
Algebraic K-theory was originally defined by Grothendieck in order to state
his generalisation of the Riemann-Roch theorem.

Outline:

1. Lecture 1. Riemann–Roch Theorem (smooth projective curves / C)

2. Lecture 2. Grothendieck–Riemann–Roch (quasi-projective varieties / k = k)

3. Lecture 3. Exact sequences, K1, K<0 (affine schemes (= rings))

4. Lecture 4. K-theory as the universal localising invariant (stable∞-categories)

5. Lecture 5. Recent advances.
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1 Riemann–Roch

In this lecture, the base field is always the complex numbers C.

1.1 Riemann–Roch Statement

The goal for today’s talk is to understand the words in the following statement.

Theorem 1.1.1 (Riemann–Roch). Let X be a smooth projective curve of genus
g. Then there exists a divisor K (the canonical divisor) such that for every divisor
D on X, we have

dimH0(X,O(D))− dimH0(X,O(K−D)) = deg(D) + 1− g.
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1.2 Affine varieties

Definition 1.2.1 (Affine Variety over C). An affine variety is a subset X ⊆ Cn

of the form

X =

(z1, . . . , zn) ∈ Cn

∣∣∣∣∣∣∣∣
f1(z1, . . . , zn) = 0

f2(z1, . . . , zn) = 0

...


for some collection of polynomials {fi}i∈I ⊆ C[x1, . . . , xn]. We say X is the zero
set of the fi.

Remark 1.2.2. Since C[x1, . . . , xn] is Noetherian, we can assume the set is finite,
but it is convenient to allow infinite sets.

Example 1.2.3 (Examples of Affine Varieties).

1. Affine space: X = Cn =: An itself (i.e., taking k = 0).

2. Node: X = {(x, y) ∈ C2 : y2 = x2(x+ 1)}.

3. Cusp: X = {(x, y) ∈ C2 : y2 = x3}.

Node: y2 = x2(x+ 1)

x

y Cusp: y2 = x3

x

y

4. Elliptic curve: X = {(x, y) ∈ C2 : y2 = x3 + ax+ b} where 4a3 + 27b2 6= 0.

Elliptic curve: y2 = x3 − x = x(x− 1)(x+ 1)

x

y
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5. Complement of a hypersurface: Given an affine variety X = V ({fi}) ⊆ Cn

and polynomial g, the complement U := X \ V (g) is not a closed subvariety
of Cn. However, the affine variety

U ′ = {(x1, . . . , xn, y) ∈ Cn+1 : fi(x1, . . . , xn) = 0, g(x1, . . . , xn) · y = 1}

projects bijectively to U . This gives the commutative diagram:

U ′

∼
��

// Cn+1

��
U // Cn

6. General linear group: GLn(C) = {A ∈ Matn(C) | det(A) 6= 0} is an example
of a U as in the previous point. That is,

GLn(C) ∼= {(A, t) ∈ Matn(C)× C | det(A) · t = 1}

7. Intersection: If X1, X2 ⊆ An are affine varieties defined by sets of polynomi-
als F1,F2 respectively, then X1 ∩X2 is the affine variety defined by F1 ∪F2.

8. Union: If X1, X2 ⊆ An are affine varieties defined by sets of polynomials
F1,F2, then X1 ∪X2 is the affine variety defined by {fg : f ∈ F1, g ∈ F2}.

1.3 Projective varieties

Definition 1.3.1 (Complex Projective Space). Complex projective space is the
set

Pn =
{(z0, . . . , zn) ∈ Cn+1 \ {0}}

∼
of equivalence classes under the relation

(z0, . . . , zn) ∼ (λz0, . . . , λzn), λ ∈ C×.

One writes (z0 : · · · : zn) ∈ Pn for the equivalence class containing (z0, . . . , zn) ∈
Cn+1.

Remark 1.3.2. For each i = 0, . . . , n we have a bijection

Cn ∼→ Ui := {(z0 : · · · : zn) | zi 6= 0}
(x1, . . . , xn) 7→ (x1 : · · · : xi : 1 : xi+1 : · · · : xn)

These cover Pn.
Pn = ∪n

i=0Ui.
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Exercise 1.3.3. Describe the intersections Ui1 ∩ · · · ∩ Uij as subsets of U0
∼= Cn.

Definition 1.3.4 (Projective Variety). A projective variety is a subset X ⊆ Pn

such that for each affine chart Ui, the intersection X ∩ Ui is an affine variety in
Ui
∼= An.

Example 1.3.5 (Homogeneous Polynomials). If F is a set of homogeneous poly-
nomials (i.e., polynomials of the form

∑
i0+···+in=d ai1,...,ikz

i0
0 . . . z

in
n for some d), then

the zero set V (F) = {(z0 : · · · : zn) ∈ Pn : f(z0, . . . , zn) = 0 for all f ∈ F} is a
projective variety. In fact, every projective variety is of this form.

Example 1.3.6 (Grassmannians). The Grassmannian Gr(k, n) is the variety of
k-dimensional subspaces of Cn. For example: Gr(2, 4) (planes in C4), which can
be embedded in P5 via Plücker coordinates.

Gr(2, 4) ↪→ P5

〈v1, v2〉 7→ 〈v1 ∧ v2〉

If we use pij for the coordinate of P5 corresponding to ei ∧ ej ∈ C4 ∧ C4, then the
image of Gr(2, 4) in P5 is defined by the Plücker relation:

p01p23 − p02p13 + p03p12 = 0.

Example 1.3.7 (Segre Embedding). Pn×Pm has a structure of projective variety
via the Segre embedding

Pn × Pm ↪→ P(n+1)(m+1)−1

(x0 : · · · : xn), (y0 : · · · : ym) 7→ (x0y0 : x0y1 : · · · : xiyi : · · · : xnym)

The image is defined by the quadratic relations zijzkl − zilzkj = 0 for all i, k and
j, l. Consequently, if X ⊆ Pn and Y ⊆ Pm are projective varieties, then X × Y
can canonically be identified with a subvariety of P(n+1)(m+1)−1.

Remark 1.3.8. One can consider Pn as a compactification of An ∼= U0 where we
have adjoined one point for every line through the origin in such a way that if a
curve approaches that line “at infinity” then it will actually intersect at that new
point “at infinity”.

For example, consider the affine curves

C1 : x = 0 (the y-axis) , C2 : xy = 1 (a hyperbola)

in C2 = {(x, y)} ∼= {(x : y : 1)} = U0. These curves do not intersect in the affine
plane. However, these curves are the intersection of U0 with the projective curves

C1 : {(z0 : z1 : z2) | z0 = 0} (1)

C2 : {(z0 : z1 : z2) | z1z2 = z20} (2)
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Intersecting with the chart U1 = {(s : 1 : t)} ∼= {(s, t)}, they become the curves

C ′1 : s = 0 (the t-axis) , C ′2 : t = s2 (a quadric)

They intersect at the point (s, t) = (0, 0) ↔ (0 : 1 : 0), the point at infinity
corresponding to the line {(0, y) |y ∈ C} ⊆ U0.

1.4 Smooth Complex Projective Curves

Definition 1.4.1 (Smooth Point). Let X ⊆ An be an affine variety and x ∈ X.
We say X is smooth of dimension d at x if there exists an open ball B 3 x (in the
analytic topology, i.e., B = {z | ||z−x|| < ε for some ε > 0) and a biholomorphic
map φ : B

∼→ B′ ⊆ Cn to an open subset B′ of Cn such that

B ∩X = φ−1{(z1, . . . , zd, 0, . . . , 0) ∈ B′}.

Example 1.4.2 (Non-smooth Points).

1. Node: The affine curve y2 = x2(x+ 1) has a node at the origin.

2. Cusp: The affine curve y2 = x3 has a cusp at the origin.

In both cases all other points are smooth.

Definition 1.4.3 (Smooth Complex Projective Curve). A smooth projective curve
X is a projective variety which is smooth of dimension one at every point.

Remark 1.4.4 (Underlying Topological Space). We can consider smooth projec-
tive curves as compact real manifolds of real dimension 2. They are automati-
cally oriented, so homeomorphic to a sphere with g handles. This g is called the
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genus of the curve. (There is also a purely algebraic description of genus, namely
dimH0(X,O(K)) where K is the canonical divisor mentioned in the statement of
the Riemann–Roch theorem, and H0(X,O(−)) is defined below).

Example 1.4.5 (Genus Examples).

1. Projective line: The projective line P1 is topologically a sphere, hence has
genus g = 0. Indeed, it is the one point compactification of C ∼= R2.

2. Elliptic curve: A smooth cubic curve in P2, such as y2z = x3+axz2+bz3 with
4a3 + 27b2 6= 0, is topologically a torus (i.e., the surface of a doughnut, or
coffee mug) and has genus g = 1. Indeed, every elliptic curve is holomorphic
to a quotient abelian group of the form C/(Z+Zτ) with the canonical smooth
complex manifold structure, where τ 6∈ R.

3.

Higher genus curves: A smooth curve of de-
gree d in P2 has genus g = (d−1)(d−2)

2
. For ex-

ample, the Klein quartic x3y + y3z + z3x = 0
is a smooth degree 4 curve, so has genus
g = (4−1)(4−2)

2
= 3. Topologically it looks

like the surface of a fidget spinner.
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1.5 Divisors

Definition 1.5.1 (Basic Open). A basic open of an affine variety X ⊆ An is a
subset of the form

D(g) = {x ∈ X : g(x) 6= 0} ⊆ X

for some polynomial g ∈ C[x1, . . . , xn]. The basic opens together with inclusion
maps form a category which we denote B(X). If X is projective, then we define
B(X) =

⋃n
i=0 B(Ui ∩ X) to be the union of the basic opens of the n + 1 standard

affine varieties associated to X.

Example 1.5.2.

1. If g = 1 (or more generally, if g is invertible on X) then D(g) = X.

2. If g = 0 (or more generally, if g vanises everywhere on X) then D(g) = ∅.

3. If X = A1 and g = (x − a1) . . . (x − an) then D(g) = X \ {a1, . . . , an}.
Similarly, every basic open of P1 is of the form P1 \ {a1, . . . , an} for some
nonempty set of points.

4. More generally, if X is a projective or affine curve, then every basic open is
of the form X \ {x1, . . . , xn}. (But not conversely).

Definition 1.5.3 (Structure Sheaf on Basic Opens). Given an affine variety X ⊆
Cn and a basic open U = D(g) ⊆ X, write

OX(U) =

{
ϕ : U → C | ϕ =

f

gn
for some f ∈ C[x1, . . . , xn], n ≥ 0

}
for the set of functions on U of the form f/gn.

Remark 1.5.4. Note that if f ′ vanishes on X, then f/gn = (f + f ′)/gn as a
function on X. More precisely, one can show that the ring OX(U) of functions, is
isomorphic to the abstract ring

OX(U) ∼=
C[x1, . . . , xn]

〈f1, . . . , fc〉
[g−1]

where X = V (f1, . . . , fc).

Remark 1.5.5. As U varies, the OX(U) define a functor

B(X)op → Ring

U 7→ OX(U).

That is,
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0. for every U we have a ring
OX(U),

1. for every inclusion U ′ ⊆ U , restriction gives a ring homomorphism

OX(U)→ OX(U ′),

2. for every two inclusions U ′′ ⊆ U ′ ⊆ U we have a commutative triangle of
ring homomorphisms

OX(U ′)

  
OX(U) //

>>

OX(U ′′)

Definition 1.5.6. Suppose that X ⊆ An is irreducible. That is, X is not a union
of two distinct nonempty varieties. Then each OX(U)→ OX(U ′) (for U ′ 6= ∅) is
injective, and we can define

KX :=
⋃
U 6=∅

OX(U).

Remark 1.5.7. If X is a smooth curve, then each f ∈ KX is a meromorphic
function on the corresponding smooth complex manifold. In particular, the order

ordx(f)

of the pole (or zero) of f at x ∈ X is well-defined.

Definition 1.5.8. A divisor on a smooth projective curve X is a finite formal sum
of points D =

∑d
i=1 nixi. We write

Div(X) = {Σd
i=1nixi}

for the (free) abelian group of divisors. The degree of a divisor is

deg(Σd
i=1nixi) = Σd

i=1ni.

Example 1.5.9. The divisor associated to a rational function f ∈ KX is

div(f) =
∑
x∈X

ordx(f) · x.
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Definition 1.5.10. Each divisor D determines a functor

O(D) : B(X)op → Ab

U 7→ {f ∈ KX | div(f) +D ≥ 0 on U}

where a divisor E =
∑

x nx · x satisfies E ≥ 0 if nx ≥ 0 for all x.

Example 1.5.11. We have OX = O(0) where 0 is the zero divisor.

Remark 1.5.12. Note that the assignement

KX : U 7→

{
KX if U 6= ∅
0 if U = ∅

also defines a functor B(X)op → Ab for each each KX(U) is a OX(U)-module and
the transition morphisms are compatible with this structure.

Moreover, each O(D)(U) is a sub-OX(U)-module of KX(U), and the transition
morphisms O(D)(U) → O(D)(U ′) are compatible with this structure. In other
words, we have an inclusion of quasi-coherent OX-modules

O(D) ⊆ KX .

Remark 1.5.13 (Physical Interpretation). In string theory, Riemann surfaces
appear as worldsheets of strings. Line bundles O(D) on these surfaces can encode
various physical properties:

1. Spin structures

2. Gauge field backgrounds

3. D-brane charges in type II string theory

The degree of a line bundle corresponds to quantized charges or fluxes.

1.6 Riemann–Roch restatement

Definition 1.6.1 (Global sections). Given a divisor D on an irreducible smooth
curve X we define

H0(X,O(D)) :=
⋂

∅6=U∈B(X)

O(D)(U).

That is, an element of H0(X,O(D)) is an element of KX which belongs to all
O(D)(U).
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Remark 1.6.2. We could also have directly defined

H0(X,O(D)) = {f ∈ KX | div(f) +D ≥ 0 on X}

but the above definition is warm-up for the definition of H0(X,F ) that we will see
next time when F is an arbitrary quasi-coherent OX-module.

Example 1.6.3. Consider the divisor D = d · ∞ on P1 where ∞ = (1 : 0). Then
H0(P1,O(D)) is identified with the set C[x, y]d = {

∑d
i=0 aix

iyd−i} of homogeneous
polynomials of degree d. In particular, it is a complex vector space of dimension
d+ 1 (if d ≥ 0 and 0 otherwise).

Theorem 1.6.4. If X is a smooth projective curve, then each H0(X,O(D)) is a
finite dimensional C-vector space.

Theorem 1.6.5 (Riemann–Roch). Let X be a smooth projective curve of genus
g. Then there exists a unique divisor K (the canonical divisor) such that for every
divisor D on X, we have

dimH0(X,O(D))− dimH0(X,O(K −D)) = deg(D) + 1− g.

Example 1.6.6. For X = P1, we have K = −2 · ∞ and g = 0. Then inputting
everything we check that for D = n · ∞ we have

deg(D) + 1− g = n+ 1.

For the left side, we compute the dimensions case by case.
Case n ≥ 0:

dimH0(X,O(D)) = n+ 1 (3)

dimH0(X,O(K −D)) = dimH0(X,O((−n− 2)∞)) = 0 (4)

since −n− 2 < 0.
Case n = −1:

dimH0(X,O(D)) = 0 (5)

dimH0(X,O(K −D)) = dimH0(X,O(−∞)) = 0. (6)

Case n ≤ −2:

dimH0(X,O(D)) = 0 (7)

dimH0(X,O(K −D)) = dimH0(X,O((−n− 2)∞)) = −n− 1. (8)

In all cases,

dimH0(X,O(D))− dimH0(X,O(K −D)) = n+ 1,

confirming Riemann-Roch.
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