Derived Algebraic Geometry Shane Kelly, UTokyo Spring Semester 2025

Lecture 9: Stable infinity categories

June 18th, 2025

References:

- Lurie, HA, §1
- Segal, "Categories and cohomology theories"
- Goerss, Jardine "Simplicial homotopy theory"

Generalised cohomology theories. The first goal in this lecture is to define stabilisation of a (pointed) quasi-category. Historically, the motivation to defining spectra and stabilisation was to represent cohomology theories. For example, to any abelian group A one can find a space K(A, n) such that for CW complexes X, the set of morphisms up to homotopy are in canonical bijection with the singular cohomology groups

$$hom(X, K(A, n)) \cong H_{sing}^{n}(X, A).$$

As n ranges over the natural numbers, the spaces K(A, n) assemble into a spectrum K(A) living in a category of spectra where all generalised cohomology theories are representable.

Fibre sequences. Generalised cohomology theories are not part of this course, so instead I propose the following motivation (hopefully more accessible). For any fibre product in the quasi-category¹ $S_{*/}$ of the form $F = * \times_B E$ we have a long exact sequence

$$\cdots \to \pi_n F \to \pi_n E \to \pi_n B \to \pi_{n-1} F \to \cdots \to \pi_1 B \to \pi_0 F \to \pi_0 E \to \pi_0 B \qquad (1)$$

where the last three are pointed sets.² One question that stabilisation solves is:

Question 1. Can we continue this long exact sequence to the right?

Namely, can we build a category of objects behaving like spaces, but which have homotopy groups for all $n \in \mathbb{Z}$, and long exact sequences as above, but continuing into negative homotopy groups?

If $F = * \times_B E$ in $S_{*/}$, then defining $\Omega B = * \times_B *$ we get a new fibre product $\Omega B = * \times_E F$. Using the equivalence $\pi_n \Omega B \cong \pi_{n+1} B$ one gets an isomorphism

¹The category $S_{*/}$ is the quasi-category of *pointed spaces*. Its objects are spaces $X \in S$ equipped with a choice of base point $x : * \to X$. This will all be explained more concretely below.

 $^{^2 \}text{A sequence of morphisms of pointed sets } (X,x) \xrightarrow{f} (Y,y) \xrightarrow{g} (Z,z) \text{ is } exact \text{ if } f(X) = g^{-1}(\{z\}).$

between the long exact sequence associated to $\Omega B = * \times_E F$ and the shift of Eq.(1).

$$\cdots \to \underset{\cong \pi_{n+1}B}{\pi_n \Omega B} \to \pi_n F \to \pi_n E \to \underset{\cong \pi_n B}{\pi_{n-1} \Omega B} \to \cdots \to \pi_1 E \to \underset{\cong \pi_1 B}{\pi_0 \Omega B} \to \pi_0 F \to \pi_0 E$$

$$(2)$$

So a reasonable guess of how to proceed is to try and make Ω an equivalence of categories. This leads directly to the definition of the quasi-category of spectra

$$\mathrm{Sp} := \varprojlim (\cdots \xrightarrow{\Omega} \mathcal{S}_{*/} \xrightarrow{\Omega} \mathcal{S}_{*/} \xrightarrow{\Omega} \mathcal{S}_{*/}).$$

This will be described more carefully in Definition 32.

Stabilisation has many remarkable consequences. For example, a commutative square in Sp is a pullback square if and only if it is a pushout square. The second goal of this lecture is to discuss some of these (specifically, the one just mentioned).

Modules. The functor Ω has a left adjoint Σ . If Σ is fully faithful, then the original (pointed) quasi-category \mathcal{M} embeds fully faithfully into its stabilisation $\mathcal{M} \subseteq \operatorname{Sp}(\mathcal{M})$. This happens with the categories of modules we have been studying

$$R$$
-mod^{cn} $\subseteq R$ -mod $:= \operatorname{Sp}(R$ -mod^{cn}).

Our third goal in this lecture is to prove (or at least sketch a proof) that Σ : $R\text{-mod}^{\mathrm{cn}} \to R\text{-mod}^{\mathrm{cn}}$ is fully faithful. Using the adjunction

$$\Sigma^{\infty}: R\text{-mod}^{\mathrm{cn}} \rightleftarrows R\text{-mod}: \Omega^{\infty},$$

the fact Σ^{∞} is fully faithful, and the fact that in R-mod pushout and pullback squares are the same, one deduces that a *pushout* of modules gives rise to a long exact sequence of homotopy groups

$$\cdots \to \pi_n M \to \pi_n M' \oplus \pi_n M'' \to \pi_n (M' \sqcup_M M'') \to \pi_{n-1} M \to \cdots$$

Recall that we used this long exact sequence in a previous lecture to describe the homotopy groups of the quotient ring $R/\!\!/f$.

Here is the outline:

- 1. Pointed quasi-categories.
- 2. Stable quasi-categories.
- 3. Stabilisation.
- 4. Stabilisation of quasi-categories of modules.

1 Pointed quasi-categories

Definition 2. Let C be a quasi-category and $X \in C$ an object.

1. X is *initial* if Map(X,Y) is contractible for all Y.

- 2. X is final if Map(W, X) is contractible for all W.
- 3. C is pointed if it admits both an initial object \varnothing and a final object *, and an equivalence $\varnothing \cong *$.

Example 3.

- 1. If C is (the nerve of) a 1-category then an object is initial / final in the quasicategorical sense if and only if it is initial / final in the usual sense.
- 2. $* \in \mathcal{S}$ is a final object (one can see this using the fact that $\operatorname{Map}_{\mathcal{S}}(X, *) \cong \operatorname{Map}_{\mathcal{S}\text{et}_{\Lambda}}(X, *) = *$).
- 3. For any $R \in \mathcal{A}$ ni(\mathcal{R} ing), the zero object $\iota R \in R$ -mod^{cn} is both initial and final. (One can see this using the adjunctions (ι, π) and (π, ι) .)³

Exercise 4. Show that the full subcategory of initial objects (resp. final objects) is either empty, or a contractible Kan complex. Hint.⁴ Hint.⁵ Hint.⁶

Notation 5. We will sometimes use

$$\emptyset$$
, (resp. *)

to represent a chosen initial, resp. final, object. If they are equivalent (i.e., C is pointed) we sometimes write

0

and call it a zero object. We will also sometimes write 0 for any morphism which factors through a 0 object and call it a zero morphism

Remark 6. Something missing⁷ from the lecture on adjunctions is the following characterisation:

Suppose that C, D are quasi-categories and $F: C \rightleftharpoons D: G$ are functors. Then (F, G) form an adjunction if and only if there exists a map $: \mathrm{id}_C \to GF$ such that for all $X \in C, Y \in D$, the morphism

$$\operatorname{Map}(FX,Y) \to \operatorname{Map}(GFX,GY) \to \operatorname{Map}(X,GY)$$

$$\operatorname{Map}_{R\operatorname{-mod}^{\operatorname{cn}}}(M,N) = \{\operatorname{id}_R\} \times_{\operatorname{Map}_{\operatorname{Ani}(\mathcal{R}\operatorname{ing})}(R,R)} \operatorname{Map}_{\operatorname{Ani}(\mathcal{M}\operatorname{od})}(M,N).$$

So if, for example, $N = \iota R$, under the adjunction $\operatorname{Map}(M, \iota R) \xrightarrow{\pi} \operatorname{Map}(\pi M, R) = \operatorname{Map}(R, R)$, this becomes $\{\operatorname{id}_R\} \times_{\operatorname{Map}(R,R)} \operatorname{Map}(R,R) \cong *$.

⁴Recall that the homotopy category hC of a quasi-category C has morphisms $\pi_0 \operatorname{Map}(X,Y)$.

³Note that R-mod^{cn} $\subseteq A$ ni(\mathcal{M} od) is not full. We only take morphisms which project to id_R. In other words,

⁵Recall further that a quasi-category is a Kan complex if and only if all morphisms are equivalences

⁶Finally recall that a Kan complex is contractible if and only if any two objects are equivalent, and all mapping spaces are contractible.

⁷We did not include it because the "composition" $\operatorname{Map}(X,Y) \to \operatorname{Map}(X,Y')$ map (associated to a morphism $Y \to Y'$) is not so straight-forward in quasi-categories and we did not want to go into that level of subtlety at that time.

induced by composition with $: X \to GFX$ is an equivalence of spaces, [HTT, Prop.5.2.2.8]. Dually, if and only if there exists a map $\varepsilon : FG \to \mathrm{id}_D$ such that the corresponding morphism of mapping spaces is an equivalence.

Using this criterion, one sees that for any final object Y, the constant functor $\operatorname{Fun}(\varnothing,C)\cong *\xrightarrow{Y}C$ corresponding to Y is right adjoint to the canonical functor $C\to *$. That is, any final object is a limit of the empty diagram. Dually, any initial object is a colimit of the empty diagram.

$$\varnothing = \varinjlim_{\varnothing}, \qquad * = \varprojlim_{\varnothing}$$

It is easy to manufacture categories with initial and final objects.

Definition 7. Let C be a quasi-category and X an object. The n-simplices

$$(C_{X/})_n \subseteq C_{n+1}$$

of the under category $C_{X/}$ are those (n+1)-simplices of C whose initial vertex is X. The simplicial structure is induced by the map $\Delta \to \Delta$; $[n] \mapsto \{* < 0 < 1 < \cdots < n\}$; hom $([n], [m]) \to \text{hom}([n+1], [m+1])$. The over category is⁸

$$((C^{op})_{X/})^{op}$$
.

Exercise 8. Describe the simplices and simplicial structure of $C_{/X}$ explicitly.

Exercise 9. Suppose C is a quasi-category and $X \in C$ an object.

- 1. Show that the identity map $(X \stackrel{\text{id}}{\to} X) \in C_{X/}$ is an initial object. Hint. Hint. Hint. 10
- 2. Show that if C admits a final object * and $X \to *$ is any morphism, the object $(X \to *)$ is a final object in $C_{X/}$.

Corollary 10. The under category $S_{*/}$ is pointed.

Notation 11. If C is a quasi-category with a final object *, the under category $C_{*/}$ is usually written

$$C_{*/} := C_{*}$$

to simplify the notation.

⁸Recall that if K is a simplicial set, then K^{op} is the simplicial set $\Delta \stackrel{op}{\to} \Delta \stackrel{K}{\to} \mathcal{S}$ et where $op: \{x_0 < x_1 < \dots < x_1\} \mapsto \{x_n < \dots < x_1 < x_0\}.$

⁹Recall that if C is a quasi-category, then each $\operatorname{Map}^{L}(X,Y)$ is a Kan complex.

¹⁰In particular, $\operatorname{Map}^L(X,Y)$ is contractible if and only if every $\partial \Delta^n \to \operatorname{Map}^L(X,Y)$ extends to some $\Delta^n \to \operatorname{Map}^L(X,Y)$.

2 Stable quasi-categories

2.1 Definition

Definition 12. An additive category is a 1-category A such that:

- 1. \mathcal{A} admits all finite coproducts and finite products (including empty ones),
- 2. the canonical comparisons (see Remark 14)

$$\bigsqcup_{i=1}^n X_i \to \sqcap_{i=1}^n X_i$$

are isomorphisms (for $n \in \mathbb{N}_{>0}$), and

3. each hom(X,Y) equipped with the canonical abelian monoid structure (see Exercise 15)

$$* \to \text{hom}(X, Y), \quad \text{hom}(X, Y) \times \text{hom}(X, Y) \to \text{hom}(X, Y)$$

is a group.

Notation 13. When $\Box = \Box$ we will sometimes write \oplus for this operation.

Remark 14. The case n=0 says that $\varnothing \cong *$. Using this isomorphism, we obtain maps $0_{i,j}: X_i \to *\widetilde{\leftarrow} \varnothing \to X_j$. Combining these with the $\mathrm{id}_i: X_i \to X_i$ we obtain the map $\bigsqcup_{i=1}^n X_i \to \sqcap_{i=1}^n X_i$ in the above definition.

Exercise 15. For objects A, B in an additive category \mathcal{A} , consider the map

$$hom(A, B) \times hom(A, B) - - \stackrel{+}{-} - hom(A, B)$$

$$\downarrow^{\times} \qquad \qquad \uparrow^{\pi \circ (-) \circ \delta}$$

$$hom(A \times A, B \times B) \stackrel{\cong}{\longleftarrow} hom(A \times A, B \sqcup B)$$

where $\delta: A \to A \times A$ is the diagonal and $\pi: B \sqcup B \to B$ is the folding map. Show that + gives hom(A, B) the structure of an abelian monoid. Hint.¹¹

Exercise 16 (Harder). Suppose that A is a small additive category and consider the category $\mathrm{PSh}_{\Sigma}(A,\mathcal{S}\mathrm{et})$ of functors $F:A^{op}\to\mathcal{S}\mathrm{et}$ which send finite coproducts to finite products.

- 1. Show that the final object $* \in \mathrm{PSh}_{\Sigma}(A, \mathcal{S}\mathrm{et})$ is also initial.
- 2. Suppose that $X, Y \in \mathrm{PSh}_{\Sigma}(A, \mathcal{S}et)$ are representable. Show that $X \times Y \cong X \sqcup Y$ in $\mathrm{PSh}_{\Sigma}(A, \mathcal{S}et)$. Hint.¹²
- 3. Show that $PSh_{\Sigma}(A, \mathcal{S}et)$ is also additive. Hint. ¹³ Hint. ¹⁴

 $^{^{11}}$ To define the zero morphism, consider the canonical maps $0=\varnothing\to B$ and $A\to *=0.$

¹²By Yoneda, it suffices to show that $\operatorname{Map}(X \times Y, G) \cong \operatorname{Map}(X, G) \times \operatorname{Map}(Y, G)$ for any $G \in \operatorname{PSh}_{\Sigma}(A, \mathcal{S})$.

¹³Note that every object of $PSh_{\Sigma}(A, \mathcal{S})$ can be written as a termwise (i.e., $(\varinjlim F_{\gamma})(X) = \lim_{\gamma \to \infty} F_{\gamma}(X)$) sifted colimit of representable objects.

⁷¹⁴Recall also that in S we have $(\varinjlim_{\gamma} X_{\gamma}) \times (\varinjlim_{\mu} Y_{\mu}) \cong \varinjlim_{\gamma} \varinjlim_{\mu} (X_{\gamma} \times Y_{\mu})$.

Definition 17. A quasi-category C is *stable* if it satisfies the following conditions:

- (Sta0) It is pointed. That is, it admits both an initial object \varnothing and a final object * and an equivalence $\varnothing \cong *$.
- (Sta1) It admits *fibres* and *cofibres*. That is, for every $f: X \to Y$, both $X \times_Y 0$ and $0 \sqcup_X Y$ exist.
- (Sta2) A commutative square of the form

$$\begin{array}{ccc}
X & \xrightarrow{f} Y \\
\downarrow & & \downarrow g \\
0 & \longrightarrow Z
\end{array} \tag{3}$$

is cartesian if and only if it is cocartesian.

Example 18. The category * with a single object and single (identity) morphism is stable.

Notation 19.

1. If $X \xrightarrow{f} Y \xrightarrow{g} Z$ fits into a bicartesian square as in Eq.(3) we call it a *fibre* sequence or cofibre sequence, write

$$X =: \operatorname{fib}(Y \xrightarrow{g} Z), \qquad \operatorname{cof}(X \xrightarrow{f} Y) := Z$$

and call these respectively, the fibre and cofibre.

2. In the special case where Y is also a zero object we will write $\Omega Z = X$ and $\Sigma X = Z$. That is,

$$\Omega Z := 0 \times_Z 0 = \text{fib}(0 \to Z), \qquad \Sigma X := 0 \sqcup_X 0 = \text{cof}(X \to 0).$$

Remark 20. We will see two alternative set of axioms for a quasi-category to be stable, Exercise 22 and Remark 31. The axiom (Sta2) above has two advantages:

- 1. It highlights the connection between stable quasi-categories and *triangulated* categories (which don't appear in this course, but are the historical precedent of stable quasi-categories).
- 2. It highlights the analogy with abelian categories. Namely, (Sta2) is an analogue of the abelian category axiom: for any morphism $A \xrightarrow{f} B$ we have

$$\ker(B {\to} \operatorname{coker}(f)) \cong \operatorname{coker}(\ker(f) {\to} A).$$

2.2 Basic properties

In the following exercises we will show the following basic facts. Suppose that C is a stable quasi-category.

1. The functors $\Sigma: C \to C$ and $\Omega: C \to C$ are inverse equivalences. Moreover, in fact, we can replace (Sta2) with this axiom.

- 2. The rotations $\Omega Z \to X \to Y$ and $Y \to Z \to \Sigma X$ of fibre sequences are also fibre sequences.
- 3. C admits all finite colimits and finite limits.
- 4. Every cartesian square is cocartesian and vice versa.
- 5. A square

$$\begin{array}{ccc}
\operatorname{fib} f & \longrightarrow X & \xrightarrow{f} Y \\
\downarrow & & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\operatorname{fib}(g) & \longrightarrow Z & \xrightarrow{g} W
\end{array}$$

is bicartesian if and only if the comparison morphism ϕ is an equivalence (and similarly for cofibres).

- 6. Finite coproducts are equivalent to finite products.
- 7. The homotopy category hC is additive.

Exercise 21. Recall that if C is a category admitting I-shaped limits, the limit adjunction factors as

$$\delta: C \rightleftarrows \operatorname{Fun}(I^{\triangleleft}, C) \rightleftarrows \operatorname{Fun}(I, C): \varliminf$$

and similar for colimits.¹⁵

1. Show that for a general pointed quasi-category C, the pair

$$(\Sigma,\Omega)$$

form an adjunction. Hint. 16 Hint. 17 Hint. 18 Hint. 19

2. Show that when C is stable, Σ and Ω are inverse equivalences. Hint.²⁰ Hint.²¹

Exercise 22.

1. Given a morphism $X \xrightarrow{f} Y$ in a pointed quasi-category C, show that there are factorisations

$$X \to \operatorname{fib}\left(Y \to \operatorname{cof}(f)\right) \to \Omega\Sigma X \to \operatorname{fib}\left(\Omega\Sigma Y \to \Omega\Sigma \operatorname{cof}(f)\right)$$

¹⁵Here, in the limit case, the left adjoints are induced by composition with $I \to I^{\triangleleft} \to *$; and the right adjoint $C \leftarrow \operatorname{Fun}(I^{\triangleleft}, C)$ is composition with the inclusion of the initial object $* \to I^{\triangleleft}$.

¹⁶Recall that $(\Lambda_2^2)^{\triangleleft} = \Delta^1 \times \Delta^1 = (\Lambda_0^2)^{\triangleright}$.

¹⁷Consider the full subcategory $K \subseteq \operatorname{Fun}(\Lambda_0^2, C)$ consisting of diagrams of the form $\downarrow^{X \to 0}_0$. Note that evaluation at 0 restricts to an equivalence $K \stackrel{\sim}{\to} C$. Indeed, since 0 is final, the forgetful functor $C_{/0} \to C$ is an equivalence, and $K = C_{/0} \times_C C_{/0}$. Do the analogous thing for $M \subseteq \operatorname{Fun}(\Lambda_2^2, C)$. is

¹⁸Consider the full subcategory $L \subseteq \operatorname{Fun}(\Delta^1 \times \Delta^1, C)$ consisting of diagrams of the form $\downarrow X \to 0$ $\downarrow X \to 0$ $\downarrow X \to 0$

¹⁹Consider the canonical functors $K \leftarrow L \rightarrow M$.

²⁰Use (Sta2).

²¹Consider the essential images of $K \to L$ and $L \leftarrow M$ from the previous hints.

2. Suppose that C satisfies (Sta0), (Sta1), and:

(Sta2') Ω is an equivalence.

Show that C is stable. That is, show that C satisfies (Sta2). Hint.²²

Exercise 23. Suppose that $X \to Y \to Z$ is a fibre sequence. Show that there are fibre sequences of the form $\Omega Z \to X \to Y$ and $Y \to Z \to \Sigma X$.

Exercise 24. Suppose that C is a stable quasi-category. Suppose that we have a fibre sequence

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
.

Show that if g = 0, then $X \cong (\Omega Z) \times Y$. Similarly, show that if f = 0 then there is an equivalence $Z \cong Y \sqcup \Sigma X$. Hint.²³ Hint.²⁴

Deduce that C admits finite products and finite coproducts. Hint.²⁵

Exercise 25. Suppose that X, Y are two objects in a stable quasi-category.

- 1. Show that $X \sqcup_{X \sqcup Y} Y \cong 0$.
- 2. Deduce that

$$X \sqcup Y \cong X \times Y$$
.

Hint.²⁶ Hint.²⁷

Exercise 26. Suppose that C is a stable quasi-category. Using the fact that $C \to hC$ preserves finite products and finite coproducts, show that hC is additive.

Exercise 27. Recall that, for morphisms $X \stackrel{f}{\underset{g}{\Longrightarrow}} Y$ in a general quasi-category, if it

exists, the following pullback P is equivalent to the equaliser $\operatorname{eq}(X \overset{f}{\underset{g}{\Longrightarrow}} Y)$

$$P \xrightarrow{Y} Y$$

$$\downarrow \delta$$

$$X \xrightarrow{(f,g)} Y \times Y$$

$$P \cong \operatorname{eq}(X \stackrel{f}{\Longrightarrow} Y)$$

That is, if the pullback square on the left exists, then the equaliser exists. Show that if C is a stable quasi-category, then C admits equalisers. Dually, show that C admits coequalisers. Hint.²⁸

²²Use Exercise 21.

²³Note that in general, $A \times B = A \times_* B$ and $A \sqcup B = A \sqcup_{\varnothing} B$.

²⁴Use the 2-out-of-3 property for (co)cartesian squares.

 $^{^{25} \}mathrm{Use}$ Exercise 21

²⁶Note that in general, $A \times B = A \times_* B$ and $A \sqcup B = A \sqcup_{\varnothing} B$.

²⁷Use 2-out-of-3 for (co)cartesian squares.

²⁸Recall that we have seen in a previous exercise that there is a fibre sequence of the form $Y \to Y \times Y \to Y$.

Remark 28. Since a quasi-category admits all finite limits if and only if it admits finite products are equalisers, [HTT, Prop.4.4.3.2], we deduce that stable quasi-categories admit all finite limits. Dually, they admit all finite colimits.

In particular, stable quasi-categories admit all pullbacks and pushouts. (Alternatively, we could have deduced this directly since $X \times_Z Y \cong \operatorname{eq}(X \times Z \times Y \rightrightarrows Z \times Z)$ in general).

Exercise 29 (Harder. [HTT, Prop.1.1.3.4]). We will show that all pushout squares are pullback squares and vice versa. By duality it suffices to prove only the former. E.g., pullback squares in C^{op} correspond to pushout squares in C.

- 1. If C is a stable quasi-category and I is a small quasi-category, show that $\operatorname{Fun}(I,C)$ is stable. In particular, it admits all finite limits and finite colimits.
- 2. Suppose that C is a stable quasi-category and $D \subseteq C$ a full sub-quasi-category which is closed under Σ and finite limits (calculated in C). Show that D is stable (and the inclusion preserves limits and colimits). Similarly, if $E \subseteq C$ is closed under Ω and finite colimits then show E is stable.
- 3. Let C be a stable quasi-category and consider the full subcategories $D, E \subseteq \operatorname{Fun}(\Delta^1 \times \Delta^1, C)$ consisting of those squares which are pullbacks, resp. pushouts. Show that D and E are both stable. Deduce that their intersection $D \cap E$ is also stable. Hint.²⁹
- 4. Finally, we will show that $D = D \cap E = E$. First note that any square of the form

$$\begin{array}{ccc}
A & \xrightarrow{\cong} & A' \\
\downarrow & & \downarrow \\
B & \xrightarrow{\cong} & B'
\end{array} \tag{4}$$

is in $D \cap E$. Given an arbitrary square

$$\begin{array}{ccc}
X \longrightarrow Y \\
\downarrow & \downarrow \\
Z \longrightarrow Z \sqcup_X Y
\end{array} \tag{5}$$

in E, write it as a pushout of a diagram in $D \cap E$ of shape $\swarrow \searrow \swarrow \searrow$. Deduce that (5) is in $D \cap E$, and therefore in D. That is, (5) is a pullback square.

Exercise 30. Show that a square (*)

$$\begin{array}{cccc} \operatorname{fib} f & \longrightarrow X & \xrightarrow{f} Y \\ & \downarrow & & \downarrow & \\ \phi & \downarrow & & \downarrow \\ \operatorname{fib}(g) & \longrightarrow Z & \xrightarrow{g} W \end{array}$$

 $^{^{29} \}text{Recall that } \Sigma$ and Ω are both equivalences.

is bicartesian if and only if the comparison morphism ϕ is an equivalence (and similarly for cofibres). Hint.³⁰

Remark 31. By Exercise 29 we obtain a third characterisation of stable quasicategories: A quasi-category is stable if and only if it satisfies:

(Sta0) C is pointed.

(Sta1") C admits all finite limits and finite colimits.

(Sta2") All pullback squares are pushout square and vice versa.

3 Stabilisation

We haven't seen any examples yet (apart from the zero category), but we can manufacture stable quasi-categories relatively easily.

Definition 32 (HA, Def.1.4.2.8, Prop.1.4.2.21). Suppose that C is a pointed quasicategory admitting pushouts and pullbacks of the form $0 \sqcup_X 0$ and $0 \times_Y 0$. Let $D \subseteq \mathbb{Z} \times \mathbb{Z}$ be the sub-poset

$$D = \{(i, i-1), (i, i), (i, i+1) \mid i \in \mathbb{Z}\}.$$

Write $\operatorname{Sp}(C) \subseteq \operatorname{Fun}(D,C)$ for the full subcategory of those diagrams $\mathcal{E}:D\to C$ such that

$$\mathcal{E}_{i,i-1} \cong 0 \cong \mathcal{E}_{i,i+1}$$

and all squares

$$\mathcal{E}_{i,i} \longrightarrow \mathcal{E}_{i+1,i} (\cong 0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(0 \cong) \mathcal{E}_{i,i+1} \longrightarrow \mathcal{E}_{i+1,i+1}$$

are cartesian.

Proposition 33 (HA, Cor.1.4.2.17). Suppose that C is a pointed quasi-category admitting finite limits. Then Sp(C) is stable.

Sketch of proof. First suppose that C is presentable. Then $\operatorname{Fun}(D,C)$ is also presentable. Since there is a small set of morphisms³¹ R of $\operatorname{Fun}(D,C)$ such that $\operatorname{Sp}(C)$ is the full subcategory of R-local objects,³² we see that $\operatorname{Sp}(C)$ is also presentable, Lecture 6, Def.6, or [HTT, Thm.5.5.1.1, Prop.5.5.4.2]. In particular, $\operatorname{Sp}(C)$ admits all small colimits and small limits,³³ so we have (Sta1). Since C is pointed, so is

³⁰Use Exercise 29.

³¹For $X \in C$, and $d \in D$ let $X_{\geq d}$ be the diagram with $X_{\geq d}(e) = \begin{cases} 0 & e < d \\ X & e \geq d \end{cases}$ and similarly, for $X_{>d}$. Then take R to be the set of morphisms of the form $0 \to X_{\geq (i,i+1)}$, $0 \to X_{\geq (i+1,i)}$, and $X_{>(i,i)} \to X_{\geq (i,i)}$ as X ranges over a set of generators for C.

³²Recall that an object X is R-local if $\mathrm{Map}(f,X)$ is an equivalence for all $f \in R$.

³³Lecture 6, Exercise 9

 $\operatorname{Sp}(C)$, so we have (Sta0). Finally, we also have (Sta2'), since Ω (which is calculated objectwise) has inverse Ω^{-1} sending $\mathcal{E}_{\bullet,\bullet}$ to $\mathcal{E}_{\bullet+1,\bullet,+1}$.

If C is not presentable, then consider the Yoneda embedding $j: C \cong C_{*/} \to \mathrm{PSh}(C,\mathcal{S})_{*/}$. The latter is a pointed presentable quasi-category so $\mathrm{Sp}(\mathrm{PSh}(C,\mathcal{S})_{*/})$ is stable. Yoneda preserves limits, so we can identify $\mathrm{Sp}(C)$ with the full subcategory of $\mathrm{Sp}(\mathrm{PSh}(C,\mathcal{S})_{*/})$ consisting of objectwise representables. Inside $\mathrm{Sp}(\mathrm{PSh}(C,\mathcal{S})_{*/})$ the subcategory $\mathrm{Sp}(C)$ is closed under finite limits and Σ (which we previously identified with $\mathcal{E}_{\bullet,\bullet} \mapsto \mathcal{E}_{\bullet+1,\bullet,+1}$). So by Exercise 29(2), $\mathrm{Sp}(C)$ is stable.

Spectra are the universal way to stabilise an quasi-category in the following sense.

Proposition 34 ([HA, Cor.1.4.2.23]). Let C be a quasi-category which admits finite limits, and T a stable quasi-category. Then composition with the functor

$$\Omega^{\infty} : \operatorname{Sp}(C) \to C$$

$$\mathcal{E} \mapsto \mathcal{E}_{0,0}$$

induces an equivalence of quasi-categories

$$\operatorname{Fun}^{Lex}(T,\operatorname{Sp}(C)) \to \operatorname{Fun}^{Lex}(T,C)$$

where Fun^{Lex} means the full subcategory of functors sending finite limits to finite limits, i.e., left exact functors.

Sketch of proof. In some (quite concrete) sense, our definition of $\operatorname{Sp}(C)$ is a model for the limit $\varprojlim (\dots \xrightarrow{\Omega} C \xrightarrow{\Omega} C \xrightarrow{\Omega} C)$. So we have $\operatorname{Fun}(T,\operatorname{Sp}(C)) \cong \varprojlim \operatorname{Fun}(T,C)$. If $\phi: T \to C$ preserves finite limits then we get a commutative square

$$T \xrightarrow{\Omega} T$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi}$$

$$C \xrightarrow{\Omega} C$$

That is, the transition maps $\operatorname{Fun}^{Lex}(T,C) \to \operatorname{Fun}^{Lex}(T,C)$; $\phi \mapsto \Omega \circ \phi$ are equally well described by $\phi \mapsto \phi \circ \Omega$. But if T is stable, then $\Omega: T \to T$ is an equivalence, so the system is constant. Hence, the equivalence

$$\operatorname{Fun}^{Lex}(T,\operatorname{Sp}(C)) \cong \operatorname{Fun}^{Lex}(T,\varprojlim_{\Omega}C) \xrightarrow{\sim} \varprojlim_{\Omega \circ -} \operatorname{Fun}^{Lex}(T,C)$$
$$\xrightarrow{\sim} \varprojlim_{-\circ \Omega} \operatorname{Fun}^{Lex}(T,C) \xrightarrow{\sim} \operatorname{Fun}^{Lex}(T,C).$$

Sometimes the stabilisation is trivial.

Exercise 35. Suppose that $\mathcal{F}in_*$ is the (1-)category of finite pointed sets. Show that $Sp(\mathcal{F}in_*)$ is the zero category.

Exercise 36 (Harder). More generally, suppose that C is a pointed n-category. That is, $\pi_i \operatorname{Map}(X,Y) = 0$ for all i > n, and $X,Y \in C$. Show that $\operatorname{Sp}(C)$ is the zero category. Hint. ³⁴ Hint. ³⁵

Even when it is not trivial, stabilisation can alter the morphism spaces.

Example 37. In the category of pointed spaces S_* consider the pushout $S^1 \sqcup_* S^1$. The π_1 is the free group $\langle g_1, g_2 \rangle$ on two generators, and in particular, $\hom_{hS_*}(S^0, S^1 \sqcup_* S^1)$ is not abelian. On the other hand since the homotopy category of any stable quasicategory is additive, the hom set

$$\hom_{hS_*}(\Sigma^{\infty}S^0, \Sigma^{\infty}(S^1 \sqcup_* S^1))$$

of the image is abelian. In fact, this is the abelianisation $\mathbb{Z} \oplus \mathbb{Z}$ of $\langle g_1, g_2 \rangle$.

Proposition 38. Suppose that C is a presentable pointed quasi-category. If

$$\Sigma: C \to C; \qquad X \mapsto 0 \sqcup_X 0$$

is fully faithful, then the left adjoint $\Sigma^{\infty}: C \to \operatorname{Sp}(C)$ to Ω^{∞} is fully faithful.

Sketch of proof. A left adjoint L is fully faithful if and only if the unit id $\to RL$ is an equivalence. In our case, this means all the morphisms $X \to \Omega \Sigma X \to \cdots \to \Omega^n \Sigma^n X \to \ldots$ are equivalences. Informally, the left adjoint

$$\Sigma^{\infty}: C \to \operatorname{Sp}(C)$$

sends X to the diagram with

$$(\Sigma^{\infty}X)_n = \begin{cases} \lim_{n \to \infty} \Omega^n \Sigma^{n+i} X & n \ge 0\\ \lim_{n \to \infty} \Omega^{i+n} \Sigma^n X & n \le 0 \end{cases}$$

In particular, $X \to \Omega^{\infty} \Sigma^{\infty} X$ is an equivalence. But this is the unit of the adjunction $\Sigma^{\infty} : C \rightleftharpoons \operatorname{Sp}(C) : \Omega^{\infty}$, so the left adjoint $\Sigma^{\infty} : C \to \operatorname{Sp}(C)$ is fully faithful. \square

4 Stabilisation of categories of modules

Our goal is to show the following proposition.

Proposition 39. Let $R \in \mathcal{A}ni(\mathcal{R}ing)$. Then every pushout square in R-mod^{cn} is also a pullback square (but not vice versa).

Corollary 40. Let $R \in Ani(Ring)$. The canonical left adjoint

$$R\operatorname{-mod}^{\operatorname{cn}} \to \operatorname{Sp}(R\operatorname{-mod}^{\operatorname{cn}}) =: R\operatorname{-mod}$$

is fully faithful.

 $^{^{34}}$ Recall that Map(T, -) sends finite limits to finite limits.

³⁵Use Yoneda to detect when an object is the zero object.

The proof we give uses model categories. These were developed in previous versions of this course. A reference is Goerss, Jardine "Simplicial homotopy theory". There should also be a model independent proof using the canonical classifying space fibration $G \to EG \to BG$ in a later version of these notes.

Sketch of proof of 39. Since \mathcal{A} ni(\mathcal{M} od) is the quasi-category associated to the model category \mathcal{M} od_{Δ}, we perform the calculation in \mathcal{M} od_{Δ} using appropriately fibrant-cofibrant diagrams. Up to equivalence in \mathcal{A} ni(\mathcal{M} od), we can assume our diagram is a cocartesian square

$$(R, A) \longrightarrow (R, B)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(R, C) \longrightarrow (R, D)$$

in $\mathcal{M}od_{\Delta}$ with cofibrant top left arrows. In particular,

Suppose that $(R_{\bullet}, A_{\bullet}) \in \mathcal{M}\text{od}_{\Delta}$ is any object and choose a cofibrant/trivial fibration factorisation $(R_{\bullet}, M_{\bullet}) \hookrightarrow (R_{\bullet}, M'_{\bullet}) \stackrel{w.e.}{\longrightarrow} (R_{\bullet}, 0)$. In particular, each $M_n \to M'_n$ is injective.

$$(R_{\bullet}, M_{\bullet}) \xrightarrow{i} (R_{\bullet}, M'_{\bullet}) \qquad (R_{\bullet}, M_{\bullet} \oplus (M'_{\bullet} \oplus M'_{\bullet})) \xrightarrow{i} (R_{\bullet}, M'_{\bullet} \oplus M'_{\bullet})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p \qquad \qquad$$

Since i is a cofibration, the square on the left is sent to a pushout square in \mathcal{A} ni(\mathcal{M} od). On the other hand, since p is termise surjective, it is a fibration. So the square on the right is sent to a pullback square in \mathcal{A} ni(\mathcal{M} od). Since M'_{\bullet} is acyclic, the top two left corners are equivalent. Hence, id $\to \Omega\Sigma$ is an equivalence.