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In this lecture we expand last week’s study of animated rings to animated mod-
ules and animated algebras. After introducing definitions of animated modules,
animated algebras, R-modules and R-algebras, we compare various functors such as
the symmetric algebra functor

Sym∗ : Ani(Mod) → Ani(Mod),

the composition of the forgetful / free algebra functors

Ani(Mod)
F→ Ani(Alg)

U→ Ani(Mod),

and the interaction of the forgetful functor R-alg → R-modcn with base change
S ⊗R − : R-modcn → S-modcn. This will allow us in the future to show that for any
animated ring R ∈ Ani(Ring) and f ∈ π0R, there is a cofibre sequence of R-modules

R
f→ R → R//f,

and in particular, a long exact sequence of homotopy groups of π0R-modules

· · · → πnR
f→ πnR → πn(R//f) → πn−1R

f→ πn−1R → . . . .

1 Rings, Modules, Algebras

The way we set upAni(Ring) in the last lecture can be done more generally. We don’t
want to develop the full generality, the following situations should cover everything
we need.

Consider the following situations.

C ⊇ Csfp

Ring ⊇ Poly = {Pn := Z[x1, . . . , xn] | n ∈ N}
Ab ⊇ Free = {Z⊕n | n ∈ N}
Mod ⊇ PolyFree = {(Pn, P

⊕m
n ) | n,m ∈ N}

Alg ⊇ PolyPoly = {Pn → Pn ⊗ Pm | n,m ∈ N}
R-mod ⊇ R-Free = {R⊕n | n ∈ N}
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Here, Mod is the category whose objects are pairs (R,M) with R a (usual) ring
and M a (usual) R-module. Morphisms are pairs (R→R′,M→M ′) consisting of a
ring homomorphism and an R-module homomorphism. The category Alg is the cat-
egory Ring∆
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whose objects are morphisms in Ring and morphisms are commutative
squares. In the last line, R is a ring and R-mod the usual category of R-modules.
Note that all of the above Csfp admit finite coproducts.

Definition 1. The animation of C is the category

Ani(C) := PShΣ(Csfp)

of presheaves (of spaces) which sends coproducts to products.

Remark 2. As in the case with Ani(Ring), we have underlying spaces and various
structural morphisms. For example, F ∈ Ani(Modcn) has underlying ring R =
F ((P1, 0)), underlying space M = F ((Z,Z)) and a canonical “multiplication”

R×M
=F ((P1,0))×F ((Z,Z))
∼=F ((P1,0)⊔(Z,Z))

∼=F ((P1,P1))

→ M
∼=F ((Z,Z))

associated to the map (Z,Z) → (P1, P1); (1, 1) → (1, x).

Example 3.
1. For every X ∈ C, we have hom(−, X) ∈ PShΣ(Csfp,Set).
2. More generally, for every X ∈ C∆ = Fun(∆, C), each

[n] → hom(Y,Xn)

is automatically a Kan complex, [Goerss, Jardine, Lem.I.3.4]. This defines a
functor

C∆ → PShΣ(Csfp)

which identifies Ani(C) with the localisation of C∆ along weak equivalences,
[HTT, Corollary 5.5.9.3], Quillen [HTT, Prop.5.5.9.1], Bergner [HTT, Prop.5.5.9.2].

Exercise 4. Show that Yoneda induces an equivalence of categories

C ∼→ PShΣ(Csfp,Set).

Exercise 5. Show that the Ani(C) are presentable categories in the sense of Defini-
tion 6, Lecture 6. Hint.1

Remark 6. In particular, the categories Ani(C) admit all small limits and small
colimits, and we can apply the adjoint functor theorem to them.

1Consider set R of morphisms of the form hom(−, P ⊔ Q) → hom(−, P ) ⊔ hom(−, Q) for
P,Q ∈ Csfp.
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2 R-modules and R-algebras

Definition 7. Let R ∈ Ani(Ring). Define

R-modcn = π−1(R), R-alg = π−1(R)

where π are the canonical projection functors

π : Mod → Ring, π : Alg → Ring

induces by restriction along the full inclusions

Poly → PolyFree Poly → PolyPoly

Pn → (Pn, 0) Pn → (Pn
id→Pn)

Exercise 8. Show that if R is a usual ring, and we restrict to presheaves of sets,
then R-modcn, resp., R-alg are equivalent to the usual categories of R-modules and
R-algebras.

Example 9 (Free/forget adjunctions). The categories R-modcn and R-alg come
equipped with canonical “underlying space” functors

U : R-modcn → S, U : R-alg → S
F → F (Z,Z) F → F (Z→P1)

As these are limits and filtered colimits preserving functors between presentable
categories, they admit left adjoint “free” functors

R[−] : S → R-modcn, R[−] : S → R-alg.

We also have a functor

PolyFree → PolyPoly

(Pn, P
⊕m
n ) → (Pn → Pn ⊗ Pm)

For functoriality, identify P⊕m
n with homogeneous degree one polynomials in Pn⊗Pm.

Composition with this functor induces an underlying module functor

U : R-alg → R-mod

which preserves finite limits and filtered colimits, so it has a left adjoint “free algebra”
functor

F : R-mod → R-alg.

Putting everything together, we have constructed two adjunctions (and the compos-
ite)

S ⇄ R-mod ⇄ R-alg

Remark 10. Categorifying these “free” module/algebra constructions was actually
one of the main motivations for the study of the categories PShΣ in [Lawvere, Func-
torial semantics of algebraic theories].

3



3 Change of scalars

In this section, we fix a morphism R → S in Ani(Ring) and want to associate to it
an adjunction

R-mod ⇄ S-mod.

Heuristically, the left adjoint will be M → ιS ⊔ιR M and the right adjoint will be
N → ιR×ιS N where

ι : Ani(Ring) → Ani(Mod)

is the “zero section”, induced by composition with PolyFree → Poly; (P, F ) → P .
The formulas ιS ⊔ιR M and ιR ×ιS N are common shorthand when working

quasi-categories, but need some comment the first time you see them.
Pullback functors in a general quasi-category. Suppose that C is a quasi-

category admitting pullbacks. So inside the quasi-category of commutative squares

Fun(∆1×∆1, C)cart. ⊆ Fun(∆1×∆1, C)

we have the full subcategory of those squares which are cartesian. That is, for which
(Λ2

2)
⊳ = ∆1×∆1 → C is a limit diagram. Given a morphism f : X → Y in C, we can

consider the further subcategory of those squares whose lower horizontal morphism
is f .

Fun(∆1×∆1, C)cart.f :X→Y ⊆ Fun(∆1×∆1, C)cart. ⊆ Fun(∆1×∆1, C).

One way of saying that limits are uniquely defined is the following. It is not so
hard to prove but we omit the proof for now.

Lemma 11. Suppose that I is a small simplicial set and C is a quasi-category
admitting I-limits. Then the right adjoint to composition with I ⊆ I⊳.

Fun(I⊳, C) ⇄ Fun(I, C)

exists, is full, and the image is identified with those diagrams which are limit cones.

So we have an equivalence

Fun(∆1×∆1, C)cart.f
∼→ Fun(Λ2

2, C)f

Finally, since Λ2
2 = ∆1 ⊔∆0 ∆1, one sees immediately that

Fun(Λ2
2, C)X→Y = Fun(∆1, C)Y

is a bijection. The notation

(Z→Y ) → (Y ×X Z→X)

is shorthand for a composition

Fun(∆1, C)Y Fun(Λ2
2, C)X→Y

=←

Fun(∆1×∆1, C)cart.X→Y

↑∼=

→ Fun(∆1, C)X
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Remark 12. Note that in constructing this pullback functor, we choose an inverse
to the vertical equivalence. In general, the pullback functor is only defined up to this
choice of inverse, however, the quasi-category of such inverses which is contractible.
So it is unique up to homotopy, which is unique up to homotopy, which is unique up
to etc.

In the case of S-modcn → R-modcn, the counit of the adjunction N → ιπN gives
us a functor

S-modcn

∩|

 Fun(∆1,Ani(Mod))ιS

∩|

Ani(Mod) ε
 Fun(∆1,Ani(Mod))

Exercise 13. Show that for any N ∈ S-modcn, the image in Fun(∆1,Ani(Mod))ιR
is sent to an isomorphism under π : Fun(∆1,Ani(Mod))ιR → Fun(∆1,Ani(Ring))R.

Remark 14. Hopefully you noticed that since pullbacks are only defined up to

equivalence, the image of ιR ×ιS N → ιR under π is not necessarily R
id→ R,

but only some equivalence R′ ∼→ R. That is, it doesn’t land in the strict fibre
Ani(Mod)×Ani(Ring) {R}, but in the 2-fibre

Ani(Mod)
2
×Ani(Ring) {R} = Ani(Mod)×Ani(Ring) Iso(Ani(Ring))×Ani(Ring) {R}.

Here, Iso(Ani(Ring)) ⊆ Fun(∆1,Ani(Ring)) is the full sub-quasi-category of those
morphisms which are equivalences, and the fibre product uses the two canonical
source/target projections Fun(∆1,Ani(Ring))  Ani(Ring).

Since Ani(Mod) → Ani(Ring) is a cocartesian fibration, [HTT, Def.2.4.2.1], the
canonical inclusion

R-modcn = Ani(Mod)×Ani(Ring) {R} ⊆ Ani(Mod)
2
×Ani(Ring) {R} (1)

is an equivalence of quasi-categories.2 Cocartesian fibrations deserve a whole lecture
to be developed properly, so for now, I will just claim without proof or reference
that Eq.(1) is an equivalence. Alternatively, one could have defined R-modcn as the
2-fibre, but this would introduce other complications.

2One way of proving this would be to use the fact that the functor of 1-categories Mod∆ →
Ring∆ is a cocartesian fibration.
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Taking the remark into account, we have a commutative diagram

S-modcn



❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ R-modcn



Ani(Mod)
2
×Ani(Ring) {R}



Fun(∆1,Ani(Mod))ιS Fun(Λ2
2,Ani(Mod))ιR→ιS

=←

Fun(∆1×∆1,Ani(Mod))cart.ιR→ιS

↑∼=

→ Fun(∆1,Ani(Mod))ιR

Exercise 15. Construct the dual functor

R-mod → S-mod

M → ιS ⊔ιR M

Hint.3

Exercise 16 (Harder.). Show that the pair

R-mod ⇄ S-mod

form an adjunction.

4 Symmetric algebars and sifted completions

Recall that filtered colimits commute with finite limits in S. A similar dichotomy
holds with finite products.

Definition 17. A simplicial set K is called sifted it is non-empty and for every pair
of diagrams X, Y : K → S the natural transformation

lim−→
k∈K

(Xk × Yk) → (lim−→
k∈K

Xk)× (lim−→
k∈K

Yk)

is an equivalence.

Remark 18 (Warning: this remark uses material not covered yet in the course). It
is more common to define sifted simplicial sets by asking that it is non-empty and
the diagonal K → K ×K is cofinal, [HTT, Def.5.5.8.1 (Rosicky)], and then proving
that Def.17 holds for such K, [HTT, Prop.5.5.8.6].4. Strangely, I could not find a

3Note that π : Ani(Mod) → Ani(Ring) is both a left and a right adjoint to ι : Ani(Ring) →
Ani(Mod), since the same is true of the corresponding functors PolyFree ↔ Poly.

4More precisely, use C = D = E = S and S × S → S; X,Y → X×Y in [HTT, Prop.5.5.8.6],
and the fact that colimits are universal in S, [HTT, Lem.6.1.3.14]
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reference for the converse, but here is a proof: Suppose that K is sifted in the sense
of Def.17. To show that K → K×K is cofinal, it suffices to show that for every pair
of vertices x, y ∈ K the simplicial set of spaces Kx/ ×K Ky/ is contractible, [HTT,
Prop.4.1.3.1 (Jardine)]. Consider the two diagrams

X : K → S Y : K → S
k → Map(x, k) k → Map(y, k)

Under straightening/unstraightening, these correspond to the fibrationsKx/→K and
Ky/→K respectively, and the fibration Kx/ ×K Ky/→K corresponds to the functor
K → S; k → Xk × Yk. In general, if π : K ′ → K corresponds to F : K → S, then
lim−→k∈K Fk = Sing |K ′|. But since Kx/ and Ky/ have initial objects, their associated
Kan complexes are contractible. Putting it all together we have a proof that if K is
sifted in the sense Def.17 then K → K ×K is cofinal:

Sing |Kx/ ×K Ky/| = lim−→
k∈K

(Xk × Yk)

= (lim−→
k∈K

Xk)× (lim−→
k∈K

Yk) Def.17

= Sing |Kx/|× Sing |Ky/|
= ∗ × ∗ initial objects

= ∗

So Kx/ ×K Ky/ is contractible, so K → K ×K is cofinal.

Example 19.
1. Any filtered category is sifted, [HTT, Exam.5.5.8.3].
2. N(∆op) is sifted, [HTT, Lem.5.5.8.4].
3. In some sense, these are the only two examples we need to care about.5

The reason we care about sifted categories right now is that Ani(C) is in fact the
free completion of Csfp under sifted colimits.

Proposition 20 ([HTT, Prop.5.5.8.10, Lemm.5.5.8.14, Prop.5.5.8.15]). For Csfp ⊆ C
as above, the smallest full sub-quasi-category of PSh(C) which:

1. contains all hom(−, X) for X ∈ Csfp,
2. is closed under sifted colimits,

is Ani(C). Moreover, for any quasi-category D admitting sifted colimits, the canonical
functor

FunΣ(Ani(C),D)
∼→ Fun(Csfp,D) (2)

is an equivalence, where FunΣ means the full subcategory of those functors preserving
sifted colimits.

5If C admits small colimits, then a functor C → D preserves sifted colimits if and only if it
preserves filtered colimits and N(∆)op-colimits, [HTT, Cor.5.5.8.17].
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Following [Lurie, SAG, §25.2], we now use Proposition 20 to build the symmetric
algebra functor.

Definition 21. The symmetric algebra functor

Sym∗ : Ani(Mod) → Ani(Mod)

is the unique sifted colimit preserving functor which sends (P, F ) ∈ PolyFree to
lim−→d∈N(P, Sym

≤d
P F ).

Remark 22.
1. In the above definition, the colimit takes place inAni(Mod) while (P, Sym≤d

P F )
lives in PolyFree. (This is necessary because we only allow finite free modules
in PolyFree).

2. If we choose an isomorphism F = P⊕m then Sym≤d
P F is identified with the

P -module P [x1, . . . , xm]≤d of polynomials of degree ≤ d.

Recall that we have an adjunction

F : Ani(Mod) ⇄ Ani(Alg) : U

where U is composition with PolyFree → PolyPoly; (Pn, P
⊕m
n ) → Pn → Pn ⊗ Pm.
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Proposition 23. There is a natural isomorphism

UF ∼= Sym∗ .

Proof. Since U ,F , and Sym∗ all preserves sifted colimits, by the equivalence Eq.(2)
it suffices to construct a natural isomorphism on PolyFree. Choosing (P, P⊕m) ∈
PolyFree, we have

UF(P, P⊕m) := U(P, P [x1, . . . , xm])
(∗)∼= lim−→

d∈N
(P, P [x1, . . . , xm]≤d)

(∗∗)∼= lim−→
d∈N

Sym≤d
P (P, P⊕m) =: Sym∗(P, P⊕m)

Exercise 24. Check that the two isomorphisms (∗) and (∗∗) in the above proof
actually hold, and are natural in (P, F ). (Feel free to assume that Set ⊆ S is closed
under filtered colimits, since we have not developed enough machinery yet to prove
this.)

6For functoriality note that P⊕m
n is identified with the homogeneous degree one elements of the

Pn-algebra Pn ⊗ Pm.
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Corollary 25. Suppose R → S is a morphism in Ani(Ring). Then following square
commutes.

R-alg U 

−⊗RS



R-modcn

−⊗RS


S-alg U
 S-modcn

More precisely, the canonical natural transformation

(U−)⊗R S → U(−⊗R S) (3)

is an equivalence.

Definition 26. In the proof and exercises below we make use the functor

ι : Ani(Ring) → Ani(Alg),

which is composition with PolyPoly → Poly; (Pn→Pn ⊗ Pm) → Pn ⊗ Pm. We also
use the functor

S⊗R,− : R-alg → S-alg

A → ιS ⊔ιR A.

Proof. Since every object in R-alg can be written as a sifted colimit of R-algebras of
the form R[x1, . . . , xn] := ιR⊔ (Z → Pn), Exercise 27, and all four functors commute
with sifted colimits, it suffices to consider such R-algebras.

Consider the following larger diagram.

Z-modcn 

Sym∗





Z-alg  Z-modcn


R-modcn 



Sym∗


R-alg 



R-modcn


S-modcn 

Sym∗

S-alg  S-modcn

The upper rectangle and the outer square commute by Proposition 23 and the lower
left square commutes by Exercise 28. It follows that the two paths ↓ → ↓→ and
↓ →→ ↓ are equivalent.

Exercise 27. Show that every object in R-alg can be written as a sifted colimit of
R-algebras of the form (R→R[x1, . . . , xn]) := ιR ⊔ (Z → Pn). Hint.
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Similarly, show that every object in R-modcn can be written as a sifted colimit
of R-modules of the form R⊕m := ιR ⊔ιZ (Z,Z⊕m).

7Note that any object of Ani(Alg) can be written as sifted colimit of algebras of the form
(Pn → Pn ⊗ Pm) = (Pn→Pn) ⊔(Z→Z) (Z→Pm).
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Exercise 28. Show that the following square is commutative.

R-modcn 



R-alg


S-modcn  S-alg

Hint.8

5 Quotients of rings

Definition 29. Take R ∈ Ani(Ring) and choose f : Z[x] → R in Ani(Ring). (Note
this is equivalent to choosing a base point f ∈ π0UR in the underlying space of R.)
We define

R//f := R⊗Z[x] Z

in R-alg, cf. Definition 26. When this procedure is iterated we write

R//f1//f2 . . . //fn := R//f1, . . . , fn.

Proposition 30. There is a pushout square in R-modcn of the form

R
f 



R


0  R//f

Proof. By Corollary 25 we have a commutative square

Z[x]-alg 



Z[x]-modcn


R-alg  R-modcn

where the vertical functors are left adjoints, and therefore preserve pushouts. So it
suffices to consider the case R = Z[x] and f = x. We will deal with this square next
week (or maybe the week after) using model categories.

8Use Exercise 27 to reduce to the case Z = R.
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