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1 Classical Kähler differentials

In this section everything is classical. That is, all categories are 1-categories. To
emphasize that our modules are classical we write R-mod♥. More precisely,

R-mod♥ ⊆ R-modcn

is the fully subcategory of those modules whose underlying space is a set.

Definition 1. For A → B ∈ Alg and M ∈ B-mod♥, a derivation is an A-linear map

∂ : B → M

satisfying the Leibniz rule:
∂(ab) = a∂b+ b∂a.

Write DerA(B,M) for the set of A-linear derivations towards the B-module.

Exercise 2. Show that for any a ∈ A, we have ∂a = 0. Hint.1

Example 3. Suppose that A → B ∈ Alg and M ∈ B-mod♥.
1. If ∂, ∂′ ∈ DerA(B,M) then ∂ + ∂′ ∈ DerA(B,M).
2. If ∂ ∈ DerA(B,M), b ∈ B, then b∂ ∈ DerA(B,M).

1Use A-linearity.
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3. If ∂ ∈ DerA(B,M), φ : M → M ′ ∈ B-mod♥ then φ ◦ ∂ ∈ DerA(B,M ′).

4. If ∂ ∈ DerA(B,M) and B′ φ→ B ∈ A-Alg then ∂ ◦ φ ∈ DerA(B
′,M |B′).

Definition 4. For A → B ∈ Alg the module of (classical) Kähler differentials is the

universal derivation. That is, a derivation B
d→ Ωcl

B/A such that for any B-module
M the induced map

homB-mod(Ω
cl
B/A,M)

−◦d→ DerA(B,M)

is an isomorphism.

Exercise 5.
1. Suppose B = A[x1, . . . , xn]. Show that the map

DerA(B,M) → M⊕n; ∂ 󰀁→ (∂x1, . . . , ∂xn)

is an isomorphism of B-modules. Deduce that B
d→ Ωcl

B/A exists and is isomor-
phic to ⊕n

i=1Bdxi.
2. Note that any A → B can be written as a colimit (in Alg) of polynomial alge-

bras (A→B) = lim−→(Pλ→Qλ). Here Pλ = Z[x1, . . . , xnλ
] andQλ = Z[x1, . . . , xnλ

, y1, . . . , ymλ
].

Show that the morphism

DerA(B,M) → lim←−DerPλ
(Qλ,M |Pλ

)

associated to such a colimit is an isomorphism.
3. Using the previous two parts, deduce that Ωcl

B/A exists in general. Hint.2

2 The cotangent complex

Now we animate Ωcl from the previous section. Recall that Ani(Alg) is the sifted
colimit completion of PolyPoly. In particular, to define a functor Ani(Alg) → C to
any category admitting sifted colimits, it suffices to define a functor PolyPoly → C.

Definition 6. The cotangent complex is the unique colimit preserving functor

Ω : Ani(Alg) → Ani(Mod)

restricting to

PolyPoly → PolyFree; (P → Q) 󰀁→ (Q,Ωcl
Q/P ).

In particular, ΩQ/P = Ωcl
Q/P for (P→Q) ∈ PolyPoly.

2Use the adjunctions −⊗Pλ
B-mod♥ ⇄ Pλ-mod♥ : (−)|Pλ

.
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Exercise 7. Suppose that A → B ∈ Alg is a classical algebra. Show that we have

π0ΩB/A
∼= Ωcl

B/A.

Hint.3

Theorem 8 (First cofibre sequence). Suppose that A → B → C is a composable
pair of ring homomorphisms. Then there is a cofibre sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B

in C-mod.

Proof. Consider the category Ani(AlgAlg) which is the sifted completion of the cat-
egory PolyPolyPoly whose objects are composable pairs of morphisms P→Q→R of
the form P = Z[x1, . . . , xn], Q = Z[x1, . . . , xn, y1, . . . , ym], R = Z[x1, . . . , xn, y1, . . . , ym, z1, . . . , zℓ].
Morphisms in PolyPolyPoly are pairs of commutative squares

P 󰈣󰈣

󰈃󰈃

Q 󰈣󰈣

󰈃󰈃

R

󰈃󰈃
P ′ 󰈣󰈣 Q′ 󰈣󰈣 R′

in Poly. The assignment

PolyPolyPoly → PolyFree

(P→Q→R) 󰀁→ (R,ΩQ/P ⊗Q R)

extends to a colimit preserving functor

Φ : Ani(AlgAlg) → Ani(Mod).

In the category Ani(AlgAlg) we have a canonical pushout square, informally de-
scribed as

(A→B→C) 󰈣󰈣

󰈃󰈃

(A→C
=→C)

󰈃󰈃

(B
=→B→C) 󰈣󰈣 (B→C

=→C)

More formally, we have such pushout squares defined when (A→B→C) is in PolyPolyPoly,
but this subcategory generates Ani(AlgAlg) under sifted colimits, and colimits of
pushout squares are pushouts squares. We claim that the image of this square in
Ani(Mod) is a pushout square of the form

ΩB/A ⊗B C 󰈣󰈣

󰈃󰈃

ΩC/A

󰈃󰈃
0 󰈣󰈣 ΩC/B

3Cf. Exercise 5.
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Indeed, we can factor Φ as a composition of colimit preserving functors

Ani(AlgAlg) → C → Ani(Mod)

(P→Q→R) 󰀁→ (Q→R,ΩQ/P ) (Q→R,F ) 󰀁→ (R,F ⊗Q R)

where C is the sifted completion of the category C0 whose objects are triple (P→R,F )
with P→R in PolyPoly and F ∼= P⊕n. We leave it to the reader to describe the
morphisms of C0. Note that our functors fit into a commutative diagram of colimit
preserving functors (for any B → C ∈ Ani(Ring))

B-mod
−⊗BC 󰈣󰈣

󰈃󰈃

C-mod

󰈃󰈃
Ani(AlgAlg) 󰈣󰈣

(P→R→Q) 󰀁→(P→R)
󰈃󰈃

C
(Q→R,F ) 󰀁→(Q,F )
󰈃󰈃

󰈣󰈣 Ani(Mod)

Ani(Alg)
Ω
󰈣󰈣 Ani(Mod)

Here, the vertical functor B-mod → C is the inclusion of the full subcategory of those
presheaves Cop

0 → S whose restriction to PolyPoly ⊆ C0 is (B → C).

Exercise 9.
1. Suppose that A → B and A → C are morphisms in Ani(Ring). Show that

there is an equivalence

ΩB/A ⊗B (B ⊗A C)
∼→ ΩB⊗AC/C

in (B ⊗A C)-mod.
2. Show that the above equivalence can be promoted to a functor

Fun(Λ2
0,Ring) → Fun(∆1,Mod).

Hint.4

Exercise 10. Suppose that A ∈ Ring and A → A[x1, . . . , xn] is the free A-algebra
on n generators. Show that

ΩA[x1,...,xn]/A
∼= A⊕n

is the free A-module on n generators.

Exercise 11.
1. Consider the algebra Z[x] → Z; x 󰀁→ 0. Show that

ΩZ/Z[x] ∼= Z[1]

in Z-mod.

4Cf. the proof of Proposition 8.

4



2. Given A ∈ Ring and f ∈ π0A show that

Ω(A//f)/A
∼= (A//f)[1]

in A//f -mod.
3. Deduce that there is a cofibre sequence

(A//f) → ΩA ⊗A (A//f) → ΩA//f

inA//f -mod where the first morphism is induced by df ∈ π0ΩA
∼= homA-mod(A,ΩA).

Exercise 12. For A → B ∈ Ani(Alg) and f ∈ π0B show that we have equivalences

ΩB/A ⊗B B[1/f]
∼→ ΩB[1/f]/A, ΩB[1/f]/B

∼= 0.

Hint.5 Hint.6

Corollary 13. For any A ∈ Ring the assignment

B 󰀁→ ΩB/A

is a Zariski sheaf on Aff/ Spec(A).

Proof. By a claim in the topology lecture, it suffices to show that

ΩB/A
󰈣󰈣

󰈃󰈃

ΩB[1/f]/A

󰈃󰈃
ΩB[1/g]/A

󰈣󰈣 ΩB[1/fg]/A

is a cartesian square (in S) for any f, g ∈ π0B generating the unit ideal. Under the
equivalences of Exericise 12 this becomes

ΩB/A
󰈣󰈣

󰈃󰈃

ΩB/A ⊗ B[1/f]

󰈃󰈃
ΩB/A ⊗ B[1/g] 󰈣󰈣 ΩB/A ⊗ B[1/gf]

so it suffices to show that
B 󰈣󰈣

󰈃󰈃

B[1/f]

󰈃󰈃
B[1/g] 󰈣󰈣 B[1/fg]

is cartesian. We did this in an earlier lecture.

5Recall that B[1/f]⊗B B[1/f] ∼= B[1/f].
6Use Exercise 9.
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3 Finiteness conditions

Consider the following classes of objects in Cplx(R)≥0 for R a classical ring.
1. Chain complexes of the form

(· · · → 0 → 0 → R⊕ni → · · · → R⊕n1 → R⊕n0) (1)

where R⊕n0 is in degree zero. Starting with R = (. . .→0→R) concentrated
in degree zero, and repeatedly applying finite sum and cone (i.e., repeatedly
taking finite colimits in the derived category), we can construct any chain
complex of the form (1).

2. Chain complex of the form

P = (· · · → 0 → 0 → Pi → · · · → P1 → P0) (2)

where P0 is in degree zero, and there is a finite set of elements f1, . . . , fn ∈ R
such that {Spec(R[f−1

i ]) → Spec(R)}i∈I is a Zariski covering and each locali-
sation P ⊗R R[f−1

i ] ∈ Cplx≥0(R[f−1
i ]) is of the form (1). In other words, each

Pi is a projective R-module of finite rank [Stacks Project, 00NX]. Note, for any
complex of the form (2) there exists a complex C of the form (1) such that
C = P ⊕Q for some Q. That is, we can build any P using finite sums, cones,
and direct summands starting from R = (. . .→0→0→R).

3. Chain complexes C that we can approximate by ones of the form (2). Con-
cretely, C such that for all n there is P of the form (2) and an equivalence
τ≤nC ∼= τ≤nP . That is, chain complexes quasi-isomorphic to one of the form

P = (· · · → Pi+1 → Pi → Pi−1 → · · · → P1 → P0) (3)

where each Pi is a projective R-module of finite rank.
These three classes all have their uses. The second two are related to compact

objects in the following way.

Proposition 14 ([DAG, pg.19]). Let A ∈ Ani(Ring) and M ∈ A-mod. The follow-
ing are equivalent.

1. M ∈ A-mod is compact. That is, Map(M,−) commutes with filtered colimits.
2. M is in the smallest stable subcategory of A-mod which:

(a) contains A, and
(b) is closed under direct summand.

Exercise 15. Prove the classical version of Proposition 14. That is, prove that if A
is a classical ring and M ∈ A-mod♥ is a classical A-module, then homA-mod♥(M,−)
commutes with filtered colimits if and only if M is a direct summand of an A-module
of the form coker(A⊕m→A⊕n).

Exercise 16. Prove Proposition 14(2 ⇒ 1). Note that the smallest stable subcat-
egory of A-mod containing A is the same as the smallest subcategory of A-mod
containing A and closed under:
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1. finite colimits
2. desuspension M 󰀁→ M [−1].

Exercise 17 (Harder). Prove Proposition 14(1 ⇒ 2).

The cotangent complex detects compact objects.

Proposition 18 ([DAG, Prop.3.2.14, Prop.3.2.18]). Take A → B ∈ Ani(Ring).
Then B is compact as an object of Ani(Ring)A/ if and only if ΩB/A is compact as
an object of B-mod and π0A → π0B is of finite presentation (in the classical sense,
i.e., π0B = (π0A)[x1, . . . , xn]/〈f1, . . . , fc〉 for some fi ∈ π0A[x1, . . . , xn].)

The cotangent complex also detects finitely presented objects.

Definition 19. If M ∈ A-mod is in the smallest stable subcategory of A-mod which
contains A (but is not necessarily closed under direct summands) then we say M
is finitely presented. Similarly, if B ∈ Ani(Ring)A/ is in the smallest subcategory
which:

1. contains A[x], and
2. is closed under finite colimits.

We say that B is finitely presented.

Proposition 20 ([DAG, Prop.3.2.14, Prop.3.2.18]). Take A → B ∈ Ani(Ring).
Then B is finitely presented in Ani(Ring)A/ if and only if ΩB/A is finitely presented
in B-mod and π0A → π0B is of finite presentation in the classical sense.

The final smallness condition we discuss needs the notion of truncation.

Definition 21. The full subcategory of objects M ∈ A-mod such that πiM = 0 for
all i > n is denoted

A-mod≤n.

Lemma 22. The category A-mod≤n is presentable and the inclusion admits a left
adjoint

τ≤n : A-mod → A-mod≤n.

Proof. Repeatedly applying Σ (or Σ−1 = Ω) induces an equivalence Σn : A-mod≤0 →
A-mod≤n, so for the first claim, it suffices to show that A-mod≤0 is presentable. Using
the adjunctions,

S ⇄ A-modcn ⇄ A-mod

one sees that A-mod≤0 is the full subcategory of objects local with respect to the
(image of the) map S1 → ∗ (in A-mod). That is, those objects M such that
Map(∗,M) → Map(S1,M) is an equivalence. Therefore it is presentable. The second
claim follows from the adjoint functor theorem since the inclusion A-mod≤0 → A-mod
preserves limits and filtered colimits.

Definition 23 ([DAG, pg.19, pg.23]). Let A ∈ Ani(Ring) and M ∈ A-mod.

7



1. We say that M is almost perfect if for every n there exists a compact object
M ′ ∈ A-mod and an equivalences τ≤nM

′ ∼= τ≤nM .
2. Similarly, we say that B ∈ Ani(Ring)A/ is almost finitely presented if for every

n there exists a finitely presented A-algebra B′ and a morphism B′ → B
inducing isomorphisms πmB

′ → πmB for all m ≤ n.

Remark 24. The following are equivalent, [DAG, Prop.2.5.7].
1. The truncation τ≤nM is a compact object of D(A)≤n.
2. There exists a compact object N ∈ D(A)≤n and an equivalence τ≤nN ∼= τ≤nM .

Proposition 25 ([DAG, Prop.3.2.14, Prop.3.2.18]). Take A → B ∈ Ani(Ring).
Then B is almost finitely presented in Ani(Ring)A/ if and only if ΩB/A is almost
finitely presented in B-mod and π0A → π0B is of finite presentation in the classical
sense.

Remark 26. So to summarise, we have the following equivalences.

f is finitely presented ⇐⇒ (FP0) holds and ΩB/A is finitely presented.
f is locally finitely presented ⇐⇒ (FP0) holds and ΩB/A is perfect.
f is almost finitely presented ⇐⇒ (FP0) holds and ΩB/A is almost perfect.

Where (FP0) means π0A → π0B is of finite presentation in the classical sense. I.e.,
π0B = (π0A)[x1, . . . , xn]/〈f1, . . . , fc〉 for some fi ∈ π0A[x1, . . . , xn].

4 Deformation theory

It is often useful and natural to consider families of algebraic objects X indexed
by some algebraic variety T . For example, projecting the algebraic variety X =
{(x, y, t) ∈ C | xy = t} to the t component we can consider it as a family hyperbole
Xt ⊆ C2 indexed by t ∈ C = T degenerating to the axes xy = 0 at t = 0.

Conversely, we can ask the following.

Question 27. Given an algebraic variety X0, what kind of families p : X → B exist
with X0 = p−1(b0) for some b0 ∈ B.

The question is local around b0, and the standard sequence of reductions is:
1. Replace B with the local scheme Spec(OB,b0).
2. Replace the local scheme Spec(OB,b0) with the formal scheme Spec(OB,b0)

∧
b0
=

Spec(lim←−n
OB,b0/m

n).
3. Consider eachOB,b0/m

n one at a time. That is, given a family over Spec(OB,b0/m
n),

when does it extend to a family over Spec(OB,b0/m
n+1).

Restricting to affine schemes, we are then lead to the following definition and
question.

Definition 28. Suppose A → B ∈ Ring and M ∈ B-mod♥. A square zero extension
(of B by M) is an A-algebra B̃ and an ideal I ⊆ 󰁨B such that:
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1. I2 = 0,
2. 󰁨B/I ∼= B, and
3. I ∼= M as B-algebras.

Question 29. Classify square zero extensions of B by M .

The cotangent complex answers this question.

Warning 30. Both Example 31 and Example 32 are mean’t as expositional tools.
They contain content which did not appear in this course (e.g., modelling A-mod
using chain complexes of A-modules via Dold-Kan, the theory of cdgas, using model
categories of digarams to calculate (co)limits in quasi-cateories, ...).

Example 31. Let A be a classical ring, and suppose that B′ → B is a square zero
extension of classical A-algebras with kernel

I = ker(B′ → B).

By rotation, this defines a cofibre sequence

(I →) B′ → B
δ→ I[1], ∈ A-mod.

in the category of A-modules. The morphism δ can be represented concretely by the
weak equivalence7 of chain complexes [I→B′]

∼→ [0→B]. Then the cofibre sequence
is as follows.

󰀕 󰀗
0

↓
I

󰀘
→

󰀖 󰀗
0

↓
B′

󰀘
→

󰀗
I

↓
B′

󰀘
δ→
󰀗
I

↓
0

󰀘
, ∈ A-mod.

Since A-mod is stable, one sees that as an A-module, B′ can be reconstructed as the
fibre of δ in A-mod,

B′ ∼= fib(B
δ→ I[1])

and this sets up a well-known bijection

homA-mod(B, I[1]) ∼=

󰀻
󰀿

󰀽

isomorphism classes of
extensions of the A module B

by the A module I

󰀼
󰁀

󰀾 .

Example 32. We can also recover the ring structure from Example 31. The following
also works in the category Ani(Ring), but it is easier to see whats going on in cdgas
(=commutative differential graded algebras, [HA, Def.7.1.4.1, Def.7.1.4.8]). In fact,
1-truncated8 cdgas completely capture 1-truncated objects of Ani(Ring), [Drinfeld,
On a notion of ring groupoid, 3.3.3].

Notice that since I2 = 0, the chain complex [I
inc.→ B′], whose differential is

inclusion, has a structure of commutative graded ring, where B′ is in degree zero,

7Here, by [M1 → M0] we mean [· · · → 0 → 0 → M1 → M0].
81-truncated means all homotopy groups except π0 and π1 are zero.

9



and I is in degree one. Similarly, the complex of A-modules [I
0→ B] = [I→0]⊕[0→B]

also has a commutative graded ring structure. Since the canonical morphism [I
inc.→

B′] → [I
0→ B] is surjective in each degree, it is a fibration in the model category of

cdgas (cf.[HA, Prop.7.1.4.10]), so the cartesian square

B′ =

󰀗
0

↓
B′

󰀘
󰈣󰈣

󰈔󰈔❅
❅❅

❅❅
❅❅

❅❅

󰀗
0

↓
B

󰀘

󰈒󰈒❁
❁❁

❁❁
❁❁

❁
= B

B ∼=
󰀗
inc.

I

↓
B′

󰀘
󰈣󰈣

󰀗
I

↓
B

0

󰀘
= B ⊕ I[1]

in the model category of cdgas is sent to a cartesian in the quasi-category of cdgas.9

That is, we recover B′, equipped with its ring structure, as the fibre product

B′ = B ×B⊕I[1] B, ∈ Ani(Ring)A/

in the quasi-category Ani(Ring)A/
10 As in the case of A-modules, this sets up a

bijection

homAni(Ring)A//B
(B,B ⊕ I[1]) ∼=

󰀻
󰀿

󰀽

isomorphism classes of
square zero extensions
of A-algebras of B by I

󰀼
󰁀

󰀾 , (4)

󰀕
B

s→ B ⊕ I[1]

󰀖
󰀁→ B ×B⊕I[1] B.

Definition 33 ([DAG, Def.3.3.1]). Let A → B ∈ Ani(Ring) and M ∈ B-modcn. A
small extension of B by M is a pullback in Ani(Ring)A//B of the form

B̃
┘

󰈣󰈣

󰈃󰈃

B

0

󰈃󰈃
B s

󰈣󰈣 B ⊕M [1]

where 0 : B → B ⊕M [1] is the morphism corresponding to 0 → M [1] in MB under
the adjunction B-alg ⇄ B-modcn.

9In general, if X → Y ← Z are fibrations with Y fibrant, then the diagram is injectively fibrant
and therefore X×Y Z models the pullback in the associated quasi-category. Moreover, one can show
that in fact, it suffices that X,Y, Z are fibrant and one of the morphisms is a fibration. [Dugger, A
primer on homotopy colimits, Proposition 14.5]

10This is the quasi-category associated to the model category of cdgas under A, [HA,
Prop.7.1.4.11], at least when Q ⊆ A.
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Exercise 34 (Harder). Continue with the notation from Def.33, so B̃ = B×B⊕M [1]B.
Show that there is a long exact sequence

. . . πn+1(B)
σ→ πn(M) → πn(B̃) → πn(B)

σ→ πn−1(M) → . . .

where the morphisms σ are induced by s : B → B ⊕M [1]. Hint.11

Proposition 35 ([DAG, Prop.3.3.5]). Let A → B ∈ Ani(Ring) be such that B ∈
Ring (that is B is a classical ring). The functor

(B-mod♥[1])ΩB/A/ → Ani(Ring)A//B

(ΩB/A
s→M) 󰀁→ B ×B⊕M B

is fully faithful, and its essential image consists of those B̃ → B in RingA//B such

that π0B̃ is a square zero extension of π0B by I, Definition 28.

Proposition 36 ([DAG, Prop.3.3.5]). Choose k > 0, let A → B ∈ Ani(Ring) be
such that πnB = 0 for n > k. The functor

(B-mod♥[k+1])LB/A/ → Ani(Ring)A//B

(ΩB/A
s→M) 󰀁→ B ×B⊕M B

is fully faithful, and its essential image consists of those B̃ → B in Ani(Ring)A//B

such that
1. πiB̃

∼→ πiB for i ∕= k, and,
2. there is a short exact sequence of π0B-modules

0 → πkM → πkB̃ → πkB → 0

Remark 37. Suppose A → B ∈ Ani(Ring). We can apply the above proposition to
τ≤k−1B and M = (πkB)[k]. In this case, the proposition tells us that we can build
τ≤kB out of the triple

(τ≤k−1B, πkB, ΩB/A→(πkB)[k]).

In Ani(Ring)A/ we have B = lim←−n∈N τ≤nB so in fact, B is equivalent to the data of
the classical A-algebra π0B, together with the sequence

Ω(τ≤0B)/A→(π1B)[1]
∈τ≤0B-mod

, Ω(τ≤1B)/A→(π2B)[2]
∈τ≤1B-mod

, Ω(τ≤2B)/A→(π3B)[3]
∈τ≤2B-mod

, . . .

That is, the A-algebra B is determined by the discrete A-algebra π0B and purely
“linear” data, where “linear” means contained in some category of modules.

11Note that the forgetful functor Ani(Ring)A//B → S commutes with fibre products.

11


