch of proof). By induction, we see that for resolutions as in the above definition, we have $[M] = \sum_{i=0}^{n} (-1)^{i} [P_i]$ in $G_0(R)$. In particular, $K_0(R) \to G_0(R)$ is surjective. Similarly, any relation in $G_0(R)$ can be replaced by a relation in $K_0(R)$ only involving projective modules.

3.2 K_1

Definition 3.2.1 (Milnor square, [[Weibel, Exam.I.2.6]). A *Milnor square* is a pullback square of surjections

$$\begin{array}{ccc}
R \xrightarrow{p} R' \\
\downarrow & \downarrow \\
S \xrightarrow{q} S'
\end{array}$$

Remark 3.2.2.

- 1. Explicitly, we are asking that $R = \ker(S \oplus R' \to S')$.
- 2. Often in the definition of Milnor squares there is the condition that $\ker(p) \cong \ker(q)$, but this is automatic from the above formulation.

Remark 3.2.3. Surjections of rings correspond to closed immersions of schemes, and pullbacks of rings correspond to pushouts of schemes. That is $R = S \times_{S'} R'$ means $\operatorname{Spec}(R) = \operatorname{Spec}(S) \sqcup_{\operatorname{Spec}(S')} \operatorname{Spec}(R')$.

Theorem 3.2.4 ([Weibel, Thm.II.2.9]). Suppose we have a Milnor square as above. Then there is a long exact sequence

$$GL_{\infty}(S') \to K_0(R) \to K_0(S) \oplus K_0(R') \to K_0(S')$$

where
$$GL_{\infty}(S') = \varinjlim (GL_1(S') \to GL_2(S') \to GL_3(S') \to \dots)$$
.

Remark 3.2.5. In fact, one might expect that such a sequence exists because the category $\operatorname{Proj}(R)$ is equivalent to a category whose objects are triples (P, Q, ϕ) consisting of an S-module P, an R'-module Q and an isomorphism $\phi: P \otimes_S S' \cong Q \otimes_{R'} S'$, [Weibel, Theorem I.2.7].

The failure of injectivity suggests that we need to keep track of more information than just isomorphism classes. Automorphisms seem to be important.

Observation 3.2.6.

- 1. $K_0(R)$ is the group completion of the monoid $(\operatorname{Proj}(R)_{/\cong}, \oplus)$.
- 2. Automorphisms seem to be important (Theorem 3.2.4).

Instead of working with isomorphism classes $\operatorname{Proj}(R)_{/\cong}$, let's consider the groupoid

$$\operatorname{Proj}(R)^{\cong}$$
.

This is the category whose objects are finitely generated projective modules and whose morphisms are isomorphisms.

The groupoid $Proj(R)^{\cong}$ has a symmetric monoidal structure

$$\operatorname{Proj}(R)^{\cong} \times \operatorname{Proj}(R)^{\cong} \to \operatorname{Proj}(R)^{\cong}$$

given by direct sum \oplus and the isomorphisms $P \oplus Q \cong Q \oplus P$. We want to form its group completion. That is, a universal functor

$$\operatorname{Proj}(R)^{\cong} \to \mathcal{G}$$

towards a grouplike symmetric monoidal groupoid. That is, a symmetric monoidal groupoid such that for every object X the functor $X \oplus -$ is an equivalence. Universal means that for any grouplike symmetric monoidal groupoid \mathcal{G}' it should induce an equivalence of groupoids

$$\operatorname{Fun}(\mathcal{G}, \mathcal{G}') \stackrel{\sim}{\to} \operatorname{Fun}(\operatorname{Proj}(R)^{\cong}, \mathcal{G}')$$

where Fun is the groupoid of monoidal functors.

Observation 3.2.7. Suppose that $\Phi: \operatorname{Proj}(R)^{\cong} \to \mathcal{G}$ is a functor towards a grouplike symmetric monoidal groupoid. Use \oplus for operations on both groupoids and \mathbb{O} for the unit object. So $-\oplus \mathbb{O}$ is isomorphic to the identity functor.

1. Since $X \oplus -: \mathcal{G} \to \mathcal{G}$ is an equivalence for any X, we have

$$\operatorname{Aut}_{\mathcal{G}}(\mathbb{O}) \cong \operatorname{Aut}_{\mathcal{G}}(X)$$

for all objects X.

2. For each n, we have a group homomorphism $GL_n(R) = Aut(R^{\oplus n}) \to Aut_{\mathcal{G}}(\Phi(R^{\oplus n})) \cong Aut_{\mathcal{G}}(\mathbb{O})$ compatible with inclusions $GL_n(R) \to GL_{n+1}(R)$. This gives a map

$$GL_{\infty}(R) \to Aut_{\mathcal{G}}(\mathbb{O}).$$

3. By the Eckmann-Hilton argument, since composition \circ and direct sum \oplus both give operations on the set $\operatorname{Aut}(\mathbb{O})$, and they distribute over each other:

$$(\alpha \oplus \beta) \circ (\gamma \oplus \delta) = (\alpha \circ \gamma) \oplus (\beta \circ \delta)$$

the group $Aut(\mathbb{O})$ is abelian. Therefore we get a group homomorphism

$$\frac{\operatorname{GL}_{\infty}(R)}{[\operatorname{GL}_{\infty}(R),\operatorname{GL}_{\infty}(R)]} \to \operatorname{Aut}_{\mathcal{G}}(\mathbb{O})$$

Here we write $[G, G] = \langle ghg^{-1}h^{-1}\rangle$ for the commutator subgroup of a group G. So $G \to G/[G, G]$ is the largest abelien quotient of G.

Definition 3.2.8 (K_1) . For a ring R, we define:

$$K_1(R) = \frac{\mathrm{GL}_{\infty}(R)}{[\mathrm{GL}_{\infty}(R), \mathrm{GL}_{\infty}(R)]}.$$

Here is some evidence that this is a good definition.

Theorem 3.2.9 ([Weibel, Thm.III.2.6]). Suppose we have a Milnor square as above. Then there is a long exact sequence

$$K_1(R) \longrightarrow K_1(S) \oplus K_1(R') \longrightarrow K_1(S')$$

$$\longrightarrow K_0(R) \longrightarrow K_0(S) \oplus K_0(R') \longrightarrow K_0(S')$$

3.3 $K_{<0}$

Now we move on to negative K-theory. One motivation for negative K-theory comes from trying to extend exact sequence to the right.

Here is our (admittedly weak) hint as to what a good definition might be.

Theorem 3.3.1 (Fundamental Theorem for K_1 , [Weibel, III.3.6]). For every ring R, there is an exact sequence

$$0 \to K_1(R) \to K_1(R[t]) \oplus K_1(R[t^{-1}]) \to K_1(R[t, t^{-1}]) \to K_0(R) \to 0.$$

Definition 3.3.2 (Negative K-theory). For a ring R and n > 0, we inductively define $K_{-n}(R)$ to be the cokernel

$$K_{-n}(R) := \operatorname{coker}\left(K_{-n+1}(R[t]) \oplus K_{-n+1}(R[t^{-1}]) \to K_{-n+1}(R[t,t^{-1}])\right).$$

Theorem 3.3.3 ([Weibel, III.4.3]). Suppose we are given a Milnor square as above. Then the sequence of Theorem 3.2.9 continues as:

