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Generalised cohomology theories. The first goal in this lecture is to define stabili-
sation of a (pointed) quasi-category. Historically, the motivation to defining spectra
and stabilisation was to represent cohomology theories. For example, to any abelian
group A one can find a space K(A,n) such that for CW complexes X, the set of
morphisms up to homotopy are in canonical bijection with the singular cohomology
groups

hom(X, K(A,n)) = H.,

sing (X ) A)
As n ranges over the natural numbers, the spaces K(A,n) assemble into a spectrum
K(A) living in a category of spectra where all generalised cohomology theories are
representable.

Fibre sequences. Generalised cohomology theories are not part of this course, so
instead I propose the following motivation (hopefully more accesible). For any fibre
product in the quasi-category' S,, of the form F' = % x5 E we have a long exact

sequence

oo =T F >, E—>m,B—>nm, 1 F—- - —mB—nF —mnE—mB (1)
where the last three are pointed sets.? One question that stabilisation solves is:
Question 1. Can we continue this long exact sequence to the right?

Namely, can we build a category of objects behaving like spaces, but which have
homotopy groups for all n € Z, and long exact sequences as above, but continuing
into negative homotopy groups?

If =% xpEin S,), then defining QB = * xp * we get a new fibre product
OB = x xg F. Using the equivalence 7,228 = m,,1B one gets an isomorphism

!The category S, / is the quasi-category of pointed spaces. Its objects are spaces X € S equipped
with a choice of base point x : * — X. This will all be explained more concretely below.

2A sequence of morphisms of pointed sets (X, ) ER (Y,y) > (Z,2) is exact if f(X) =g~ ({z}).



between the long exact sequence associated to Q2B = * x g F' and the shift of Eq.(1).

= 1,08 = 1, F =, F — 1, 1QB — - - mE — 1B — mogF — moF
~r,1B ~m,B &m B
(2)

So a reasonable guess of how to proceed is to try and make €2 an equivalence of
categories. This leads directly to the definition of the quasi-category of spectra

Sp = lim(-+- 5 Sy 5 8.y > S.y).

This will be described more carefully in Definition 32.

Stabilisation has many remarkable consequences. For example, a commutative
square in Sp is a pullback square if and only if it is a pushout square. The second
goal of this lecture is to discuss some of these (specifically, the one just mentioned).

Modules. The functor € has a left adjoint ». If ¥ is fully faithful, then the
original (pointed) quasi-category M embeds fully faithfully into its stabilisation M C
Sp(M). This happens with the categories of modules we have beens studying

R-mod® C R-mod := Sp(R-mod™).

Our third goal in this lecture is to prove (or at least sketch a proof) that X :
R-mod™ — R-mod® is fully faithful. Using the adjunction

Y% R-mod™ & R-mod : Q°°,

the fact > is fully faithful, and the fact that in R-mod pushout and pullback
squares are the same, one deduces that a pushout of modules gives rise to a long
exact sequence of homotopy groups

o= T, M = T, M & T, M — (M Uy M) = 7 M — .

Recall that we used this long exact sequence in a previous lecture to describe the
homotopy groups of the quotient ring R/ f.

Here is the outline:

1. Pointed quasi-categories.

2. Stable quasi-categories.

3. Stabilisation.

4. Stabilisation of quasi-categories of modules.

1 Pointed quasi-categories

Definition 2. Let C be a quasi-category and X € C' an object.
1. X is initial if Map(X,Y) is contractible for all Y.
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2. X is final if Map(W, X)) is contractible for all W.
3. C is pointed if it admits both an initial object @ and a final object %, and an
equivalence @ = x.

Example 3.
1. If C is (the nerve of) a 1-category then an object is initial / final in the quasi-
categorical sense if and only if it is initial / final in the usual sense.
2. * € S is a final object (one can see this using the fact that Mapg(X, x) =
MapSetA (Xa *) = *)
3. For any R € Ani(Ring), the zero object R € R-mod®™ is both initial and final.
(One can see this using the adjunctions (¢, 7) and (7,¢).)3

Exercise 4. Show that the full subcategory of initial objects (resp. final objects) is
either empty, or a contractible Kan complex. Hint.* Hint.> Hint.5

Notation 5. We will sometimes use
, (resp. *)

to represent a chosen initial, resp. final, object. If they are equivalent (i.e., C is
pointed) we sometimes write

0

and call it a zero object. We will also sometimes write 0 for any morphism which
factors through a 0 object and call it a zero morphism

Remark 6. Something missing” from the lecture on adjunctions is the following
characterisation:

Suppose that C, D are quasi-categories and F' : C' &= D : G are functors. Then
(F,G) form an adjunction if and only if there exists a map :ide — GF such that
for all X € C|Y € D, the morphism

Map(FX,Y) — Map(GFX,GY) — Map(X,GY')

3Note that R-mod®" C Ani(Mod) is not full. We only take morphisms which project to idg.
In other words,

Mapp_moqen (M, N) = {idr} XMab _gpi(Ring) (R R) MaPAni(Mod)(Ma N).

So if, for example, N = (R, under the adjunction Map(M,tR) = Map(rM, R) = Map(R, R), this
becomes {idr} Xwap(r,r) Map(R, R) = .

4Recall that the homotopy category hC' of a quasi-category C' has morphisms my Map(X,Y).

SRecall further that a quasi-category is a Kan complex if and only if all morphisms are equiva-
lences.

6Finally recall that a Kan complex is contractible if and only if any two objects are equivalent,
and all mapping spaces are contractible.

"We did not include it because the “composition” Map(X,Y) — Map(X,Y”’) map (associated
to a morphism Y — Y”) is not so straight-forward in quasi-categories and we did not want to go
into that level of subtlety at that time.



induced by composition with : X — GFX is an equivalence of spaces, [HTT,
Prop.5.2.2.8]. Dually, if and only if there exists a map ¢ : FG — idp such that the
corresponding morphism of mapping spaces is an equivalence.

Using this criterion, one sees that for any final object Y, the constant functor

Fun(@,C) = x RNYe! corresponding to Y is right adjoint to the canonical functor
C — . That is, any final object is a limit of the empty diagram. Dually, any initial
object is a colimit of the empty diagram.

thg”l, *:1.&1
1%}

1%}
It is easy to manufacture categories with initial and final objects.

Definition 7. Let C be a quasi-category and X an object. The n-simplices

(CX/)H g C’n—f—l

of the under category Cx, are those (n + 1)-simplices of C' whose initial vertex is X.
The simplicial structure is induced by the map A — A; [n] — {x <0< 1< --- < n};
hom([n], [m]) — hom([n + 1], [m + 1]). The over category is®

((C%)x/)"
Exercise 8. Describe the simplices and simplicial structure of C'/x explicitly.

Exercise 9. Suppose C' is a quasi-category and X € C' an object.

1. Show that the identity map (X 3 X) € Cx/ is an initial object. Hint.? Hint.'
2. Show that if C' admits a final object * and X — % is any morphism, the object
(X — %) is a final object in C;.

Corollary 10. The under category S, is pointed.

Notation 11. If C' is a quasi-category with a final object *, the under category C.,,
is usually written

C, = C,

to simplify the notation.

8Recall that if K is a simplicial set, then K° is the simplicial set A 2% A K Set where
op:{zg <z < - <z} {r, < <z <20}

9Recall that if C is a quasi-category, then each MapL(X, Y) is a Kan complex.

10Tn particular, Map” (X,Y) is contractible if and only if every 0A™ — Map” (X,Y) extends to
some A" — Map” (X,Y).



2 Stable quasi-categories

2.1 Definition

Definition 12. An additive category is a 1-category A such that:
1. A admits all finite coproducts and finite products (including empty ones),
2. the canonical comparisons (see Remark 14)

U;L:lXi — |_|Z-L:1Xi

are isomorphisms (for n € N5g), and
3. each hom(X,Y") equipped with the canonical abelian monoid structure (see
Exercise 15)

* — hom(X,Y), hom(X,Y) x hom(X,Y) — hom(X,Y)
is a group.
Notation 13. When U = N we will sometimes write @& for this operation.

Remark 14. The case n = 0 says that @ = *. Using this isomorphism, we obtain
maps 0;; : X; — *¢@ — X;. Combining these with the id; : X; — X; we obtain
the map U, X; — M7, X; in the above definition.

Exercise 15. For objects A, B in an additive category A, consider the map

hom(A, B) x hom(A, B) - - = - = hom(A, B)

lx Two(—)oé

hom(A x A, B x B) <——hom(A x A, B B)

where § : A — A x A is the diagonal and 7 : Bl B — B is the folding map. Show
that + gives hom(A, B) the structure of an abelian monoid. Hint.!

Exercise 16 (Harder). Suppose that A is a small additive category and consider
the category PShy (A, Set) of functors F' : A? — Set which send finite coproducts
to finite products.
1. Show that the final object * € PShy(A, Set) is also initial.
2. Suppose that X,Y € PShy(A, Set) are representable. Show that X xY = XY
in PShy (A4, Set). Hint.'?
3. Show that PShy(A, Set) is also additive. Hint.'® Hint.!

' To define the zero morphism, consider the canonical maps 0 = @ — B and A — % = 0.

2By Yoneda, it suffices to show that Map(X x Y,G) = Map(X, G) x Map(Y,G) for any G €
PShy (4, S).

13Note that every object of PShy(A,S) can be written as a termwise (i.e., (lig F,)(X) =
lim F, (X)) sifted colimit of representable objects.

14Recall also that in S we have (@7 X)) x (hﬂu Y,) = limg liglu(X.y xY,).
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Definition 17. A quasi-category C'is stable if it satisfies the following conditions:
(Sta0) It is pointed. That is, it admits both an initial object @ and a final object
and an equivalence @ = x.
(Stal) It admits fibres and cofibres. That is, for every f: X — Y, both X xy 0 and
0OUx Y exist.
(Sta2) A commutative square of the form
/

— Y
ls

— 7

o

is cartesian if and only if it is cocartesian.

Example 18. The category x with a single object and single (identity) morphism is
stable.

Notation 19.
1.t X L Vv % Z fits into a bicartesian square as in Eq.(3) we call it a fibre
sequence or cofibre sequence, write

X =fibY % 2), cof(XLY)=2

and call these respectively, the fibre and cofibre.
2. In the special case where Y is also a zero object we will write 27 = X and
Y X = Z. That is,

0Z:=0xz0=fb(0—> Z), BX:=0Uy0=cof(X — 0).

Remark 20. We will see two alternative set of axioms for a quasi-category to be
stable, Exercise 22 and Remark 31. The axiom (Sta2) above has two advantages:

1. It highlights the connection between stable quasi-categories and triangulated
categories (which don’t appear in this course, but are the historical precedent
of stable quasi-categories).

2. It highlights the analogy with abelian categories. Namely, (Sta2) is an analogue

of the abelian category axiom: for any morphism A 4y B we have

ker(B— coker(f)) = coker(ker(f)—A).

2.2 Basic properties

In the following exercises we will show the following basic facts. Suppose that C' is
a stable quasi-category.
1. The functors ¥ : C — C and €2 : C' — C' are inverse equivalences. Moreover, in
fact, we can replace (Sta2) with this axiom.



2. The rotations Q7 — X — Y and Y — Z — XX of fibre sequences are also
fibre sequences.

C admits all finite colimits and finite limits.

Every cartesian square is cocartesian and vice versa.

5. A square

il

fibf— =X 1oy
|
T
Y

fib(g) —> Z —= W

is bicartesian if and only if the comparison morphism ¢ is an equivalence (and
similarly for cofibres).

6. Finite coproducts are equivalent to finite products.

7. The homotopy category hC' is additive.

Exercise 21. Recall that if C' is a category admitting /-shaped limits, the limit
adjunction factors as

§:C = Fun(I4,C) = Fun(I,C) : Jm

and similar for colimits.®
1. Show that for a general pointed quasi-category C, the pair

(%,9)

form an adjunction. Hint.!'® Hint.!” Hint.!® Hint.!"
2. Show that when C is stable, ¥ and Q are inverse equivalences. Hint.?° Hint.?!

Exercise 22.
1. Given a morphism X Lyina pointed quasi-category C, show that there are
factorisations

X — fib (Y—>cof(f)> — Q¥ X — fib (QEY%QZcof(f))

15Here, in the limit case, the left adjoints are induced by composition with I — I'¥ — «; and the
right adjoint C + Fun(I9,C) is composition with the inclusion of the initial object * — I<.
16Recall that (A2)? = Al x Al = (A2)".
X =0
17Consider the full subcategory K C Fun(A2, C) consisting of diagrams of the form | . Note
0

that evaluation at O restricts to an equivalence K = C. Indeed, since 0 is final, the forgetful functor
C/p — C'is an equivalence, and K = C/y x¢ C/9. Do the analogous thing for M C Fun(A3, O). is
fully faithful.

—

X
18Consider the full subcategory L C Fun(A'x A, C) consisting of diagrams of the form |
0

<<4—©o

N
19Consider the canonical functors K < L — M.

20Use (Sta2).
21Consider the essential images of K — L and L < M from the previous hints.



2. Suppose that C' satisfies (Sta0), (Stal), and:
(Sta2') € is an equivalence.

Show that C' is stable. That is, show that C satisfies (Sta2). Hint.??

Exercise 23. Suppose that X — Y — Z is a fibre sequence. Show that there are
fibre sequences of the form Q7 - X - Y and Y — 7 — ¥ X.

Exercise 24. Suppose that C' is a stable quasi-category. Suppose that we have a
fibre sequence

xLy2z
Show that if g = 0, then X = (QZ) x Y. Similarly, show that if f = 0 then there is

an equivalence Z =Y U Y X. Hint.?® Hint.?
Deduce that C' admits finite products and finite coproducts. Hint.?®

Exercise 25. Suppose that X,Y are two objects in a stable quasi-category.
1. Show that X Ux,y Y = 0.
2. Deduce that
XUY =X xY.

Hint.26 Hint.2"

Exercise 26. Suppose that C' is a stable quasi-category. Using the fact that C' — hC
preserves finite products and finite coproducts, show that AC' is additive.

!
Exercise 27. Recall that, for morphisms X = Y in a general quasi-category, if it
g

f
exists, the following pullback P is equivalent to the equaliser eq(X = Y)
9

P Y
s
f
X——Y xY P=eq(X 3Y)
(f.9) g

That is, if the pullback square on the left exists, then the equaliser exists. Show
that if C is a stable quasi-category, then C' admits equalisers. Dually, show that C
admits coequalisers. Hint.?®

22Use Exercise 21.

23Note that in general, Ax B=A x, Band AUB = Alg B.

24Use the 2-out-of-3 property for (co)cartesian squares.

25Use Exercise 21

Z6Note that in general, A x B= A x, Band AUB = Allg B.

2TUse 2-out-of-3 for (co)cartesian squares.

28Recall that we have seen in a previous exercise that there is a fibre sequence of the form
Y=Y XxY =Y.




Remark 28. Since a quasi-category admits all finite limits if and only if it admits
finite products are equalisers, [HTT, Prop.4.4.3.2], we deduce that stable quasi-
categories admit all finite limits. Dually, they admit all finite colimits.

In particular, stable quasi-categories admit all pullbacks and pushouts. (Alterna-
tively, we could have deduced this directly since X xzY Zeq(X x ZxY =2 Z x Z)
in general).

Exercise 29 (Harder. [HTT, Prop.1.1.3.4]). We will show that all pushout squares
are pullback squares and vice versa. By duality it suffices to prove only the former.
E.g., pullback squares in C° correspond to pushout squares in C'.

1. If C is a stable quasi-category and I is a small quasi-category, show that
Fun(7,C) is stable. In particular, it admits all finite limits and finite colim-
its.

2. Suppose that C' is a stable quasi-category and D C C' a full sub-quasi-category
which is closed under ¥ and finite limits (calculated in C'). Show that D is
stable (and the inclusion preserves limits and colimits). Similarly, if £ C C' is
closed under €2 and finite colimits then show FE is stable.

3. Let C be a stable quasi-category and consider the full subcategories D, £ C
Fun(A!'xAl, (') consisting of those squares which are pullbacks, resp. pushouts.
Show that D and E are both stable. Deduce that their intersection D N E is
also stable. Hint.?

4. Finally, we will show that D = DN E = E. First note that any square of the
form

o

A=A (4)

L

B?B/

is in D N E. Given an arbitrary square

X Y (5)
|
Z—=ZUxY

in E, write it as a pushout of a diagram in D N E of shape "\ \,. Deduce
that (5) is in D N E, and therefore in D. That is, (5) is a pullback square.

Exercise 30. Show that a square ()

fibf — =X Ty

mn

29Recall that ¥ and Q are both equivalences.



is bicartesian if and only if the comparison morphism ¢ is an equivalence (and simi-
larly for cofibres). Hint.3°

Remark 31. By Exercise 29 we obtain a third characterisation of stable quasi-
categories: A quasi-category is stable if and only if it satisfies:
(Sta0) C'is pointed.
(Stal”) C' admits all finite limits and finite colimits.
(Sta2”) All pullback squares are pushout square and vice versa.

3 Stabilisation

We haven’t seen any examples yet (apart from the zero category), but we can man-
ufacture stable quasi-categories relatively easily.

Definition 32 (HA, Def.1.4.2.8, Prop.1.4.2.21). Suppose that C' is a pointed quasi-
category admitting pushouts and pullbacks of the form 0 Uy 0 and 0 xy 0. Let
D C 7Z x Z be the sub-poset

D = {(i,i~1), (i,i), (i,i+1) | i € Z}.

Write Sp(C) C Fun(D,C) for the full subcategory of those diagrams € : D — C
such that
i1 =026

and all squares
5i,z' - 5i+1,i(g O)

| l

(0=)& i1 — &1
are cartesian.

Proposition 33 (HA, Cor.1.4.2.17). Suppose that C' is a pointed quasi-category
admitting finite limits. Then Sp(C') is stable.

Sketch of proof. First suppose that C' is presentable. Then Fun(D,C) is also pre-
sentable. Since there is a small set of morphisms3! R of Fun(D, C) such that Sp(C)
is the full subcategory of R-local objects,® we see that Sp(C') is also presentable,
Lecture 6, Def.6, or [HTT, Thm.5.5.1.1, Prop.5.5.4.2]. In particular, Sp(C) admits
all small colimits and small limits,®® so we have (Stal). Since C is pointed, so is

30Use Exercise 29.
31For X € C, and d € D let X>4 be the diagram with X>4(e) = {g(ejzdd and similarly, for

X-a. Then take R to be the set of morphisms of the form 0 — X>(;i41), 0 = X>(i41,4), and
X< (i) = X>(i,5) as X ranges over a set of generators for C.

32Recall that an object X is R-local if Map(f, X) is an equivalence for all f € R.

33Lecture 6, Exercise 9
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Sp(C), so we have (Sta0). Finally, we also have (Sta2’), since €2 (which is calculated
objectwise) has inverse Q7! sending Eoo t0 Eatle1-

If C is not presentable, then consider the Yoneda embedding j : C' = C,, —
PSh(C,S).,. The latter is a pointed presentable quasi-category so Sp(PSh(C, S),/) is
stable. Yoneda preserves limits, so we can identify Sp(C') with the full subcategory of
Sp(PSh(C, S)./) consisting of objectwise representables. Inside Sp(PSh(C,S),,) the
subcategory Sp(C') is closed under finite limits and 3 (which we previously identified
with Eee > Eet1e41). S0 by Exercise 29(2), Sp(C') is stable. O

Spectra are the universal way to stabilise an quasi-category in the following sense.

Proposition 34 ([HA, Cor.1.4.2.23]). Let C be a quasi-category which admits finite
limits, and T a stable quasi-category. Then composition with the functor

Q> :Sp(C) —»C
E— 50’0

induces an equivalence of quasi-categories

Fun’* (T, Sp(C)) — Fun’**(T, C)

where Fun®®® means the full subcategory of functors sending finite limits to finite

limits, 1.e., left exact functors.

Sketch of proof. In some (quite concrete) sense, our definition of Sp(C) is a model
for the limit @( LB cicl C). So we have Fun(T,Sp(C)) = @FUH(T, C).
If ¢ : T — C preserves finite limits then we get a commutative square

7T
o) e
c—2-C
That is, the transition maps Fun™*(T,C) — Fun™*(T,C); ¢ — Qo ¢ are equally

well described by ¢ +— ¢ o ). But if T is stable, then €2 : T — T is an equivalence,
so the system is constant. Hence, the equivalence

Fun’ (T, Sp(C)) = Fun’*(T,1im C') = lim Fun™**(T, C)
im ©) 5 lim

Qo—

= lim Fun®**(T, C) = Fan™**(T, C).
—of)

Sometimes the stabilisation is trivial.

Exercise 35. Suppose that Fin, is the (1-)category of finite pointed sets. Show
that Sp(Fin,) is the zero category.
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Exercise 36 (Harder). More generally, suppose that C' is a pointed n-category.
That is, m; Map(X,Y) =0 for all i > n, and X, Y € C. Show that Sp(C) is the zero
category. Hint. 3* Hint. %

Even when it is not trivial, stabilisation can alter the morphism spaces.

Example 37. In the category of pointed spaces S, consider the pushout S'LI,S*. The
71 is the free group (g, g2) on two generators, and in particular, homygs, (S°, S*LI, S?)
is not abelian. On the other hand since the homotopy category of any stable quasi-
category is additive, the hom set

homy,s, (£>°5%, ¥>°(S* U, SY))
of the image is abelian. In fact, this is the abelianisation Z & Z of (g1, go)-
Proposition 38. Suppose that C' is a presentable pointed quasi-category. If
>:.C — C X—=0Ux0
is fully faithful, then the left adjoint 3°° : C' — Sp(C') to Q> is fully faithful.

Sketch of proof. A left adjoint L is fully faithful if and only if the unit id — RL is
an equivalence. In our case, this means all the morphisms X — QXX — --- —
Q"¥"X — ... are equivalences. Informally, the left adjoint

¥ C — Sp(C)
sends X to the diagram with

hﬂn QX n >0

(X°X), =1 = .
hgln Qtryr X n <0

In particular, X — Q°°3*°X is an equivalence. But this is the unit of the adjunction
Y* 0= Sp(C) : 9, so the left adjoint X : C' — Sp(C') is fully faithful. O

4 Stabilisation of categories of modules

Our goal is to show the following proposition.

Proposition 39. Let R € Ani(Ring). Then every pushout square in R-mod™ is
also a pullback square (but not vice versa,).

Corollary 40. Let R € Ani(Ring). The canonical left adjoint
R-mod™ — Sp(R-mod™) =: R-mod
is fully faithful.

34Recall that Map(T, —) sends finite limits to finite limits.
35Use Yoneda to detect when an object is the zero object.
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The proof we give uses model categories. These were developed in previous
versions of this course. A reference is Goerss, Jardine “Simplicial homotopy theory”.
There should also be a model independent proof using the canonical classifying space
fibration G — EG — BG in a later version of these notes.

Sketch of proof of 39. Since Ani(Mod) is the quasi-category associated to the model
category Moda, we perform the calculation in Moda using appropriately fibrant-
cofibrant diagrams. Up to equivalence in Ani(Mod), we can assume our diagram is
a cocartesian square

L

(R,C)— (R, D)

in Moda with cofibrant top left arrows. In particular,
Suppose that (R., As) € Moda is any object and choose a cofibrant/trivial

fibration factorisation (R, M,) < (Re, M) =% (R,,0). In particular, each M, —
M, is injective.

(Re, My) ———= (Ro, M) (Ra, My & (M, & M})) — (Ra, M, & M)
(Re, M) —= (Ra, (M, & M)/ M,) (Re, M, @ M) (Re, (M, & M})/M.,)

Since i is a cofibration, the square on the left is sent to a pushout square in Ani(Mod).
On the other hand, since p is termise surjective, it is a fibration. So the square on
the right is sent to a pullback square in Ani(Mod). Since M, is acyclic, the top two
left corners are equivalent. Hence, id — QX is an equivalence. O
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