2 Grothendieck-Riemann-Roch

Contents

2	Gro	thendieck–Riemann-Roch	1
	2.1	Statement	1
	2.2	Morphisms of varieties	1
	2.3	Quasi-coherent \mathcal{O}_X -modules	3
	2.4	Pushforward	7
	2.5	Pullbacks	8
	2.6	Cotangent sheaf	9
	2.7	Chow groups	10
	2.8	Restatement	14

2.1 Statement

Everything in this lecture is over an algebraically closed field $k = \overline{k}$ (e.g., \mathbb{C} , $\overline{\mathbb{Q}}$, $\overline{\mathbb{F}}_p$, $\bigcup_{n \in \mathbb{N}} \mathbb{C}((t^{1/n}))$, ...).

Theorem 2.1 (Grothendieck–Riemann–Roch). Suppose X is a smooth quasi-projective variety. Then the Chern character induces an isomorphism

$$\operatorname{ch}: G_0(X)_{\mathbb{Q}} \cong A_*(X)_{\mathbb{Q}}.$$

Moreover, if $X \to Y$ is a projective morphism between smooth quasi-projective varieties, we have

$$\operatorname{ch}(f_*\alpha) \cdot \operatorname{td}(T_Y) = f_*(\operatorname{ch}(\alpha) \cdot \operatorname{td}T_X).$$

Remark 2.2. When X is a smooth projective curve and $Y = \mathbb{A}^0$, this recovers the classical Riemann–Roch theorem from Lecture 1.

2.2 Morphisms of varieties

Recall that last time we define affine varieties $X \subseteq k^n$, projective varieties $X \subseteq \mathbb{P}^n = \frac{k^{n+1} \setminus \{0\}}{k^*}$, and basic opens $U \subseteq X \subseteq \mathbb{C}^n$. We also considered the rings

$$\mathcal{O}_X(U) = \{ \phi : U \to k \mid \phi = f/g^n, \text{ for some } f \in k[x_1, \dots, x_n], n \in \mathbb{N} \}$$

where $U = D(g) = \{x \in X \mid g(x) \neq 0\}.$

Definition 1. A morphism of basic opens $U \subseteq X \subseteq \mathbb{A}^n$, $V \subseteq Y \subseteq \mathbb{A}^m$ is a sequence $(\phi_1, \ldots, \phi_m) \in \mathcal{O}_X(U)^m$ such that the corresponding morphism $U \to k^m$ factors through $V \subseteq k^m$.

Example 2.3.

- 1. Any inclusion of basic opens is a morphism.
- 2. If $D(g) \subseteq V(f_1, \ldots, f_c) \subseteq \mathbb{A}^n$, then the canonical bijection

$$V(f_1,\ldots,f_c,yg-1) \to D(g)$$

 $\subseteq \mathbb{A}^{n+1}$
 $\subseteq V(f_1,\ldots,f_c)\subseteq \mathbb{A}^n$

is a morphism of basic opens. It has inverse given by $(x_1, x_2, \dots, x_n, \frac{1}{g})$: $D(g) \to k^{n+1}$. That is, in the (big) category of basic opens, we have

$$V(f_1,\ldots,f_c,yg-1)\cong D(g).$$

3. A composition of morphisms of basic opens is a morphism of basic opens. So we have a "big" category of basic opens. We don't need a notation for this because we won't often use it.

Remark 2.4. A morphism of basic opens $U \to V$ induces a ring homomorphism $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$. In particular, every point $\mathbb{A}^0 \to U$ induces a (surjective) ring homomorphism $\mathcal{O}_X(U) \to k$. In fact, every surjection $\mathcal{O}_X(U) \to k$ comes from a point. That is, there is a bijection

$$\operatorname{hom}_{Alg_k}(\mathcal{O}_X(U), k) \cong \operatorname{hom}(\mathbb{A}^0, U) \cong U.$$

This holds more generally,

$$\hom_{\mathcal{A} \mid g_k}(\mathcal{O}_X(U), \mathcal{O}_Y(V)) \cong \hom(V, U).$$

Definition 2. A quasi-projective variety or just variety is a union of basic opens in some projective variety \overline{X} .

$$X = \cup_{\lambda \in \Lambda} U_{\lambda} \subseteq \overline{X}$$

We continue to write $\mathcal{B}(X)$ for the category of all basic opens (of \overline{X}) contained in X.

Example 2.5. The set $\mathbb{A}^2 \setminus \{0\}$ from last lecture is not (isomorphic to) a basic open, nor a projective variety, but it is a quasi-projective variety. Similarly, $\mathbb{P}^n \setminus \{(0:0:\ldots:0:1)\}$ is a quasi-projective variety which is neither affine, nor projective.

Remark 2.6. One should think of quasi-projective varieties as being covered by basic opens in the same way that a smooth manifold is covered by opens that are homeomorphic to an open in \mathbb{R}^n .

Definition 3. A morphism of quasi-projective varieties is a function

$$f: X \to Y$$

such that for every $x \in X$ there exists a commutative diagram

such that U, V are basic opens and $U \to V$ is a morphism of basic opens. The category of quasi-projective varieties will be denoted QProj.

In other words, a morphism of quasi-projective varieties is a morphism defined by quotients of polynomials.

Example 2.7.

- 1. For $X \in \mathcal{Q}\operatorname{Proj}$ and $\{U_{\lambda}\}_{{\lambda}\in\Lambda} \subseteq \mathcal{B}(X)$ then $U := \bigcup_{\Lambda} U_{\lambda} \in \mathcal{Q}\operatorname{Proj}$ and the inclusion $U \to X$ is a morphism. In this case U is called an *open subvariety* of X.
- 2. In the previous notation, we also have $Z = X \setminus U \in \mathcal{Q}$ Proj and $Z \to X$ is a morphism. In this case Z is called a *closed subvariety* of X.
- 3. For $X,Y \in \mathcal{Q}$ Proj, the product $X \times Y$ has a canonical structure of quasi-projective variety (via the Segre embedding). The two projections $X \leftarrow X \times Y \to Y$ are morphisms.

2.3 Quasi-coherent \mathcal{O}_X -modules

Now we have a nice category of quasi-projective varieties. We are going to fix a quasi-projective variety X and study certain families of vector spaces parameterised by X.

Definition 4 (Quasi-coherent \mathcal{O}_X -module). A quasi-coherent \mathcal{O}_X -module on a quasi-projective variety X is a functor $F: \mathcal{B}(X)^{op} \to \mathcal{A}$ b such that:

- 1. Each F(U) is an $\mathcal{O}_X(U)$ -module
- 2. Each restriction map $F(U) \to F(V)$ (for $V \subseteq U$) is a morphism of $\mathcal{O}_X(U)$ modules

3. For every inclusion $V \subseteq U$ of basic opens, the natural map

$$F(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(V) \to F(V)$$
 (*)

is an isomorphism

A morphism of quasi-coherent \mathcal{O}_X -modules is a natural transformation $\phi: F \to G$ such that each component $\phi_U: F(U) \to G(U)$ is a morphism of $\mathcal{O}_X(U)$ -modules. If each F(U) is a finitely generated $\mathcal{O}_X(U)$ -module, then we say that F is coherent.

Write QCoh(X) and Coh(X) for the categories of quasi-coherent and coherent \mathcal{O}_X -modules.

Remark 2.8. One can check that if $U = U_0 \cup U_1$ with $U, U_0, U_1 \in \mathcal{B}(X)$ then for any quasi-coherent \mathcal{O}_X -module F we have $F(U) = F(U_0) \times_{F(U_0 \cap U_1)} F(U_1)$. Consequently, there is a unique sheaf F' on the X (considered as a topological space via open subvarieties) such that $F'|_{\mathcal{B}(X)} = F$. However, I don't want to talk about sheaves in this series of lectures.

Remark 2.9. For every point $x \in U$ and $F \in \mathcal{Q}Coh(X)$ we get an associated k-vector space

$$F_x := F(U) \otimes_{\mathcal{O}_X(U)} k$$

where $\mathcal{O}_X(U) \to k$ is the homomorphism associated to $x \to U$. The condition (*) ensures that this is independent of U. In this way you can/should think of F as a family of vector spaces parameterised by X, at least if F is coherent.

Example 2.10 (Examples in $\mathcal{Q}Coh(X)$).

- 1. The functor \mathcal{O}_X , and more generally the $\mathcal{O}(D)$ (for $D \in \text{Div}(X)$) are in $\mathcal{C}\text{oh}(X)$.
- 2. The functor $\mathcal{K}_X: U \mapsto \{ {}^{K_X}_0 {}^{U \neq \varnothing}_{U=\varnothing} \text{ is in } \mathcal{Q} \mathrm{Coh}(X) \text{ but not in } \mathcal{C}\mathrm{oh}(X) \text{ in general.}$
- 3. On projective space \mathbb{P}^n , the $\mathcal{O}(d)$ for $d \in \mathbb{Z}$ are in $\mathcal{C}oh(\mathbb{P}^n)$. These are defined via the canonical projection $\pi : \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ as follows: for basic opens $U \subseteq \mathbb{P}^n$, we have

$$\mathcal{O}(d)(U) = \left\{ \phi : \pi^{-1}(U) \to k \; \middle| \; \begin{array}{c} \phi(\lambda x) = \lambda^d \phi(x) \\ \text{for all } \lambda \in k^*, x \in \pi^{-1}(U) \end{array} \right\}$$

4. Direct sums and products: If $\{F_{\lambda}\}_{{\lambda}\in\Lambda}$ is a family in $\mathcal{Q}\operatorname{Coh}(X)$, then $\bigoplus_{{\lambda}\in\Lambda}F_{\lambda}$ and $\prod_{{\lambda}\in\Lambda}F_{\lambda}$ are in $\mathcal{Q}\operatorname{Coh}(X)$ where $(\bigoplus_{{\lambda}\in\Lambda}F_{\lambda})(U)=\bigoplus_{{\lambda}\in\Lambda}F_{\lambda}(U)$ and $(\prod_{{\lambda}\in\Lambda}F_{\lambda})(U)=\prod_{{\lambda}\in\Lambda}F_{\lambda}(U)$.

¹Basically, if $U_0 = D(f)$ and $U_1 = D(g)$ then $U = U_0 \cup U_1$ implies that there are $a, b \in \mathcal{O}_X(U)$ with 1 = af + bg in $\mathcal{O}_X(U)$. The claim $F(U) = F(U_0) \times_{F(U_0 \cap U_1)} F(U_1)$ follows from 1 = af + bg and the condition (*).

- 5. Kernels and cokernels: if $\phi : F \to G$ is a morphism in $\mathcal{Q}Coh(X)$, then $\ker(\phi), \operatorname{coker}(\phi) \in \mathcal{Q}Coh(X)$ where $(\ker(\phi))(U) = \ker(\phi_U)$ and $(\operatorname{coker}(\phi))(U) = \operatorname{coker}(\phi_U)$.
- 6. Tensor products and Homs: If $F, G \in \mathcal{Q}Coh(X)$, then $F \otimes_{\mathcal{O}_X} G \in \mathcal{Q}Coh(X)$ where $(F \otimes_{\mathcal{O}_X} G)(U) = F(U) \otimes_{\mathcal{O}_X(U)} G(U)$. If $F, G \in \mathcal{Q}Coh(X)$, then $\mathcal{H}om(F,G) \in \mathcal{Q}Coh(X)$ where $\mathcal{H}om(F,G)(U) = hom_{\mathcal{Q}Coh(U)}(F|_U,G|_U)$.
- 7. For any closed subvariety $Z \subseteq X$, the ideal sheaf \mathcal{I}_Z defined by $U \mapsto \{f \in \mathcal{O}_X(U) : f|_{Z \cap U} = 0\}$ is in $\mathcal{C}oh(X)$.

The following proposition follows easily from the definitions.

Proposition 2.11. Let U be a basic open (hence isomorphic to an affine). Then we have equivalences of categories:

$$\left\{ \begin{array}{l} \mathcal{O}_{U}(U)\text{-}modules \end{array} \right\} \cong \mathcal{Q}\mathrm{Coh}(U)$$

$$\left\{ \begin{array}{l} \text{finitely generated} \\ \mathcal{O}_{U}(U)\text{-}modules \end{array} \right\} \cong \mathcal{C}\mathrm{oh}(U)$$

The equivalences are given by:

$$M \mapsto (V \mapsto M \otimes_{\mathcal{O}_U(U)} \mathcal{O}_U(V))$$

 $F(U) \longleftrightarrow F$

Definition 5 (Grothendieck group G_0). Let $X \in \mathcal{Q}Proj$. The Grothendieck group

$$G_0(X) = \frac{\mathbb{Z}[\text{iso. classes of } F \in \mathcal{C}\text{oh}(X)]}{\langle [F] = [F'] + [F''] \mid 0 \to F' \to F \to F'' \to 0 \rangle}$$

is the abelian group generated by symbols [F] for $F \in Coh(X)$, subject to the relation [F] = [F'] + [F''] whenever there exists a short exact sequence $0 \to F' \xrightarrow{i} F \xrightarrow{p} F'' \to 0$ in Coh(X). Here exact means that $F' = \ker(i)$ and $F'' = \operatorname{coker}(i)$.

Example 2.12 (Examples of Grothendieck groups).

- 1. **Point:** $G_0(\mathbb{A}^0) \cong \mathbb{Z}$, since $Coh(\mathbb{A}^0)$ is equivalent to the category of finite dimensional k-vector spaces.
- 2. Affine space: $G_0(\mathbb{A}^n) \cong \mathbb{Z}$. Since $k[x_1, \ldots, x_n]$ has finite global dimension, every $F \in \mathcal{C}oh(\mathbb{A}^n)$ has a finite free resolution. That is, a sequence of morphisms

$$0 \to \mathcal{O}_{\mathbb{A}^n}^{\oplus r_m} \stackrel{d_m}{\to} \cdots \stackrel{d_2}{\to} \mathcal{O}_{\mathbb{A}^n}^{\oplus r_1} \stackrel{d_1}{\to} \mathcal{O}_{\mathbb{A}^n}^{\oplus r_0} \stackrel{d_0}{\to} F \to 0,$$

for some r_i such that $\ker(d_i) = \operatorname{im}(d_{i+1})$ for all i. By induction, it follows that $[F] = \sum_i (-1)^i [\mathcal{O}_{\mathbb{A}^n}^{\oplus r_i}] = (\sum_i (-1)^i r_i) [\mathcal{O}_{\mathbb{A}^n}]$.

3. Closed-open decomposition: If $U \subseteq X$ is open and $Z = X \setminus U$ then there is an exact sequence

$$G_0(Z) \to G_0(X) \to G_0(U) \to 0.$$

This sequence is exact on the left if $Z \subseteq X$ is a regular embedding.²

4. **Projective space:** $G_0(\mathbb{P}^n) \cong \mathbb{Z}^{\oplus n+1}$ with generators $[\mathcal{O}], [\mathcal{O}(1)], \dots, [\mathcal{O}(n)]$. More generally, if X is a smooth variety then

$$G_0(\mathbb{P}^n \times X) \stackrel{\cong}{\leftarrow} \bigoplus_{i=0}^n G_0(X)$$

$$\sum_{i=0}^{n} [E_i \otimes \mathcal{O}(i)] \longleftrightarrow ([E_0], \dots, [E_n])$$

5. Grassmannian:

$$G_0(Gr(2,4)) \cong \mathbb{Z}^{\oplus 6}$$
.

This comes from the decomposition $G_0(Gr(2,4)) \cong \mathbb{A}_0 \oplus \mathbb{A}_1 \oplus (\mathbb{A}_2 \oplus \mathbb{A}_2) \oplus \mathbb{A}_3 \oplus \mathbb{A}_4$ determined by a choice of $flag.^3$

6. Elliptic curve: For an elliptic curve E, we have $G_0(E) \cong \mathbb{Z} \oplus \operatorname{Pic}(E)$ where $\mathbb{Z} \cong \{n[\mathcal{O}]\}$ and $\operatorname{Pic}(E) \cong \{[\mathcal{O}(D)] - [\mathcal{O}]\}$. There is an explicit bijection

$$\mathbb{Z} \oplus E \xrightarrow{\sim} \operatorname{Pic}(E)$$

 $(n, x) \mapsto \mathcal{O}(x + (n-1)x_0)$

for some fixed point x_0 .

7. **Smooth curves:** More generally, for a smooth projective curve C we have $G_0(C) \cong \mathbb{Z} \oplus \operatorname{Pic}(C)$. The subgroup $\operatorname{Pic}^0(C) = \{\mathcal{O}(D) \mid \deg D = 0\}$ has a canonical structure of smooth projective variety of dimension g = 0 the genus of C.

- (a) \mathbb{A}_0 is $\{V_2\}$,
- (b) $\mathbb{A}_0 \cup \mathbb{A}_1 = \text{is the set of planes } W \text{ with } V_1 \subset W \subset V_3,$
- (c) One $\mathbb{A}_0 \cup \mathbb{A}_1 \cup \mathbb{A}_2$ is $\{W \mid V_1 \subset W\}$,
- (d) The other $\mathbb{A}_0 \cup \mathbb{A}_1 \cup \mathbb{A}_2$ is $\{W \mid W \subset V_3\}$,
- (e) $\mathbb{A}_0 \cup \mathbb{A}_1 \cup (\mathbb{A}_2 \cup \mathbb{A}_2) \cup \mathbb{A}_3 = \{W \mid W \cap V_2 \neq \{0\}\},\$
- (f) $\mathbb{A}_0 \cup \mathbb{A}_1 \cup (\mathbb{A}_2 \cup \mathbb{A}_2) \cup \mathbb{A}_3 \cup \mathbb{A}_4 = Gr(2,4)$.

²If X is an affine variety then $Z \subseteq X$ is globally a regular embedding if there exists $f_1, \ldots, f_c \in \mathcal{O}_X(X)$ such that $Z = V(f_1, \ldots, f_c)$ and each f_{i+1} is a nonzero divisor in $\mathcal{O}_X(X)/\langle f_1, \ldots, f_i \rangle$. In general, $Z \subseteq X$ is a regular embedding if $Z \cap V \to V$ is globally a regular embedding for every basic open $V \subseteq X$.

³A flag is a sequence of subspaces $\{0\} = V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset V_3 \subset V_4 = V$ with dim $V_i = i$. In the case of Gr(2,4) we have d=4 and:

2.4 Pushforward

Definition 6. Suppose that $f: X \to Y$ is in $\mathcal{Q}\operatorname{Proj}$, $F \in \mathcal{Q}\operatorname{Coh}(X)$. We define f_*F via

$$(f_*F)(V) = \varprojlim_{f(U)\subseteq V} F(U)$$

where the limit is over basic opens U contained in $f^{-1}V$. That is, an element of $(f_*F)(V)$ is a sequence $(s_U)_{f(U)\subseteq V}$ of $s_U \in F(U)$, such that for each $U' \subseteq U$, the transition function sends s_U to $s_{U'}$.

Example 2.13.

1. Let X be a smooth curve, D a divisor, and $p: X \to \mathbb{A}^0$ the canonical projection to the base. Then $\mathcal{Q}Coh(\mathbb{A}^0) \cong \mathcal{V}ec_k$ and

$$p_*\mathcal{O}(D) \cong H^0(X, \mathcal{O}(D)).$$

2. Let $\iota: Z \subseteq X$ be a closed subvariety. Then

$$\iota_*\mathcal{O}_Z\cong\mathcal{O}_X/\mathcal{I}_Z.$$

Definition 7 (Projective morphism). A morphism $f: X \to Y$ of quasi-projective varieties is called *projective* if it factors as

$$X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^n \times Y \stackrel{\text{proj}}{\Rightarrow} Y$$

where ι is a closed embedding and proj is the projection to the second factor.

Proposition 2.14. If $f: X \to Y \in \mathcal{Q}\operatorname{Proj}$ is projective, then $f_*: \mathcal{Q}\operatorname{Coh}(X) \to \mathcal{Q}\operatorname{Coh}(Y)$ sends coherent sheaves to coherent sheaves.

Proposition 2.15. There is a unique collection of morphisms of abelian groups $f_*: G_0(X) \to G_0(Y)$ associated to projective morphisms $f: X \to Y$ satisfying the following properties.

- 1. For closed immersions $\iota: Z \hookrightarrow X$, we have $\iota_*([F]) = [\iota_* F]$.
- 2. For projections $\pi : \mathbb{P}^n \times Y \to Y$ we have $\pi_*([\mathcal{O}(i) \otimes \pi^*F]) = [F]$ for $i = 0, \ldots, n$.
- 3. Functoriality: $(g \circ f)_* = g_* \circ f_*$ for composable projective morphisms.

2.5 Pullbacks

Proposition 2.16. Suppose that $f: X \to Y$ is in $\mathbb{Q}\operatorname{Proj}$ and $G \in \mathbb{Q}\operatorname{Coh}(Y)$. Then there exists a unique $f^*G \in \mathbb{Q}\operatorname{Coh}(X)$ such that:

1. If $U \in \mathcal{B}(X)$ and $f(U) \subseteq V$ for some $V \in \mathcal{B}(Y)$, then

$$(f^*G)(U) = G(V) \otimes_{\mathcal{O}_Y(V)} \mathcal{O}_X(U)$$

where we use the induced ring morphism $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$.

2. If $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ is a family of basic opens, closed under intersection, and $U = \bigcup_{{\lambda}\in\Lambda} U_{\lambda}$ is also a basic open, then

$$(f^*G)(U) = \varprojlim_{\lambda \in \Lambda} (f^*G)(U_\lambda)$$

Remark 2.17. The above proposition is a consequence of the sheaf property mentioned in Remark 2.8 and the fact that for any basic open $V \subseteq Y$ the preimage $f^{-1}V$ is a union of basic opens.

Example 2.18 (Pullback examples).

1. For any morphism $f: X \to Y$, we have

$$f^*\mathcal{O}_Y = \mathcal{O}_X$$
.

2. If $\iota: U \to X$ is an open subvariety and $F \in \mathcal{Q}Coh(X)$, then

$$\iota^* F \cong F|_U$$

where $F|_{U}$ is simply the functor F restricted to basic opens contained in U.

3. If $p: X \to \mathbb{A}^0$ is the canonical projection and $V \cong k^{\oplus I} \in \mathcal{V}ec_k$ is a vector space with basis or cardinality I. Then

$$p^*V \cong \mathcal{O}_X^{\oplus I}.$$

Recall that there is a very clean description for finitely generated abelian groups up to isomorphism. Namely, they are of the form $\mathbb{Z}^r \oplus \mathbb{Z}/n_1 \oplus \cdots \oplus \mathbb{Z}/n_k$. Coherent sheaves are slightly more complicated, but still quite accessible.

Remark 2.19 (Flat pullback). If $j: U \to X$ is an open subvariety, there is an induced group homomorphism $G_0(X) \to G_0(U)$; $[F] \mapsto [j^*F]$. More generally, if $f: Y \to X$ is flat in the sense that $f^*: \mathcal{C}oh(X) \to \mathcal{C}oh(Y)$ sends exact sequences to exact sequences, then we get a group homomorphism.

$$G_0(X) \to G_0(Y)$$

 $[F] \mapsto [j^*F].$

Remark 2.20 (Stratification of coherent sheaves). Suppose X is a quasi-projective variety and $F \in Coh(X)$. Then there exists a sequence of closed subvarieties $\emptyset = Z_{-1} \subset Z_0 \subset \cdots \subset Z_s = X$ such that if $\iota_i : W_i = Z_i \setminus Z_{i-1} \to X$ is the inclusion, we have

$$\iota_i^* F \cong \mathcal{O}_{W_i}^{\oplus r_i}$$

for some $r_0 \geq r_1 \geq \cdots \geq r_s \in \mathbb{N}$. Geometrically, $\mathcal{O}_X^{\oplus r}$ is the module of sections s of the projection

$$X \times \mathbb{A}^r$$

$$\downarrow p$$

$$X$$

So we can/should think of the coherent sheaf F as the varieties $W_i \times \mathbb{A}^{r_i}$ glued together in some way.

Next lecture we will be concerned with vector bundles, namely, coherent \mathcal{O}_X modules where the rank is locally constant.

Definition 8 (Vector bundle). A vector bundle on a quasi-projective variety X is a coherent \mathcal{O}_X -module E such that for every point $x \in X$, there exists a basic open $U \ni x$ and an isomorphism $E|_U \cong \mathcal{O}_U^{\oplus r}$ for some $r \ge 0$.

2.6 Cotangent sheaf

Definition 9 (Cotangent sheaf). Let X be a quasi-projective variety. Consider the diagonal morphism $\Delta: X \to X \times X$; $x \mapsto (x, x)$ and let $\mathcal{I}_{\Delta} \subseteq \mathcal{O}_{X \times X}$ be the ideal sheaf of the diagonal. The *cotangent bundle* of X is defined as

$$\Omega_X := \Delta^*(\mathcal{I}/\mathcal{I}^2)$$

where Δ^* denotes pullback along the diagonal morphism. The tangent bundle is the dual

$$\mathcal{T}_X = \mathcal{H}om_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X).$$

Remark 2.21. More explicitly, for any basic open $U \subseteq X$ we can find a basic open $V \subseteq X \times X$ such that $V \cap \Delta(X) = U$. In this case,

$$\Omega_X(U) = I/I^2$$

where $I = \{\phi : V \to k \mid \phi(U) = 0\}.$

Remark 2.22 (Geometric interpretation). Intuitively, if $Z \subseteq Y$ is a closed subvariety with sheaf of ideals \mathcal{I}_Z , then $\mathcal{I}_Z/\mathcal{I}_Z^2$ captures the linear part of functions vanishing along Z. This controls tangent information about the directions perpendicular to Z in Y. When Z = X and $Y = X \times X$, this turns out to be the same as the cotangent bundle.

Example 2.23 (Examples of cotangent sheaves).

- 1. Affine space: For $X = \mathbb{A}^n$ we have $\Omega_{\mathbb{A}^n} \cong \mathcal{O}_{\mathbb{A}^n}^{\oplus n}$.
- 2. Projective line: For $X = \mathbb{P}^1$, we have $\Omega_{\mathbb{P}^1} \cong \mathcal{O}_{\mathbb{P}^1}(-2)$. This can be computed using the Euler sequence:

$$0 \to \Omega_{\mathbb{P}^1} \to \mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2} \to \mathcal{O}_{\mathbb{P}^1} \to 0$$

The degree -2 reflects the fact that \mathbb{P}^1 has "negative curvature" in the sense that it has no global vector fields.

3. Node curve: Consider the curve $X = V(y^2 - x^2(x+1)) \subseteq \mathbb{A}^2$ from Lecture 1. At smooth points x, $\dim(\Omega_X)_x = 1$. However, at the singular point 0, the fiber $(\Omega_X)_{(0,0)}$ has dimension 2.

Definition 10 (Smooth variety). A quasi-projective variety X is called *smooth* of dimension d at a point x if there is a basic open $x \in U$ such that $\Omega_X(U) \cong \mathcal{O}_X(U)^{\oplus d}$. It is called *smooth* if it is smooth at every point.

2.7 Chow groups

Definition 11 (Dimension and cycles). An irreducible variety Z has dimension d if, generically, there are d-linearly independent differential forms. That is, for any non-empty basic open U we have

$$\dim_{K_Z} K_Z \otimes_{\mathcal{O}_Z(U)} \Omega_Z(U) = d.$$

For a quasi-projective variety X, let $X_{(d)}$ denote the set of irreducible subvarieties of X of dimension d. The free abelian group generated by $X_{(d)}$ is denoted

$$\mathcal{Z}_d(X) = \{ \Sigma_{i=1}^N n_i[W_i] \mid N, n_i \in \mathbb{N}, W_i \in X_{(d)} \} \cong \bigoplus_{W \in X_{(d)}} \mathbb{Z}$$

An element of $\mathcal{Z}_d(X)$ is called a *d-cycle*.

Example 2.24.

- 1. If X is a smooth curve we have $\mathcal{Z}_0(X) = \text{Div}(X)$.
- 2. If $Z \to X$ is a closed subvariety, we have a canonical morphism

$$\mathcal{Z}_d(Z) \to \mathcal{Z}_d(X)$$
.

For a general projective morphism $f: X \to Y$, there is a pushforward $f_*: \mathcal{Z}_d(X) \to \mathcal{Z}_d(Y)$ determined by

$$f_*([Z]) = \begin{cases} [K_Z : K_{f(Z)}] \cdot [f(Z)] & \text{if } \dim Z = \dim f(Z) \\ 0 & \text{otherwise} \end{cases}$$

Here $[K_Z:K_{f(Z)}]$ is the degree of the finite extension of fields $K_{f(Z)}\subseteq K_Z$.

- 3. Flat pullback: If $f: Y \to X$ is a flat morphism between irreducible varieties (see Remark 2.19), then there is a pullback map $f^*: \mathcal{Z}_d(X) \to \mathcal{Z}_{d+\dim Y-\dim X}(Y)$. For an irreducible subvariety $Z \subseteq X$ of dimension d, the preimage $f^{-1}(Z)$ may have multiple irreducible components W_i . We define $f^*([Z]) = \sum_i m_i[W_i]$ where m_i are appropriate multiplicities to account for ramification. See [Stacks Project, Tag 0AZE] for more details.
- 4. Divisors from functions: If W is an irreducible variety of dimension d+1 and $f \in K_W^*$, then f defines a d-cycle $\operatorname{div}(f) \in \mathcal{Z}_d(W)$ given by

$$\operatorname{div}(f) = \sum_{Z \in W_{(d)}} \operatorname{ord}_{Z}(f) \cdot [Z]$$

where $\operatorname{ord}_{Z}(f)$ is the order of vanishing of f along Z. See [Stacks Project, Tag 02AR] for the algebraic definition of $\operatorname{ord}_{Z}(f)$.

5. Let $D = \sum_{i} n_i[Z_i] \in \mathcal{Z}_{d-1}(X)$ where X is smooth of dimension d. As for smooth curves, we define the line bundle $\mathcal{O}_X(D)$ by

$$\mathcal{O}_X(D)(U) = \{ f \in K_X : \text{div}(f)|_U + D|_U \ge 0 \}$$

Definition 12 (Rational equivalence and Chow groups). The *Chow group* $A_d(X)$ is defined by the exact sequence

$$\bigoplus_{W \in X_{(d+1)}} K_W^* \xrightarrow{\operatorname{div}} \overbrace{\bigoplus_{Z \in X_{(d)}}^{=\mathcal{Z}_d(X)}} \mathbb{Z} \to A_d(X) \to 0.$$

Remark 2.25 (Intersection product). Suppose X is irreducible of dimension d. The graded abelian group $\bigoplus_{i\in\mathbb{N}}A_{d-i}(X)$ admits a structure of graded ring. (Note that we have placed A_i is in degree d-i. That is, we are grading by *codimension* codim = d – dim not dimension). We would like to define a structure of graded ring on this graded abelian group using intersection $[V] \cdot [W]$ " = " $[V \cap W]$. There are a number of obstacles to this definition.

Firstly, $V \cap W$ may be a union of more than one irreducible subvariety $V \cap W = \bigcup_r T_r$. Worse, the T_r may not be of codimension codim $V + \operatorname{codim} W$.

It is a quite technical classical theorem in intersection that for any classes $\alpha \in A_{d-i}(X)$, $\beta \in A_{d-j}(X)$ we can find representatives $\alpha = \sum n_k[V_k]$ and $\beta = \sum m_\ell[W_\ell]$ such that the irreducible components $T_{k\ell r}$ of the intersections $V_k \cap W_\ell$ have codimension i + j. Even then, we need to account for the fact that the intersections might have some multiplicity. For such cycles in good position, the defintion of the intersection product is

$$\alpha \cdot \beta = \sum_{k,\ell,m} n_k m_\ell \cdot i(V_k, W_\ell; T_{k\ell m})[T_{k\ell m}]$$

where the multiplicities come from *Serre's Tor formula*. See [Stacks Project, Tag 0B08] for more details.

Example 2.26 (Examples of Chow groups).

- 1. For an irreducible variety X of dimension d, we have $A_d(X) \cong \mathbb{Z}$.
- 2. For a smooth variety X of dimension d the assignment $D \mapsto \mathcal{O}(D)$ induces an isomorphism

$$A_{d-1}(X) \xrightarrow{\sim} \operatorname{Pic}(X)$$

where $\operatorname{Pic}(X) = \{\mathcal{O}(D)\}/\cong \text{ is the set of isomorphism classes of } \mathcal{O}(D)$ equipped with \otimes . For any $L \cong \mathcal{O}(D)$ in $\operatorname{Pic}(X)$, the class $D \in A_{d-1}(X)$ is called the *first Chern class* of L and denoted

$$c_1(L)$$
.

Now we are going to extend the isomorphism $A_{d-1}(X) \cong \operatorname{Pic}(X)$ to the isomorphism in the GRR theorem. For an abelian group A we write

$$A_{\mathbb{O}} := A \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Theorem 2.27 (Universal property of Chern character). There exists a unique natural transformation

$$G_0(X) \to A_*(X)_{\mathbb{Q}}$$

 $\alpha \mapsto ch(\alpha)$

on smooth quasi-projective varieties X such that:

1. For line bundles L, we have $ch([L]) = e^{c_1(L)} := \sum_{n \in \mathbb{N}} \frac{1}{n!} c_1(L)^n$.

- 2. For $\alpha, \beta \in G_0(X)$, we have $ch(\alpha + \beta) = ch(\alpha) + ch(\beta)$.
- 3. For flat morphisms $f: Y \to X$ (see Remark 2.19) and vector bundles E (see Definition 8), we have

$$ch(f^*[E]) = f^*(ch([E])).$$

These morphisms induce isomorphisms

$$\operatorname{ch}: G_0(X)_{\mathbb{O}} \cong A_*(X)_{\mathbb{O}}$$

Remark 2.28. The groups $G_0(X)$ and $A_*(X)$ are contravariantly functorial for flat morphisms and ch is actually a natural transformation for this functoriality. That is, $\operatorname{ch}(f^*\alpha) = f^*\operatorname{ch}(\alpha)$ when f is flat. In this lecture we are interested in projective pushfowards. In order to make ch natural in projective pushfowards we need to use Todd classes.

Theorem 2.29 (Universal property of Todd classes). There exists a unique natural transformation

$$G_0(X) \to A_*(X)_{\mathbb{Q}}$$

 $\alpha \mapsto \operatorname{td}(\alpha)$

on smooth quasi-projective varieties X such that:

- 1. For line bundles L, we have $\operatorname{td}([L]) = \frac{c_1(L)}{1 e^{-c_1(L)}}$.
- 2. For $\alpha, \beta \in G_0(X)$, we have $td(\alpha + \beta) = td(\alpha) \cdot td(\beta)$.
- 3. For flat morphisms $f: Y \to X$ (see Remark 2.19) and vector bundles E (see Definition 8), we have

$$td(f^*[E]) = f^*(td([E])).$$

Remark 2.30 (Splitting principle). To prove existence and uniqueness of Chern and Todd classes, one uses the *splitting principle*: any vector bundle E of rank r on X can be pulled back to a sum of line bundles $L_1 \oplus \cdots \oplus L_r$ via some (flat projective surjective) $f: Y \to X$ that induces an injection $f^*: A_*(X) \to A_*(Y)$. This reduces the problem to line bundles, where the classes are explicitly defined.

⁴The power series $\frac{x}{1-e^{-x}} \in \mathbb{Q}[[x]]$ is defined to be the inverse of the power series $\frac{1-e^{-x}}{x} = 1 - \frac{x}{2} + \frac{x^2}{6} - \dots$

2.8 Restatement

We can now restate the Grothendieck-Riemann-Roch theorem with all the machinery we've developed:

Theorem 2.31 (Grothendieck–Riemann–Roch, Restated). Suppose $f: X \to Y$ is a projective morphism of smooth quasi-projective varieties. Then the following square commutes, and the horizontal morphisms are isomorphisms.

$$G_{0}(X)_{\mathbb{Q}} \xrightarrow{\operatorname{ch}} A_{*}(X)_{\mathbb{Q}} \xrightarrow{\operatorname{td}(\mathcal{T}_{X}) \cdot -} A_{*}(X)_{\mathbb{Q}}$$

$$f_{*} \downarrow \qquad \qquad \downarrow f_{*}$$

$$G_{0}(Y)_{\mathbb{Q}} \xrightarrow{\operatorname{ch}} A_{*}(Y)_{\mathbb{Q}} \xrightarrow{\operatorname{td}(\mathcal{T}_{Y}) \cdot -} A_{*}(Y)_{\mathbb{Q}}$$

Remark 2.32. When X is a smooth projective curve and $Y = \mathbb{A}^0$, this recovers the classical Riemann–Roch theorem from Lecture 1. In this case we have:

•
$$f_*: G_0(X) \to G_0(\mathbb{A}^0)$$
 sends $L \in \text{Pic}(X)$ to
$$\cong \mathbb{Z} \oplus \text{Pic}(X) \to \dim H^0(X, L) - \dim H^0(X, \mathcal{H}om(L, \Omega_X)).$$

This comes from Serre duality.

- For $D \in \text{Div}(X)$ we have $f_*(D) = \text{deg } D$. This follows from the definition.
- $\operatorname{td}(\mathcal{T}_X) = 1 + \frac{1}{2}c_1(T_X) = 1 \frac{1}{2}K$ where $K = \operatorname{div}(\Omega_X)$. This follows from the definitions.
- $td(\mathcal{T}_Y) = 1$.
- We have $\deg K = 2g 2$. This can be obtained in various ways, but all of them involve some kind of theorem.

So for $L \cong \mathcal{O}(D)$, the square in the statement becomes

$$\begin{array}{ccc}
L & \mathbb{Z} \oplus \operatorname{Pic}(X) \xrightarrow{1+c_1} \mathbb{Z} \oplus A_0(X) \xrightarrow{1-\frac{1}{2}K) \cdot -} \mathbb{Z} \oplus A_0(X) \\
\downarrow & \downarrow & \downarrow \\
\operatorname{dim} H^0(X,L) & \mathbb{Z} & \operatorname{id} & \mathbb{Z} & \operatorname{id} & \mathbb{Z}
\end{array}$$

$$\downarrow (0,\operatorname{deg})$$

$$\mathbb{Z} \xrightarrow{\operatorname{dim} H^0(X,\mathcal{H}om(L,\Omega_X))}$$

and the GRR formula becomes:

$$\dim H^{0}(X, L) - \dim H^{0}(X, \mathcal{H}om(L, \Omega_{X}))$$

$$= \operatorname{ch}(f_{*}[L]) \cdot \operatorname{td}(\mathcal{T}_{Y})$$

$$\stackrel{[GRR]}{=} f_{*}(\operatorname{ch}([L]) \cdot \operatorname{td}(\mathcal{T}_{X}))$$

$$= f_{*}((1 + D) \cdot (1 - \frac{1}{2}K))$$

$$= f_{*}(1 + D - \frac{1}{2}K)$$

$$= \operatorname{deg} D - \frac{1}{2}\operatorname{deg} K$$

$$= \operatorname{deg}(D) + 1 - g$$

Remark 2.33 (Sketch of proof). The proof proceeds by:

- 1. Reducing to the case where f is a closed embedding or a projection using the factorization of projective morphisms
- 2. For closed embeddings, use deformation to the normal cone to reduce to the case of a regular closed immersion. That is, a closed immersion which locally looks like a zero section $Z \to Z \times \mathbb{A}^c$. In this case, one does a concrete calculation.
- 3. For projections $\mathbb{P}^n \times Y \to Y$, one uses the explicit description of $G_0(\mathbb{P}^n \times Y)$ and the fact that $\mathrm{td}(\Omega_{\mathbb{P}^n}) = (1 + H + H^2 + \ldots + H^n)$ where H is the class of a hyperplane.