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In this section we discuss limits specifically in the case of homotopy types. These
will be crucial for defining rings and modules in the derived setting, as well as the
canonical adjunctions such as S ⇄ R-mod, A-mod ⇄ B-mod, and A-mod ⇄ A-alg.

1 Weighted limits in simplicial categories

Consider the following two diagrams of topological spaces.

∗

󰈃󰈃

{1}

󰈃󰈃
∗ 󰈣󰈣 ∗ {0} 󰈣󰈣 R

There is a (unique) natural transformation from the second diagram to the first
which term-wise is a homotopy equivalence. However, if we take pullbacks in the
1-category of topological spaces, we get the punctual category ∗ in the first case and
the empty category ∅ in the second. We need to account for the existence of paths.
A similar phenomenon happens in the category of groupoids.

∗

󰈃󰈃

{1}

󰈃󰈃
∗ 󰈣󰈣 ∗ {0} 󰈣󰈣 {0 ∼= 1}

Here we have equivalence of groupoids instead of homotopy equivalence, and instead
of paths, we should account for the existence of isomorphisms.

Example 1. Suppose that X
f→ Z

g← Y is a pair of morphisms of topological

spaces.The homotopy pullback X
h
×Z Y can be defined as the limit

X
h
×Z Y = X ×Z hom(∆1

top, Z)×Z Y
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where hom(∆1
top, Z) is the set of continuous morphisms equipped with the compact

open topology and the two morphisms hom(∆1
top, Z) 󰃃 Z are evaluation at 0 and 1

in ∆1
top = [0, 1] ⊆ R. Explicitly, points of X

h
×Z Y are triples (x, y, σ) where x, resp.

y, is point of X, resp. Y , and σ is a path from f(x) to g(y).

−−−−−−−− picture−−−−−−−−

Note that there are canonical projection functors forming a square which com-
mutes up to homotopy.

X
h
×Z Y 󰈣󰈣

󰈃󰈃

Y

󰈃󰈃
X 󰈣󰈣

⇒
Z

Example 2. We can do a similar construction whenX → Z ← Y are two morphisms
of groupoids (or more generally, Kan complexes). In this case we use ∆1 instead of
∆1

top, and this is called the 2-pullback.

X
2
×Z Y = X ×Z Map(∆1, Z)×Z Y.

This construction appears when studying descent conditions. For example, if we let
Pic(X) denote the Picard groupoid1 of a scheme X, then we have

Pic(A1)
2
×Pic(Gm) Pic(A1) ∼= Pic(P1)

∕= Bk∗ = Pic(A1)×Pic(Gm) Pic(A1).

Here, we are working with varieties over a field k, and BG means the group G
considered as a category with one object.

To perform this kind of operation in a general simplicial category, we generalise
hom(∆1,−).

Definition 3. A simplicial category C is said to be powered over Set∆ if for every
Y ∈ C, K ∈ Set∆, there exists an object Y K ∈ C, and a natural transformation

MapSet∆(K,MapC(−, Y )) ∼= MapC(−, Y K)

Example 4. The simplicial category Set∆ is powered over itself with Y K = Map(K,Y ).

Example 5. The category Top of topological spaces has a canonical structure of
simplicial category with Map(X, Y )n = hom(X×∆n

top, Y ). It is powered over Set∆
with Y K = homTop(|K|, Y ) where |K| is the geometric realisation and homTop(|K|, Y )
is equipped with the compact open topology.

1Objects are invertible OX -modules, and morphisms are isomorphisms of OX -modules.
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Definition 6 (Cf.[Bousfield–Kan, XI.3.1, XII.2.1], [Hirschorn Def.18.1.2, Def.18.1.8]).
Suppose that C is a Set∆-powered simplicial category whose underlying category C0

2

admits all small limits, let I be a small category and p : I → C0 a functor.
The weighted limit, with respect to a functor W : I→Set∆, is defined as

W

lim←− p = eq

󰀕 󰁜

i∈Ob I

pWi
i 󰃃

󰁜

i
u→j

∈Arr I

pWi
j

󰀖

where the two morphisms are induced by

pWid
u : pWi

i →pWi
j ,

pWu
id : p

Wj

i →pWi
i .

Exercise 7. Show that if W is the constant functor with value ∗ ∈ Set∆ then
lim←−

W = lim←−. That is, in this case the weighted limit is the same as the usual
(co)limit in the classical category C0.

Exercise 8. Suppose C = Set∆ with the canonical powering, and each pi is discrete,
in the sense that pi : ∆

op → Set is constant. Show that lim←−
W = lim←−.

Exercise 9. Consider Top with the simplicial enrichment and powering from Ex-
ample 5. Let W : Λ2

2 → Set∆ be the diagram {0} → ∆1 ← {1}. Show that for any
p : I → Top we have

W

lim←− p = p0
h
×p1 p2

from Example 1.

Example 10. The canonical choice for the weighting W : I → Set∆ is to take the
nerve of the over categories

W (i) = N(I/i).

Given i → j, the morphismN(I/i) → N(I/j) sends (in→ . . .→i0→i) to (in→ . . .→i0→j)
where the last morphism is the composition i0 → i → j.

Example 11. If I is a discrete category (no non-identity morphisms) then all W (i)

are ∗ so all p
Wj

i are pi. That is,
W󰁜

=
󰁜

(for the standard W described in Example 10). This includes the case where I is
empty. That is, the weighted terminal object is the terminal object.

2Recall that when C is a simplicial category, the notation C0 means the classical category with
Ob C = Ob C0 and homC0

(X,Y ) = Map(X,Y )0.
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Example 12. In the case of Λ2
2 this gives the diagram {0} → {0→2←1} ← {1}. So

with this weighting, the weighted limit of a diagram A → B ← C is

eq

󰀕
A× BΛ2

2 × C 󰃃 B × B

󰀖

where one arrow is the combination of A → B and BΛ2
2 → B{0} ∼= B and the other

is the combination of C → B and BΛ2
2 → B{1} ∼= B.

Example 13. In the case I = {a 󰃃 b} we get the diagram {a}
0

󰃃
1

󰀝
a0

a1

↘
↗b

󰀞
. So with

this weighting, the weighted limit of a diagram A 󰃃 B is

eq

󰀕
A× BΛ2

2 󰃃 B × B

󰀖

where one arrow is projection composed with the diagonal A → B×B and the other
is projection composed with the “endpoints” map BΛ2

2 → B{0} × B{1}.

Example 14. In the case I = Nop = {. . .→2→1→0} the over categories are Nop
≥n =

{. . .→n+2→n+1→n} so the weighted limit of a diagram · · · → X2 → X1 → X0

with the standard weighting is

eq

󰀕󰁜

n∈N

X
NN≥n
n 󰃃

󰁜

m≥n

X
NN≥m
n

󰀖
.

2 Limits in quasi-categories

Definition 15. Let C be a quasi-category and I a small quasi-category. We say C
admits I-limits if the constant functor γ : C → Fun(I, C) (induced by composing
with I → ∗) admits a right adjoint lim←−. That is, we ask for a functor

lim←− : Fun(I, C) → C

and two natural transformations ε : id → lim←− γ and η : γ lim←− → id such that there
exist 2-cells

lim←−

󰈗󰈗❍
❍❍

❍❍
❍❍

❍❍
❍

id 󰈣󰈣 lim←− γ lim←− γ

󰈕󰈕❈
❈❈

❈❈
❈❈

❈❈

lim←− γ lim←−

󰈯󰈯✈✈✈✈✈✈✈✈✈✈
γ

id
󰈣󰈣

󰈱󰈱④④④④④④④④④
γ

in C, resp. Fun(I, C).

Remark 16. The data we asked for above was the triple (lim←−, ε, η) but in fact, ε
and η determine each other (up to homotopy). Since γ : C → Fun(I, C) is fully
faithful, we could have asked for only a pair (lim←−, ε) such that ε is an equivalence,
and lim←− induces equivalences Map(γX, Y ) → Map(lim←− γX, lim←−Y ) for all X ∈ C,
Y ∈ Fun(I, C). However, I want to use η later, and I don’t want to have to construct
it.
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Exercise 17. Suppose that C is a 1-category. Show that C has I-limits in the above
sense if and only if it has I-limits in the usual sense.

Unwrapping the definitions, using the counit η, every diagram X : I → C deter-
mines a (strictly) commutative diagram of simplicial sets

I × {0}
󰈞󰈞❚❚❚

❚❚❚

󰈃󰈃
∗ lim←−X

󰈛󰈛󰂾󰂾
󰂾󰂾󰂾

󰂾

ηX : I ×∆1 󰈣󰈣 C

I × {1}

󰉃󰉃
X

󰈨󰈨❥❥❥❥❥❥❥❥❥❥❥❥❥

More explicitly, the counit η : γ lim←− → id is a morphism in the functor quasi-
category Fun(Fun(I, C),Fun(I, C)), or in other words, a morphism of quasi-categories
Fun(I, C) × ∆1 → Fun(I, C). If we evaluate on a diagram X : I → C (i.e., com-

pose with the corresponding morphism ∗ X→ Fun(I, C)) we obtain a morphism
∆1 → Fun(I, C), or equivalently, a functor

ηX : I ×∆1 → C.

Note that ηX factors through the quotient ∗
󰁣

I×{0}(I×∆1) → C because the source
is a constant diagram.

Definition 18 (Joyal, [HTT, Def.4.2.1.1]). Suppose K is a simplicial set. Define

K◭ := ∗
󰁤

K×{0}

(K ×∆1)

Warning 19. The above notation is non-standard! What we have defined above
corresponds to K◭ = ∆0 ⋄K in [HTT].

Exercise 20. Define an isomorphism between the quasi-category Fun(I◭, C) and
the subcategory of Fun(∆1,Fun(I, C)) consisting of those morphisms of diagrams
X0 → X1 such that X0 is constant.

Exercise 21. Suppose that X : I → C is a morphism between small 1-categories,
considered as quasi-categories. Show that a cone on the diagram X is the same thing
as a functor

I◭ → C

which restricts to X along the canonical inclusion I ⊆ I◭.

Exercise 22. Describe all non-degenerate simplicies in (∆n)◭ and (Λ2
2)

◭. In partic-
ular, show that (Λ2

2)
◭ is not isomorphic to (∆1)◭.

While the construction (−)◭ is closely related to our counit above, and recovers
the notion of cone in the 1-category case, in general it contains a lot of degenerate
information. There is an alternative construction which is smoother in many settings.
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Definition 23 ([HTT, Def.1.2.8.1]). Suppose K is a simplicial set. Given a finite
linearly ordered set J , define

K⊳
J :=

󰁤

J=I⊔I′
KI′

where the coproduct is over decompositions J = {j0 < j1 < · · · < jn} = {j0 < · · · <
ji} ⊔ {ji+1 < · · · < jn}. Here we allow I and I ′ to be empty, and declare K∅ := ∗.

Given a morphism of finite linearly ordered sets φ : J ′ → J and a decomposition
J = I ⊔ I ′ we obtain an induced decomposition J ′ = φ−1I ⊔ φ−1I ′ and maps KI′ →
Kφ−1I′ . This makes K⊳ functorial in J . That is, we have a simplicial set K⊳.

Exercise 24. Show that (∆n)⊳ is isomorphic to ∆n+1. Show that (Λ2
2)

⊳ is isomorphic
to ∆1 ×∆1. In particular, if C is a quasi-category, Fun((Λ2

2)
⊳, C) is the category of

commutative squares in C.

Exercise 25. Let K be a simplicial set. Show that there is a unique dashed mor-
phism making (strictly) commutative triangles

K 󰈣󰈣

󰈃󰈃

K⊳

󰈃󰈃

K◭

󰈰󰈰③
③

③
③

󰈣󰈣 ∆1

where the solid arrows are the canonical inclusions, resp. projections.

The following proposition is surprisingly complicated to prove in general.

Proposition 26 ([HTT, Prop.4.2.1.2]). Let K be a simplicial set. The canonical
morphism K◭ → K⊳ is a categorical equivalence. That is, for every quasi-category
C, it induces an equivalence of quasi-categories

Fun(K⊳, C)
∼→ Fun(K◭, C).

Definition 27 ([HTT, Not.1.2.8.4]). Let I be a simplicial set, C a quasi-category
and X : I → C a functor. A left cone is a functor I⊳ → C such that the composition
I ⊆ I⊳ → C is X.

Definition 28. We say that a left cone is a limit diagram if it corresponds to ηX :
I◭ → C under the equivalence of Proposition 26. In particular, the image of the
apex {0} ⊆ I◭ is equivalent to lim←−X, and the restriction to I ⊆ I◭ is equivalent to
X.

The main theorem relating limits in quasi-categories and weighted limits in sim-
plicial categories is the following.

Theorem 29. The category S of spaces admits all small limits (and colimts). More-
over, if X : I → Kan is a functor of 1-categories with corresponding functor
NX : NI → NKan of quasi-categories, then there exists an equivalence

lim←−NX ∼= lim←−
WX.
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Remark 30. The weighted limit lim←−
WX is often, but not always a Kan complex.

(For nice indexing categories such as Λ2
2 it is always a Kan complexes). If lim←−

WX is
not a Kan complex, in Theorem 29 we implicitly replace it with the Kan complex
Sing |lim←−

WX|.
Remark 31. See HTT, Prop.5.2.4.6] for a much stronger version of Theorem 29,
which can be applied to many quasi-categories arising in practice, such as the cate-
gory PSh(C) of presheaves of spaces on some small quasi-category C, and the cate-
gory of simplicial rings.

Remark 32. The easiest way to convert the theory of limits in quasi-categories into
the theory of colimits is to replace C with Cop. This is the simplicial set Cop : ∆

σ→
∆

C→ Set where σ sends {i0 < i1 < · · · < in} to {in < in−1 < · · · < i0}. So a
colimit diagram in C is a limit diagram in Cop.

Alternatively:
1. We consider the left adjoint instead of the right adjoint. That is, a functor

lim−→ : Fun(I, C) → C equipped with natural transformations η : id → γ lim−→ and
󰂃 : γ lim−→ → id such that there exists 2-cells

lim−→

󰈗󰈗❍
❍❍

❍❍
❍❍

❍❍
❍

id 󰈣󰈣 lim−→ γ lim−→ γ

󰈕󰈕❈
❈❈

❈❈
❈❈

❈❈

lim−→ γ lim−→

󰈯󰈯✈✈✈✈✈✈✈✈✈✈
γ

id
󰈣󰈣

󰈱󰈱④④④④④④④④④
γ

in C, resp. Fun(I, C).
2. K◭ is replaced with

K◮ = (K ×∆1)
󰁤

K×{1}

∗.

3. K⊳ is replaced with K⊲ defined via

K⊲
J =

󰁤

J=I⊔I′
KI .

We will discuss weighted colimits next week. Instead of simplicial categories powered
over Set∆ they use simplicial category tensored over Set∆.

3 Main properties

We now summarise the main properties of (co)limits. All proofs are omitted but we
give references to [HTT] for the interested reader.

Proposition 33 ([HTT, Lem.4.4.2.1] 2-out-of-3 for Cartesian squares). Let C ∈
QCat and X : ∆2 ×∆1 → C a diagram:

X00
󰈣󰈣

󰈃󰈃 󰈗󰈗 󰈝󰈝

󰈜󰈜
X10

󰈣󰈣

󰈃󰈃 󰈖󰈖

X20

󰈃󰈃
X01

󰈣󰈣
󰈪󰈪X11
󰈣󰈣 X21
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Suppose that the right square is a pullback in C. Then the left square is a pullback if
and only if the outer square is a pullback.

Definition 34. We say a diagram p : K → C is finite or ℵ0-small if the simpli-
cial set K has finitely many non-degenerate3 simplicies. More generally, if κ is an
uncountable regular cardinal4 a diagram is called κ-small if each Kn is in Set<κ.

Proposition 35 ([HTT, Prop.4.4.2.6, Prop.4.4.3.2]). Let C be a quasi-category. The
following are equivalent.

1. C has all κ-small limits.
2. C has equalisers and all κ-small products.
3. C has pullbacks and all κ-small products.

Remark 36. The main tools in the above proposition are:
1. If L′ → L is a monomorphism of simplicial sets, L′ → K ′ any morphism, and

p : K ′ ⊔L′ L → C a diagram, then lim←− p = lim←− p|K′ ×lim←− p|L′ lim←− p|L, assuming all

these limits exist, [HTT, Prop.4.4.2.2].
2. If {Kα}α∈A is a collection of simplicial sets and p : ⊔Kα → C is a diagram,

then lim←− p =
󰁔

lim←− p|Kα , assuming all those limits exist.

Proposition 37 ([HTT, Cor.5.1.2.3] Limits of presheaves are calculated object wise).
Let K,S ∈ Set∆ and suppose C ∈ QCat admits K-indexed limits. Then

1. The quasi-category Fun(S,C) admits K-indexed limits.
2. A map K⊳ → Fun(S,C) is a limit diagram if and only if for each vertex s ∈ S,

the induced map K⊳ → C is a limit diagram.
That is, for F : K → Fun(S,C) and s ∈ S0 we have

(lim←−
K

Fk)(s) = lim←−
K

(Fk(s)).

Proposition 38 ([HTT, Prop.5.3.3.3] Filtered colimits commute with finite limits).
Suppose that I is a quasi-category. Then the following are equivalent.

1. K is cofiltered. That is, every finite diagram D → K admits a (not necessarily
limit) cone D⊳ → K.

2. The limit functor lim←− : Fun(K,NKan) → NKan preserves finite colimits.

lim−→
D

lim←−
K

p = lim←−
K

lim−→
D

p.

Proposition 39 ([HTT, Lem.5.5.2.3] Limits commute with limits). Let K,L be
simplicial sets, let p : (K⊳)× (L⊳) → C be a diagram. Suppose that:

1. For every vertex k ∈ K⊳, the associated map pk : L
⊳ → C is a limit diagram.

2. For every vertex l ∈ L, the associated map pl : K
⊳ → C is a limit diagram.

3Recall a simplex σ ∈ Kn is non-degenerate if it is not in the image of any Kn−1 → Kn.
4A cardinal κ is regular if I ∈ Set<κ and {Ki}i∈I ⊆ Set<κ implies lim−→i∈I

Ki ∈ Set<κ where

Set<κ is the category of sets of size < κ.
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Then the restriction p0 : K
⊳ → C is a limit diagram, where 0 ∈ K⊳ is the cone point.

That is,
lim←−
k∈K

lim←−
l∈L

p(k, l) = lim←−
l∈L

lim←−
k∈K

p(k, l).

Proposition 40 ([HTT, Def.6.1.1.2, Lem.6.1.3.14], Colimits are universal in S). For
any morphism X → Y in NKan and any diagram p : K⊲ → NKan with vertex Y ,
we have

X×Y

󰀣
lim−→
k∈K

p(k)

󰀤
= lim−→

k∈K
(X ×Y p(k))

where the colimits are taken in NKan.
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