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1 The classical version

Suppose that X is a topological space, and {Uλ → X}λ∈Λ is an open covering. Then
giving a continuous morphism

f : X → R

is the same thing as giving a collection of continuous morphisms fi : Uλ → R that
agree on the intersections. That is, such that for every µ,λ we have

fλ|Uλ∩Uµ = fµ|Uλ∩Uµ .

Said another way the collection of fλ is in the equaliser of the two canonical restriction
maps 󰁜

λ∈Λ

homcont.(Uλ,R) 󰃃
󰁜

λ,µ∈Λ

homcont.(Uλ ∩ Uµ,R).

As we mentioned last week, we can also do this with local homeomorphisms.
If p : Y → X is a continuous morphism of topological spaces such that for every
y ∈ Y there is an open neighbourhood y ∈ V ⊆ Y such that p(V ) ⊆ X is open and
V → p(V ) is a homeomorphism, then to give a continuous morphism f : X → R
is the same thing as giving a continuous morphism g : Y → R that is constant on
fibres. That is, such that

π(y1) = π(y2) ⇒ g(y1) = g(y2).

Said another way, g is in the equaliser of the two maps

homcont.(Y,R) 󰃃 homcont.(Y ×X Y,R)

induced by the two projections pri : Y ×X Y → Y ; (y1, y2) 󰀁→ yi where i = 1 or 2.
We could also have done this discussion in other settings. Instead of R, we

could have used any topological space. We could also have assumed Y,X were
differential manifolds, or complex analytic varieties with the appropriate notion of
local homeomorphism, and used some other F (−) instead of homcont.(−,R).

Grothendieck topologies are an abstraction and generalisation of these.

Definition 1. Suppose that C is a classical category. A topology1 T on C is a
collection of families {Uλ → X}λ∈Λ of morphisms, called coverings satisfying the
following conditions.

1We actually give the definition of a pretopology. But since pretopologies have a canonically
associated topology which gives rise to the same category of sheaves, people often call pretopologies
topologies.
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1. Every singleton
{Y ∼→ X}

containing an isomorphism is a covering.2

2. If {Uλ → X}λ∈Λ is a covering and Y → X is a morphism, then the pullbacks
Y ×X Uλ exist3 in C and

{Y ×X Uλ → Uλ}λ∈Λ

is a covering.
3. If {Uλ → X}λ∈Λ is a covering and for each λ we have a covering {Vλµ →

Uλ}µ∈Mλ
, the the family of compositions

{Vλµ → Uλ → X}λ∈Λ,µ∈Mλ

is a covering.

Exercise 2. Show that the following are topologies.
1. C is the category of topological spaces and T is the collection of families {pλ :

Uλ → X}λ∈Λ such that each Uλ → X is an open immersion and ⊔λ∈Λpλ(Uλ) →
X is surjective.

2. C is the category of topological spaces and T is the collection of families
{pλ : Uλ → X}λ∈Λ such that each Uλ → X is a local homeomorphism and
⊔λ∈Λpλ(Uλ) → X is surjective.

Definition 3. Let C be a category equipped with a topology T . A presheaf is a
functor F : Cop → Set. A presheaf is a sheaf if for every covering {Uλ → X}λ∈Λ we
have

F (X) = eq

󰀣
󰁜

λ∈Λ

F (Uλ) 󰃃
󰁜

λ,µ

F (Uλ ×X Uµ)

󰀤
.

Example 4. For any topological space E, the presheaf homcont.(−, E) on the cate-
gory of topological spaces with the canonical topology is a sheaf.

Definition 5. A topos is a category of the form Shv(C) for some category C equipped
with some topology T .

Remark 6. For any category equipped with a topology, the canonical inclusion
Shv(C) ⊆ PSh(C) admits a left adjoint, called sheafification. There are a number of
explicit descriptions of this adjoint. Here is one. Given a presheaf F , define F+(X) =
lim−→ eq(

󰁔
λ∈Λ F (Uλ) →

󰁔
λ,µ F (Uλ ×X Uµ)) where the colimit is over coverings. This

is functorial in X, as well as F , so defines a functor PSh(C) → PSh(C). Then it
turns out that applying this twice gives the left adjoint to inclusion. That is, for
any presheaf F and sheaf G, the presheaf F++ is a sheaf, and we have hom(F,G) =
hom(F++, G).

2By the next axiom, only assuming that identities are coverings gives the same notion, since
pullbacks are only defined up to isomorphism.

3One can easily avoid assuming that these pullbacks exists, but it is standard to assume their
existence, and all our examples will satisfy this, so we do.
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2 Higher topoi

The notion of topology on a quasi-category is the same as that on a classical category.

Definition 7. Suppose that C is a quasi-category. A topology4 T on C is a collection
of families {Uλ → X}λ∈Λ of morphisms, called coverings satisfying the following
conditions.

1. Every singleton
{Y ∼→ X}

containing an equivalence is a covering.5

2. If {Uλ → X}λ∈Λ is a covering and Y → X is a morphism, then the pullbacks
Y ×X Uλ exist6 in C and

{Y ×X Uλ → Uλ}λ∈Λ

is a covering.
3. If {Uλ → X}λ∈Λ is a covering and for each λ we have a covering {Vλµ →

Uλ}µ∈Mλ
, the the family of compositions

{Vλµ → Uλ → X}λ∈Λ,µ∈Mλ

is a covering.

The notion of sheaf is more subtle. To see why, let’s go back to a classical site.

Example 8. Consider a topological spaceX equipped with an open covering U0, U1, U2

such that all of X, Uλ, Uλ ∩Uµ and Uλ ∩Uµ ∩Uν are contractible for distinct λ, µ, ν.

©©©
Consider the sheaf of complexes of abelian groups concentrated in degree zero F :
U 󰀁→ hom(U,Q) where Q is given the discrete topology. Let’s try and imitate Def.3
for the covering U0, U1, U2. In the quasi-category CplxQ, the equaliser

eq

󰀣
󰁜

i=0,1,2

F (Ui) 󰃃
󰁜

i,j=0,1,2

F (Ui ∩ Uj)

󰀤

4We actually give the definition of a pretopology. But since pretopologies have a canonically
associated topology which gives rise to the same category of sheaves, people often call pretopologies
topologies.

5By the next axiom, only assuming that identities are coverings gives the same notion, since
pullbacks are only defined up to isomorphism.

6One can easily avoid assuming that these pullbacks exists, but it is standard to assume their
existence, and all our examples will satisfy this, so we do.
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is the complex concentrated in homological degrees 0 and -1

󰀥
󰁜

i=0,1,2

Q →
󰁜

i,j=0,1,2

Q

󰀦

with morphism (a0, a1, a2) 󰀁→

󰀳

󰁃
0 a1 − a0 a2 − a0

a0 − a1 0 a2 − a1
a0 − a2 a1 − a2 0

󰀴

󰁄. The H0 of this complex

is {(a, a, a)} ∼= R, agreeing wth the H0 of F (X), but the H−1 has dimension seven.
Three of these dimensions come from the diagonal, and some others come from the
symmetry. So maybe the problem was that we were using {0, 1, 2}2 as the indexing
set instead of restricting to 0 ≤ i < j ≤ 2. If we do this, we get the complex

󰀥
󰁜

i=0,1,2

Q →
󰁜

0≤i<j≤2

Q

󰀦

concentrated in homological degrees 0 and -1 with morphism (a0, a1, a2) 󰀁→
󰀕
a1 − a0 a2 − a0

a2 − a1

󰀖
.

This complex still has a nonzero H−1, coming from the fact that the diagram

U01

󰈓󰈓❄
❄❄

󰉳󰉳⑧⑧⑧

U0 U1

U02
󰈣󰈣

󰈳󰈳⑧⑧⑧
U2 U12
󰉣󰉣

󰉓󰉓❄❄❄

is essentially an unfilled circle. To remove the unwanted factor we need to also take
into account the triple intersection U0 ∩ U1 ∩ U2. So we should really consider the
complex 󰀥

󰁜

i=0,1,2

Q →
󰁜

0≤i<j≤2

Q →
󰁜

0≤i<j<k≤2

Q

󰀦
.

Note that if this triple intersection was empty, we would want this extra factor
in H−1, since our X would be homotopic to a circle.

©
©
©

Example 9. A related example is the de Rham complex on R2 or on R2 \ {0}.
By Poincaré’s Lemma on contractible opens U ⊆ R2 the de Rham complex is quasi-
isomorphic to R concentrated in degree zero R ∼= Ω•(U). On the other hand, Ω•(R2 \
{0}) is quasi-isomorphic to [R 0→ R]. This is essentially the same as the example
above.
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Definition 10. Let C be an ∞-category equipped with a topology T and E an
∞-category admitting limits (the canonical choice is E = S the category of spaces).
A presheaf with values in E is a functor F : Cop → E. A presheaf is a sheaf if for
every covering {Uλ → X}λ∈Λ we have

F (X) = lim←−
n∈∆

󰁜

(λ0,...,λn)∈Λn+1

F (Uλ0 ×X · · ·×X Uλn).

The category of sheaves is the full subcategory

Shv(C,E) ⊆ PSh(C,E)

consisting of those presheaves which are sheaves.

Remark 11. It follows directly from the definition that if we have two topologies
T1, T2 on an ∞-category, and all T1 coverings are T2 coverings, then any T2-sheaf is
a T1-sheaf.

As in the classical case, the inclusion of sheaves into presheaves admits a left
adjoint.

Proposition 12 ([HTT, Prop.6.2.2.7]). Suppose C is an ∞-category equipped with
a topology. Then the canonical inclusion Shv(C) ⊆ PSh(C) admits a left adjoint.

Remark 13. The sheafification functor exists for abstract reasons but the adjoint
functor theorem, but one can also give a more concrete description of it similar to
Rem.6 above. One added complication is that instead of applying (−)+ twice, one
must apply it κ-many times for some ordinal κ which depends on the site, cf. the
proof of [HTT, Prop.6.2.2.7].

Corollary 14. Let C be an ∞-category equipped with a topology. The category
Shv(C) admits all small colimits and small limits. The inclusion Shv(C) ⊆ PSh(C)
preserves limits. That is, if F− : K → Shv(C); is a diagram of sheaves, then for any
X ∈ C the canonical morphism (lim←−Fλ)(X) → lim←−(Fλ(X)) is an equivalence.

3 Adjunctions

Definition 15. Let C,D ∈ QCat. An adjunction is a pair of functor

F : C ⇄ D : G

equipped with natural transformations

ε : idC → GF ; η : FG → idD

such that there exists 2-cells

F

󰈖󰈖❋
❋❋

❋❋
❋❋

❋
id 󰈣󰈣 F GFG

󰈖󰈖❋
❋❋

❋❋
❋❋

❋❋

FGF

󰈰󰈰①①①①①①①①
G

id
󰈣󰈣

󰈰󰈰①①①①①①①①①
G

5



Exercise 16. Show that if C,D are nerves of usual categories, then the above notion
is the usual notion of adjunction.

Example 17. A limit functor Fun(I, C) → C defined as we saw last time is a right
adjoint.

Exercise 18. Suppose that F : C ⇄ D : G is an adjunction of quasi-categories and
E is a third quasi-category. Show that there is an adjunction of quasi-categories

Fun(C,E) ⇄ Fun(D,E)

and
Fun(E,C) ⇄ Fun(E,D)

induced by composition.

Exercise 19. Suppose that we have two adjunctions

C
F1

⇄
G1

D, D
F2

⇄
G2

E

with units and counits respectively ε1, η1, ε2, η2. In the quasi-categories Fun(C,C)
and Fun(E,E), choose compositions ε3, η3 for idC → G1F1 → G1G2F2F1 and
G2G1F1F2 → G2F2 → idD. Show that (F2F1, G1G2, ε3, η3) is an adjunction.

Proposition 20 ([HTT, 5.2.6.2]). Let FunL(C,D), resp. FunR(D,C), denote the
category of functors which are left, resp. right. adjoints. Then there is a canonical
equivalence

FunL(C,D) ∼= FunR(D,C)op

pairing up left and right adjoints.

Exercise 21. Suppose that F : C ⇄ D : G is an adjunction and both C and D
admit I-shaped limits. Show that G preserves them. That is, there is a commutative
diagram of quasi-categories

Fun(I,D)
lim←− 󰈣󰈣

G
󰈃󰈃

D

G

󰈃󰈃
Fun(I, C)

lim←−
󰈣󰈣 C.

Exercise 22. Recall that the category of presheaves of spaces admits all small limits
and colimits. Using the adjunction

PSh(C) ⇄ Shv(C)

show that Shv(C) admits all small limits and colimits.
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