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2.1 Statement

Everzthing in this lecture is over an algebraically closed field k = k (e.g., C, Q,
Qp, Fpy UnenC((t/™), ...).

Theorem 2.1 (Grothendieck—Riemann—Roch). Suppose X is a smooth quasi-
projective variety. Then the Chern character induces an isomorphism

ch: Go(X)Q = A*(X)Q

Moreover, if X — Y is a projective morphism between smooth quasi-projective
varieties, we have

ch(f.a) - td(Ty) = fi(ch(a) - td Tx)).

Remark 2.2. When X is a smooth projective curve and Y = A°, this recovers
the classical Riemann—Roch theorem from Lecture 1.

2.2 Morphisms of varieties

Recall that last time we define affine varieties X C k", projective varieties X C

P* = %, and basic opens U C X C C". We also considered the rings

Ox(U)={¢:U—k|op=f/g", for some f € klxy,...,z,|,n € N}
where U = D(g) = {x € X | g(z) # 0}.

Definition 1. A morphism of basic opens U C X C A", V C Y C A" is a
sequence (@1, ..., 0m) € Ox(U)™ such that the corresponding morphism U — k™
factors through V' C k™.



Example 2.3.
1. Any inclusion of basic opens is a morphism.

2. If D(g) CV(f1,..., f.) € A", then the canonical bijection

V(fi,.oos feyg=1) —  D(g)

CAntl CV(f1,fc) AT

is a morphism of basic opens. It has inverse given by (z1,xa,...,Zn, <) :

Q =

D(g) — k™1, That is, in the (big) category of basic opens, we have
V(fl) ) fcayg_l) = D(g)

3. A composition of morphisms of basic opens is a morphism of basic opens.
So we have a “big” category of basic opens. We don’t need a notation for
this because we won’t often use it.

Remark 2.4. A morphism of basic opens g{ — CV; induces a ring homomorphism

Oy (V) = Ox(U). In particular, every point A’ — U induces a (surjective) ring
homomorphism Ox(U) — k. In fact, every surjection Ox(U) — k comes from a
point. That is, there is a bijection

hom e, (Ox (U), k) = hom(A’, U) = U.
This holds more generally,
hom 414, (Ox (U), Oy (V)) = hom(V,U).

Definition 2. A quasi-projective variety or just variety is a union of basic opens
in some projective variety X.

X =UaalU,CX

We continue to write B(X) for the category of all basic opens (of X) contained in

X.

Example 2.5. The set A?\ {0} from last lecture is not (isomorphic to) a basic
open, nor a projective variety, but it is a quasi-projective variety. Similarly, P™ \
{(0:0:...:0:1)} is a quasi-projective variety which is neither affine, nor projective.

Remark 2.6. One should think of quasi-projective varieties as being covered by
basic opens in the same way that a smooth manifold is covered by opens that are
homeomorphic to an open in R".



Definition 3. A morphism of quasi-projective varieties is a function
f: X—=Y
such that for every x € X there exists a commutative diagram

T E U——=V
In In
X—Y

such that U, V are basic opens and U — V is a morphism of basic opens. The
category of quasi-projective varieties will be denoted QProj.

In other words, a morphism of quasi-projective varieties is a morphism defined
by quotients of polynomials.

Example 2.7.

1. For X € 9QProj and {Uy}xean € B(X) then U := UpU, € QProj and the
inclusion U — X is a morphism. In this case U is called an open subvariety
of X.

2. In the previous notation, we also have Z = X \ U € QProj and Z — X is a
morphism. In this case Z is called a closed subvariety of X.

3. For X|Y € QProj, the product X x Y has a canonical structure of quasi-
projective variety (via the Segre embedding). The two projections X <
X XY — Y are morphisms.

2.3 Quasi-coherent Ox-modules

Now we have a nice category of quasi-projective varieties. We are going to fix
a quasi-projective variety X and study certain families of vector spaces parame-
terised by X.

Definition 4 (Quasi-coherent Ox-module). A quasi-coherent Ox-module on a
quasi-projective variety X is a functor F': B(X)% — Ab such that:

1. Each F(U) is an Ox(U)-module

2. Each restriction map F(U) — F(V) (for V C U) is a morphism of Ox(U)-
modules



3. For every inclusion V' C U of basic opens, the natural map
FU) ®oxw) Ox(V) = F(V) (%)
is an isomorphism

A morphism of quasi-coherent O x-modules is a natural transformation ¢ : FF — G
such that each component ¢y : F(U) — G(U) is a morphism of Ox(U)-modules.
If each F(U) is a finitely generated Ox(U)-module, then we say that F'is coherent.

Write QCoh(X) and Coh(X) for the categories of quasi-coherent and coherent
Ox-modules.

Remark 2.8. One can check that if U = Uy U Uy with U, Uy, U; € B(X) then
for any quasi-coherent Ox-module F' we have F(U) = F(Uy) X rwonvy) F(U1).!
Consequently, there is a unique sheaf F’ on the X (considered as a topological
space via open subvarieties) such that F’|gx) = F. However, I don’t want to talk
about sheaves in this series of lectures.

Remark 2.9. For every point z € U and F € QCoh(X) we get an associated
k-vector space

F,:=F(U) Roxw) k

where Ox(U) — k is the homomorphism associated to x — U. The condition (x)
ensures that this is independent of U. In this way you can/should think of F' as a
family of vector spaces parameterised by X, at least if F' is coherent.

Example 2.10 (Examples in QCoh(X)).

1. The functor Oy, and more generally the O(D) (for D € Div(X)) are in
Coh(X).

2. The functor Kx : U +— {{* /72 is in QCoh(X) but not in Coh(X) in general.

3. On projective space P", the O(d) for d € Z are in Coh(P™). These are defined
via the canonical projection 7 : A"\ {0} — P" as follows: for basic opens
U C P", we have

O(d)(U) = {¢ N (U) = k ‘ for aﬁ(;xe) /;,A;(ﬁe(?lw) }

4. Direct sums and products: If {F)}ea is a family in QCoh(X), then @, F
and [[,cp F\ are in QCoh(X) where (D, F3)(U) = @,cp FA(U) and
(H/\EA EB)(U) = H)\GA E\(U).

1Basically, if Uy = D(f) and U; = D(g) then U = UyUU; implies that there are a,b € Ox (U)

with 1 = af +bg in Ox (U). The claim F(U) = F(Up) X pu,nuv,) F(Ur) follows from 1 = af + bg
and the condition (x).




5. Kernels and cokernels: if ¢ : F — G is a morphism in QCoh(X), then
ker(¢), coker(¢) € QCoh(X) where (ker(¢))(U) = ker(¢y) and (coker(¢))(U)
coker(oy).

6. Tensor products and Homs: If F, G € QCoh(X), then F ®0, G € QCoh(X)
where (F ®0, G)(U) = F(U) ®o @ G(U). If F,G € QCoh(X), then
Hom(F,G) € QCoh(X) where Hom(F, G)(U) = homoconw) (F|v, Glv).

7. For any closed subvariety Z C X, the ideal sheaf Z; defined by U — {f €
Ox(U) : flzow = 0} is in Coh(X).
The following proposition follows easily from the definitions.

Proposition 2.11. Let U be a basic open (hence isomorphic to an affine). Then
we have equivalences of categories:
{ Ouy(U)-modules } = QCoh(U)

{ finitely generated

Oy (U)-modules } = Coh(U)

The equivalences are given by:
M- (V—>M Qo (U) Oy (V)
FU) <« F
Definition 5 (Grothendieck group Gy). Let X € QProj. The Grothendieck group

Zl[iso. classes of F' € Coh(X)]

O =R T 105 F o F s 70

is the abelian group generated by symbols [F] for F' € Coh(X), subject to the

relation [F] = [F'] 4 [F""] whenever there exists a short exact sequence 0 — F' %
F % F" - 0in Coh(X). Here ezact means that F' = ker(i) and F” = coker(i).

Example 2.12 (Examples of Grothendieck groups).

1. Point: Gy(A%) = Z, since Coh(A) is equivalent to the category of finite
dimensional k-vector spaces.

2. Affine space: Gy(A") = Z. Since k[z1, ..., z,) has finite global dimension,
every F' € Coh(A") has a finite free resolution. That is, a sequence of
morphisms

0— OFm dn ... B ofn &y ofre & by g
for some r; such that ker(d;) = im(d;;,) for all i. By induction, it follows

that [F] = Y,(~1) (0] = (,(~1)rs) [Ope]

>



3. Closed-open decomposition: If U C X is open and Z = X \ U then there
is an exact sequence

This sequence is exact on the left if Z C X is a reqular embedding.?

4. Projective space: Go(P") = Z®" ! with generators [O], [O(1)],...,[O(n)].
More generally, if X is a smooth variety then

Go(P" x X) & &7 ,Go(X)

Y E®O®0)] < ([Edl, -, [En])

1=0

5. Grassmannian:
Go(Gr(2,4)) = 7%,
This comes from the decomposition Go(Gr(2,4)) = Ag @ A1 & (A & Ar) ®
As @ A4 determined by a choice of flag.?

6. Elliptic curve: For an elliptic curve E, we have Go(F) = Z @ Pic(F) where
Z = {n[O]} and Pic(E) = {[O(D)] — [O]}. There is an explicit bijection

Z® E = Pic(R)
(n,z) — Oz + (n—1)xo)
for some fixed point xg.

7. Smooth curves: More generally, for a smooth projective curve C' we have
Go(C) = Z @ Pic(C). The subgroup Pic’(C) = {O(D) | deg D = 0} has a
canonical structure of smooth projective variety of dimension g = the genus
of C.

2If X is an affine variety then Z C X is globally a regular embedding if there exists fi,..., f. €
Ox(X) such that Z = V(f1,..., fc) and each f;1; is a nonzero divisor in Ox (X)/{f1,..., fi)-
In general, Z C X is a regular embedding if ZNV — V is globally a regular embedding for every
basic open V C X.

3A flag is a sequence of subspaces {0}=V,cVocViCcVeCV3CVy=V withdimV; =i.
In the case of Gr(2,4) we have d = 4 and:

(a) Agis {V2},

(b) AgUA; = is the set of planes W with V7 C W C V3,
(C) One Ag UA; UAs is {W | Vi C W},
(d) The other AO U Al UA2 is {W | W C ‘/3},
(e) AgUAL U (AQUAQ) UAs = {W | wnv, 7é {0}},
(f) A() UAl U (AQ U Az) UAg UA4 = GT(2,4)




2.4 Pushforward

Definition 6. Suppose that f: X — Y is in QProj, F' € QCoh(X). We define
fF via
(fF)(V) = lim F(U)

Fev

where the limit is over basic opens U contained in f~!'V. That is, an element of
(f«F)(V) is a sequence (sy)sw)cv of sy € F(U), such that for each U’ C U, the
transition function sends sy to sy.

Example 2.13.

1. Let X be a smooth curve, D a divisor, and p : X — A® the canonical
projection to the base. Then QCoh(A°%) = Vec;, and

p.O(D) = H(X,0(D)).

2. Let v : Z C X be a closed subvariety. Then

L*OZ = Ox/Iz.

Definition 7 (Projective morphism). A morphism f : X — Y of quasi-projective
varieties is called projective if it factors as

XSSP xy ™y
where ¢ is a closed embedding and proj is the projection to the second factor.

Proposition 2.14. If f : X — Y € QProj is projective, then f. : QCoh(X) —
QCoh(Y) sends coherent sheaves to coherent sheaves.

Proposition 2.15. There is a unique collection of morphisms of abelian groups
fe 1 Go(X) = Go(Y) associated to projective morphisms f : X — 'Y satisfying the
following properties.

1. For closed immersions 1 : Z — X, we have 1,([F]) = [t.F].

2. For projections m : P* X Y — Y we have m.([O(i) @ n*F|) = [F] for i =
0,...,n.

3. Functoriality: (go f)s« = g« © f« for composable projective morphisms.



2.5 Pullbacks

Proposition 2.16. Suppose that f : X — Y is in QProj and G € QCoh(Y).
Then there ezists a unique f*G € QCoh(X) such that:

1. IfU € B(X) and f(U) CV for some V € B(Y), then
(f*G)(U) = G(V) @0y (v) Ox(U)
where we use the induced ring morphism Oy (V) — Ox(U).

2. If {Ux}rea is a family of basic opens, closed under intersection, and U =
UxeaU, s also a basic open, then

(&) (U) = Im(f*G)(Uy)

AEA

Remark 2.17. The above proposition is a consequence of the sheaf property
mentioned in Remark 2.8 and the fact that for any basic open V' C Y the preimage
f~1V is a union of basic opens.

Example 2.18 (Pullback examples).
1. For any morphism f: X — Y, we have
f Oy = Ox.

2. If 1 : U — X is an open subvariety and F' € QCoh(X), then
UF = F|U
where F|y is simply the functor F restricted to basic opens contained in U.

3. If p: X — A is the canonical projection and V = k®! € Vec, is a vector
space with basis or cardinality /. Then

PV =0y

Recall that there is a very clean description for finitely generated abelian groups
up to isomorphism. Namely, they are of the form Z" GZ/n, & - -®Z/ny. Coherent
sheaves are slightly more complicated, but still quite accessible.

Remark 2.19 (Flat pullback). If j : U — X is an open subvariety, there is an
induced group homomorphism Gy(X) — Go(U); [F] — [j*F]. More generally, if
f:Y — X is flat in the sense that f*: Coh(X) — Coh(Y’) sends exact sequences
to exact sequences, then we get a group homomorphism.

Go(X) = Go(Y)
[E] = [ F].

8



Remark 2.20 (Stratification of coherent sheaves). Suppose X is a quasi-projective
variety and F' € Coh(X). Then there exists a sequence of closed subvarieties
@ =2741CZyC - CZs= X such that if ¢; : W; = Z;\ Z;_1 — X is the
inclusion, we have

yF =0y
for some rg > 1r; > -+ > r, € N. Geometrically, O_%'?" is the module of sections s
of the projection
X x A"
KA
S | lp
AN
X

So we can/should think of the coherent sheaf F' as the varieties W; x A" glued
together in some way.

Next lecture we will be concerned with vector bundles, namely, coherent O x-
modules where the rank is locally constant.

Definition 8 (Vector bundle). A vector bundle on a quasi-projective variety X
is a coherent Ox-module E such that for every point x € X, there exists a basic
open U 3 x and an isomorphism E|y = OF" for some r > 0.

2.6 Cotangent sheaf

Definition 9 (Cotangent sheaf). Let X be a quasi-projective variety. Consider
the diagonal morphism A : X — X X X; x — (z,2) and let Zn € Oxxx be the
ideal sheaf of the diagonal. The cotangent bundle of X is defined as

Qx == A*(T/T?)

where A* denotes pullback along the diagonal morphism. The tangent bundle is
the dual
Tx = Homoy (Q2x, Ox).

Remark 2.21. More explicitly, for any basic open U C X we can find a basic
open V' C X xX such that VN A(X) =U. In this case,

Qx(U) =1/1?
where I = {¢:V = k| ¢(U) = 0}.

Remark 2.22 (Geometric interpretation). Intuitively, if Z C Y is a closed sub-
variety with sheaf of ideals Z, then Z;/Z% captures the linear part of functions
vanishing along Z. This controls tangent information about the directions perpen-
dicular to Z in Y. When Z = X and Y = X x X, this turns out to be the same
as the cotangent bundle.



Example 2.23 (Examples of cotangent sheaves).
1. Affine space: For X = A" we have Qun & O3

2. Projective line: For X = P! we have Qp = Opi(—2). This can be
computed using the Euler sequence:

0— Qp — Op1 (1) — Op1 — 0

The degree —2 reflects the fact that P* has “negative curvature” in the sense
that it has no global vector fields.

3. Node curve: Consider the curve X = V(y? —2?*(z+1)) € A? from Lecture
1. At smooth points z, dim({2x), = 1. However, at the singular point 0, the
fiber (Qx)(0,0) has dimension 2.

Definition 10 (Smooth variety). A quasi-projective variety X is called smooth

Y

of dimension d at a point z if there is a basic open = € U such that Qx(U) =
Ox(U)#4. Tt is called smooth if it is smooth at every point.

2.7 Chow groups

Definition 11 (Dimension and cycles). An irreducible variety Z has dimension d
if, generically, there are d-linearly independent differential forms. That is, for any
non-empty basic open U we have

dimKZ KZ ®OZ(U) Qz(U) =d.

For a quasi-projective variety X, let X4y denote the set of irreducible subvarieties
of X of dimension d. The free abelian group generated by X(4) is denoted

WGX(d)

An element of Z,(X) is called a d-cycle.
Example 2.24.
1. If X is a smooth curve we have Zy(X) = Div(X).
2. If Z — X is a closed subvariety, we have a canonical morphism

10



For a general projective morphism f : X — Y, there is a pushforward
fe i Z24(X) — Z4(Y) determined by

Kz Krio) - [f(2)] i dimZ = dim f(2)

0 otherwise

f(12]) = {

Here [K7 : Ky(z)| is the degree of the finite extension of fields Kyz) C K.

3. Flat pullback: If f : Y — X is a flat morphism between irreducible
varieties (see Remark 2.19), then there is a pullback map f* : Z4(X) —
Zirdimy —dim x (Y). For an irreducible subvariety Z C X of dimension d, the
preimage f~'(Z) may have multiple irreducible components W;. We define
f*([Z2]) = >_, m;[W;] where m; are appropriate multiplicities to account for
ramification. See [Stacks Project, Tag 0AZE] for more details.

4. Divisors from functions: If W is an irreducible variety of dimension d-+1
and f € K, then f defines a d-cycle div(f) € Z4(W) given by

div(f) = ) ordy(f)-[Z]

ZEW(d)

where ordz(f) is the order of vanishing of f along Z. See [Stacks Project,
Tag 02AR] for the algebraic definition of ordz(f).

5. Let D = Y .n;[Z;)] € Z4-1(X) where X is smooth of dimension d. As for
smooth curves, we define the line bundle Ox (D) by

Ox(D)(U) ={f € Kx : div(f)|v + D[y = 0}

Definition 12 (Rational equivalence and Chow groups). The Chow group Aq(X)
is defined by the exact sequence

=Z4(X)
2
P K= Pz AX) -0
WEX(d+1) ZEX(d)

Remark 2.25 (Intersection product). Suppose X is irreducible of dimension d.
The graded abelian group @;enAq_i(X) admits a structure of graded ring. (Note
that we have placed A; is in degree d — i. That is, we are grading by codimension
codim = d — dim not dimension). We would like to define a structure of graded
ring on this graded abelian group using intersection [V] - [W]“ ="[V NW]. There
are a number of obstacles to this definition.

11



Firstly, VNI may be a union of more than one irreducible subvariety VW =
U, T,.. Worse, the T, may not be of codimension codim V' + codim W.

It is a quite technical classical theorem in intersection that for any classes
a € A i(X), B € Ag_;(X) we can find representatives v = > ny[Vi] and g =
> my[Wy] such that the irreducible components Ty, of the intersections Vi, N W,
have codimension i + j. Even then, we need to account for the fact that the
intersections might have some multiplicity. For such cycles in good position, the
defintion of the intersection product is

a-f= Z nEmy Z(‘/;@, Wé;Tkém)[Tkém]

ktm

where the multiplicities come from Serre’s Tor formula. See [Stacks Project, Tag
0B08] for more details.

Example 2.26 (Examples of Chow groups).
1. For an irreducible variety X of dimension d, we have A;(X) = Z.

2. For a smooth variety X of dimension d the assignment D — O(D) induces
an isomorphism

Ag1(X) 5 Pie(X)

where Pic(X) = {O(D)}/ = is the set of isomorphism classes of O(D)
equipped with ®. For any L = O(D) in Pic(X), the class D € A, 1(X) is
called the first Chern class of L and denoted

Cl(L).

Now we are going to extend the isomorphism Ay 1(X) = Pic(X) to the iso-
morphism in the GRR theorem. For an abelian group A we write

A@ = A®Z Q

Theorem 2.27 (Universal property of Chern character). There exists a unique
natural transformation

a— ch(a)

on smooth quasi-projective varieties X such that:

1. For line bundles L, we have ch([L]) = e(F) .= 5" Lei (D)™

neN n!

12



2. For a, p € Go(X), we have ch(a + ) = ch(a) + ch(p).

3. For flat morphisms f :Y — X (see Remark 2.19) and vector bundles E (see
Definition 8), we have

ch(f*[E]) = f*(ch([E])).
These morphisms induce isomorphisms
ch: GO(X)@ = A*(X)@

Remark 2.28. The groups Go(X) and A.(X) are contravariantly functorial for
flat morphisms and ch is actually a natural transformation for this functoriality.
That is, ch(f*a) = f*ch(a) when f is flat. In this lecture we are interested in
projective pushfowards. In order to make ch natural in projective pushfowards we
need to use Todd classes.

Theorem 2.29 (Universal property of Todd classes). There ezists a unique natural
transformation

a— td(a)

on smooth quasi-projective varieties X such that:

1. For line bundles L, we have td([L]) = —<E)_ 4

1—e—c1(L)
2. For a, 8 € Go(X), we have td(a + ) = td(«) - td(B).

3. For flat morphisms f : Y — X (see Remark 2.19) and vector bundles E (see
Definition 8), we have

td(f*[E]) = f*(td([E])).

Remark 2.30 (Splitting principle). To prove existence and uniqueness of Chern
and Todd classes, one uses the splitting principle: any vector bundle E of rank
r on X can be pulled back to a sum of line bundles L; & --- @& L, via some (flat
projective surjective) f : Y — X that induces an injection f* : A.(X) — A.(Y).
This reduces the problem to line bundles, where the classes are explicitly defined.

“The power series 72— € Q[[z]] is defined to be the inverse of the power series 1*;% =

2
1-242 ..

13



2.8 Restatement

We can now restate the Grothendieck-Riemann-Roch theorem with all the ma-
chinery we’ve developed:

Theorem 2.31 (Grothendieck—Riemann—Roch, Restated). Suppose f : X — Y
1 a projective morphism of smooth quasi-projective varieties. Then the following
square commutes, and the horizontal morphisms are isomorphisms.

C td(TX)‘_
Go(X)g —> A, (X)g—> A.(X)g

| |

C td(TY)'_
Go(Y)g—2= A,(Y)g ——= A.(Y)g

Remark 2.32. When X is a smooth projective curve and Y = A°, this recovers
the classical Riemann—Roch theorem from Lecture 1. In this case we have:

o f.: Go(X) — Go(A? sends L € Pic(X) to

~Z@Pic(X) =7,
dim H°(X, L) — dim H(X, Hom(L, Qx)).

This comes from Serre duality.

For D € Div(X) we have f.(D) = deg D. This follows from the definition.

o td(Tx) =1+ 1c1(Tx) =1 — 1K where K = div(Q2x). This follows from the
definitions.
o td(7y) = 1.

We have deg K = 2g — 2. This can be obtained in various ways, but all of
them involve some kind of theorem.

So for L = O(D), the square in the statement becomes

L——1+D

c 1—1K).—
L 7@ Pic(X) ¥4 7 @ 40(X) 227 @ 40(X)
] I+ l(oﬁdeg)
dim HO(X,L) 7, id 7, id 7

—dim HO(X,Hom(L,Q2x))

14



and the GRR formula becomes:

dim H°(X, L)— dim H°(X, Hom(L,Qx))
= ch(f[L]) - td(Ty)

2 f(ch([L]) - td(Tx))
= f.(1+D)- (1~ 3K))
= f.(1+ D — iK)
=degD — %degK
=deg(D)+1—g

Remark 2.33 (Sketch of proof). The proof proceeds by:

1. Reducing to the case where f is a closed embedding or a projection using
the factorization of projective morphisms

2. For closed embeddings, use deformation to the mormal cone to reduce to
the case of a regular closed immersion. That is, a closed immersion which
locally looks like a zero section Z — Z x A°. In this case, one does a concrete
calculation.

3. For projections P" x Y — Y, one uses the explicit description of Go(P™ x Y)
and the fact that td(Qpn) = (1 + H + H?> + ...+ H") where H is the class
of a hyperplane.
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