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In this lecture we introduce two models for the category of infinity categories—
the category QCat of quasi-categories and the category Cat∆ of simplicial categories.
We describe the adjunction between them C : QCat ⇄ Cat∆ : N . We finish with the
definition of the quasi-category of spaces S.

1 Quasi-categories

Just as a small category is a directed graph with composable edges, a quasi-category
is a kind of simplicial set.

Groups
groupoids with

one object

 ⊆ Groupoids
categories for which
every morphism

is invertible

 ⊆ Categories → Directed graphs

Connected
Kan complexes ⊆ Kan complexes ⊆ Quasi-categories ⊆ Simplicial sets

Definition 1 (Boardman, Vogt, 1973). A quasi-category is a simplicial set K such
that for every 0 < i < n and each diagram

Λn
i





K

∆n

⑤
⑤

⑤
⑤

there exists a (not necessarily unique) dashed arrow making a commutative triangle.
A functor between quasi-categories is a morphism of simplicial sets. That is, the

category of quasi-categories is a full subcategory of the category of simplicial sets

QCat ⊂ Set∆.

Elements of K0 are called objects and elements of K1 are called 1-morphisms,
or often just morphisms. Given two morphisms f, g ∈ K1 such that d0f = d1g
(equivalently, a morphism of simplicial sets Λ2

1 → K), for any factorisation Λ2
1 →

∆2 σ K, the morphism d1σ ∈ K1 will be called a composition of g and f . For any
object X ∈ K0, the morphism s0X ∈ K1 is called the identity morphism of X, and
written idX .
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Example 2. Let C be a small category. Considering the ordered sets [n] as cate-
gories1 {0 → 1 → · · · → n} the assignment

N : [n] → Fun([n], C)

sending [n] to the set of functors [n] → C defines a simplicial set. This is called the
nerve of C.

Explicitly,
1. N(C)0 is the set of objects of C,
2. N(C)1 is the set of (all) morphisms in C,
3. The two morphisms N(C)1  N(C)0 induced by the two functors [0]  [1]

send morphisms in N(C)1 to their source and target.

(X
f→ Y ) → X, Y

4. The morphism N(C)0 → N(C)1 induced by [1] → [0] sends each object to its
identity morphism.

X → (X
idX→ X)

5. N(C)2 is the set of composable morphisms X
f→ Y

g→ Z.
6. The three maps d0, d1, d2 : N(C)2→→

→
N(C)1 induced by the three faithful functors

[1]→→
→
[2] send

f→ g→ to g, g ◦ f , and f respectively.

Y
g

❄
❄❄

❄

X

f ⑧⑧⑧⑧

g◦f
 Z

→ (Y
g→ Z), (X

g◦f→ Y ), (X
f→ Y )

7. More generally, N(C)n is the set of sequences of n composable morphisms
f1→

· · · fn→ and the various maps N(C)n → N(C)m come from various combinations
of composition and inserting identities.

Note that we can completely recover C from N(C). In fact we have a lot of
degenerate information.

Exercise 3. Suppose that C is a simplicial set such that:
1. Each Λ2

1 → C extends to a unique ∆2 → C, and
2. Each Λ3

1 → C extends to some ∆3 → C.
Show that C canonically determines a category whose set of objects is C0 and set of
morphisms is C1.

Exercise 4 (HTT, Proposition 1.1.2.2). (Difficult) Show that a simplicial set K is
of the form N(C) if and only if for every 0 < i < n and each diagram

Λn
i





K

∆n

⑤
⑤

⑤
⑤

1So, for 0 ≤ i, j ≤ n there is exactly one morphism i → j if i ≤ j, and no morphisms otherwise.
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there exists a unique dotted arrow making a commutative triangle.

Example 5. Any Kan complex is an quasi-category. That is, we have fully faithful
inclusions

Set∆ ⊃ QCat ⊃ Kan.

In particular, for any topological space X, the simplicial set SingX is a quasi-
category.

Exercise 6.
1. Show that every Kan complex is a quasi-category.
2. Show that if K is a Kan complex, then every morphism in K is invertible up

to homotopy in the sense that:

• For everyX
f→ Y inK1 we can find two 2-cells inK2 fitting into a diagram

of the form

Y
g

❆
❆❆

❆❆
❆❆

idY  Y

X
idX



f
⑦⑦⑦⑦⑦⑦⑦⑦

X
f

⑦⑦⑦⑦⑦⑦⑦⑦

3. (Harder) Show that if K is a quasi-category satisfying the above property, then
K is a Kan complex. Hint.2

Note that in general, for a topological space X, composition in SingX is not
unique, but any two choices of composition are homotopic. This is a general feature
of ∞-categories.

Exercise 7. Show that in a quasi-category C, any two compositions are “homotopic”
in the sense that if there exist two 2-cells in C2 of the form

g

❄
❄❄

❄❄
❄❄

❄
g

❄
❄❄

❄❄
❄❄

❄

h


f
⑧⑧⑧⑧⑧⑧⑧⑧

h′


f
⑧⑧⑧⑧⑧⑧⑧⑧

then there exists a 2-cell of the form

h′

❄
❄❄

❄❄
❄❄

❄

h


id
⑧⑧⑧⑧⑧⑧⑧⑧

Similarly, in SingX composition is not associative on the nose, but only up to
homotopy.

2Start with the case Λ2
0 → C and work up to Λn

0 by induction. Use opposite categories to
deduce Λn

n from Λn
0 .
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Exercise 8. Show that composition in a quasi-category C is associative “up to
homotopy” in the sense that if we have 2-cells in C2 of the form

g

❄
❄❄

❄❄
❄❄

❄
h

❄
❄❄

❄❄
❄❄

❄
hg

❄
❄❄

❄❄
❄❄

❄

gf


f
⑧⑧⑧⑧⑧⑧⑧⑧

hg


g
⑧⑧⑧⑧⑧⑧⑧⑧

(hg)f


f
⑧⑧⑧⑧⑧⑧⑧⑧

Then (hg)f is a composition of gf and h. In particular, by Exercise 7, if h(gf) is
any other choice of composition of gf and h, then there is a 2-cell of the form:

h(gf)

❄
❄❄

❄❄
❄❄

❄

(hg)f


id
⑧⑧⑧⑧⑧⑧⑧⑧

Exercise 9. Recall the nerve functor from Example 2. We will show that the nerve
functor admits a left adjoint.

1. Let C be a quasi-category. Define a relation on 1-morphisms in C by saying
f ∼ g if f is a composition of g and id. That is, if there exists a 2-cell in C2 of
the form

g

❄
❄❄

❄❄
❄❄

❄

f


id
⑧⑧⑧⑧⑧⑧⑧⑧

Show that this is an equivalence relation.
2. Show that the above equivalence relation preserves composition. That is, sup-

pose that g ∈ C1 is equivalent to g′ ∈ C1, and suppose we have 2-cells of the
following form.

g

❄
❄❄

❄❄
❄❄

❄
g′

❄
❄❄

❄❄
❄❄

❄

x


f
⑧⑧⑧⑧⑧⑧⑧⑧

x′


f
⑧⑧⑧⑧⑧⑧⑧⑧

h

❄
❄❄

❄❄
❄❄

❄
h

❄
❄❄

❄❄
❄❄

❄

y


g
⑧⑧⑧⑧⑧⑧⑧⑧

y′


g′
⑧⑧⑧⑧⑧⑧⑧⑧

Show that x ∼ x and y ∼ y′. (Use Exercise 7 if necessary).
3. Define hC to be the category whose objects are vertices C0, morphisms are

edges C1 modulo the above equivalence relation, and composition is induced
by composition in C. Show that this is actually a category. That is, show
that it satisfies the identity and associativity axioms. (Use Exercise 8 for
associativity).

4. Show that
h : QCat → Cat
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defines a functor which is left adjoint to N . Hint.3

Definition 10. The category hC defined above is called the homotopy category of

C. A morphism X
f→ Y ∈ C1 in a quasi-category is said to be an equivalence if it

becomes an isomorphism in hC. If such an equivalence exists, we say X and Y are
equivalent.

2 Mapping spaces

We wanted to replace sets with homotopy types, so for any two objects x, y ∈ C0 in
a quasi-category, we should have a homotopy type MapC(x, y) of morphisms. Here
are two models for this homotopy type.

Definition 11. Let C be a quasi-category, and x, y ∈ C0 objects. Define

homR
C(x, y)J = {z : ∆J⊔[0] → C | z|∆J = x and z|∆0 = y}

where J ⊔ [0] = {j0 < · · · < jn} ⊔ {0} = {j0 < j1 < · · · < jn < 0} and we use x for
the constant morphism ∆J → ∆0 x→ C. Similarly, define

homL
C(x, y)J = {z : ∆[0]⊔J → C | z|∆0 = x and z|∆j = y}

where [0] ⊔ J = {0} ⊔ {j0 < · · · < jn} = {0 < j0 < j1 < · · · < jn}.

Exercise 12. Suppose C is a quasi-category and x, y ∈ C0 are objects. Show that
homR

C(x, y) and homL
C(x, y) are Kan complexes.

Exercise 13.
1. Let C be a small category. Show that homR

NC(x, y)J = homC(x, y) for all J .
2. Let X be a topological space and x, y ∈ X two points. Let PX denote the set

homTop(∆
1
top, X) equipped with the compact-open topology4 and PX(x, y) ⊆

homTop(∆
1
top, X) the subspace of maps γ : ∆1

top → X such that γ(0) = x and
γ(1) = y. Define an isomorphism of simplicial sets

homR
SingX(x, y)

∼= SingPX(x, y).

Definition 14. A morphism C → D of quasi-categories is:
1. fully faithful if for every pair of objects X, Y ∈ C0 the induced morphism

homR
C(X, Y ) → homR

D(FX,FY ) is an equivalence of Kan complexes,
2. essentially surjective if hC → hD is essentially surjective,
3. a categorical equivalence if it is essentially surjective and fully faithful.

Exercise 15. Let F : C → C ′ be a functor between small categories. Show that F
is an equivalence of categories if and only if NF : NC → NC ′ is an equivalence of
quasi-categories.

3It suffices to show that hN = id and to give a natural transformation η : id → Nh such that
h(η) is the identity natural transformation.

4Or indeed, any topology such that homTop(∆
n
top, homTop(∆

1
top, X)) = homTop(∆

n
top×∆1

top, X).
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2.1 Simplicial categories

References:
[1982 Max Kelly, Basic Concepts of Enriched Category Theory]
[2003 Hirschorn, Model categories and their localisations, Def.9.1.2]
[2012 Lurie, Higher Topos Theory]
Quasi-categories are good for some things but not so good for other things. For

example, proving the Yoneda lemma purely in the context of quasi-categories is
particularly uncomfortable (cf. Cisinski’s book). For such things (i.e., Yoneda)
simplicial categories are much nicer.

Definition 16 ([HTT, Def.1.1.4.1]). A simplicial category C is a category enriched
over Set∆. Explicitly, it is the data of:

1. A collection of objects Ob C.
2. For every pair of objects X, Y ∈ Ob C, a simplicial set MapC(X, Y ).
3. For every triple of objects W,X, Y ∈ Ob C a morphism of simplicial sets

− ◦ − : MapC(W,X)×MapC(X, Y ) → MapC(W,Y ).

These data are required to satisfy:
(Id.) Every object has an identity morphism. That is, for every X ∈ Ob C there is

a vertex idX ∈ Map(X,X)0 such that

∆0 ×Map(X, Y ) 

{idX}×idMap(X,Y )

Map(X,X)×Map(X, Y ) ◦ Map(X, Y )

is the canonical identification ∆0×Map(X, Y ) ∼= Map(X, Y ), and similarly for
Map(W,X)×Map(X,X)→Map(W,X).

(Assoc.) The composition is associative. That is the following diagram of simplicial sets
commutes for any objects W,X, Y, Z.

MapC(W,X)×MapC(X, Y )×MapC(Y, Z) 



MapC(W,Y )×MapC(Y, Z)


MapC(W,X)×MapC(X,Z) MapC(W,Z)

A simplicial category is called fibrant if all MapC(X, Y ) are Kan complexes.

Example 17. The simplicial category of simplicial sets is defined as follows. Objects
are simplicial sets. Given two simplicial sets K,L the mapping space is defined by

MapSet∆(K,L)n = homSet∆(K ×∆n, L).

The simplicial set structure comes from functoriality in [n] ∈ ∆. Composition is
defined using the diagonal maps ∆n → ∆n ×∆n. Explicitly, the composition of two
n-cells f : K×∆n → L and g : L×∆n → M is

K×∆n diag.−→ K×∆n×∆n f×id∆n−→ L×∆n g−→ M.
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Exercise 18. Show that composition in the simplicial category Set∆ satisfies the
identity and associativity axioms.

Exercise 19 ([HTT, Prop.1.2.7.3], [Gabriel-Zisman, 3.1.3]). Let C be a quasi-
category (resp. Kan complex). It turns out [HTT, Cor.2.3.2.4],5 [Gabriel-Zisman,
Prop.2.2] that C satisfies the stronger property:
(*) For every simplicial set K, every 0 < i < n (resp. 0 ≤ i ≤ n), and every

morphism Λn
i ×K → C there exists a factorisation

Λn
i ×K



 C

∆n ×K

✈
✈

✈
✈

✈

Using this property, show that for any K ∈ Set∆, the simplicial set Map(K,C) is a
quasi-category (resp. Kan complex).

Deduce that the simplicial category of Kan complexes is fibrant.

Exercise 20. Give an example of C,C ′ ∈ QCat such that MapSet∆(C,C
′) is not a

Kan complex.

Like quasi-categories, simplicial categories also have associated categories.

Exercise 21.
1. Let C be a simplicial category. For X, Y ∈ Ob C define homC(X, Y ) =

MapC(X, Y )0. Show that this defines a category. This category is sometimes
denoted C0. Be careful not to confuse this with the set of 0-simplicies of a
simplicial set.

2. (Harder) If K,L are simplicial sets, define a map π0|K|× π0|L| → π0|K × L|.
Hint.6

3. Let C be a fibrant simplicial category. For X, Y ∈ Ob C define homhC(X, Y ) =
π0|MapC(X, Y )|. Show that this defines a category.

Definition 22. A morphism F : C → D between two simplicial categories is defined
in the obvious way. We have a map Ob C → Ob D, for every pair X, Y ∈ Ob C we
have a morphism of simpicial sets MapC(X, Y ) → MapD(FX,FY ), and these mor-
phisms are required to be compatible with composition and send identity morphisms
to identity morphisms. The category of small simplicial categories is denoted Cat∆.

Definition 23 ([HTT, Def.1.1.4.4]). A morphism F : C → C ′ of simplicial categories
is an equivalence if

1. it is fully faithful in the sense that for everyX, Y ∈ Ob C the map MapC(X, Y ) →
MapC′(FX,FY ) is a weak equivalence of simplicial sets, and

2. it is essentially surjective in the sense that hC → hC ′ is essentially surjective.
5This is a result of Joyal.
6Note that for diagrams X,Y : N  Top such that for each n, the maps X(n) →

X(n+ 1), Y (n) → Y (n+ 1) are inclusions of closed subspaces, we have lim−→N X(n)× lim−→N Y (m) ∼=
lim−→N×N X(n)× Y (m), and homTop(∆

1
top, lim−→n∈N Xn) = lim−→n∈N hom(∆1

top, X(n)).
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3 Comparing quasi-categories and simplicial cat-

egories

In this section we construct the adjunction

C : QCat ⇄ Cat∆ : N.

As with geometric realisation |− | : Set∆ ⇄ Top : Sing, the strategy is to define
C[∆n] for the quasi-categories ∆n, take the hom out of this functor to define N , and
then observe that N admits a left adjoint, determined by its values on ∆n and the
requirement that it preserve colimits.

Example 24. Consider the directed graph which has one vertex i for every 0 ≤ i ≤ n,
and one edge i → j for every 0 ≤ i < j ≤ n. Notice that there are exactly 2n−1 paths
from 0 to n. Indeed, there is exactly one path for every subset J ⊆ {1, . . . , n−1};
namely the path which passes through exactly the verticies J . Here is the complete
set of paths for n = 4.

0→4

0→1→4, 0→2→4, 0→3→4,

0→2→3→4, 0→1→3→4, 0→1→2→4,

0→1→2→3→4

Definition 25 (Cordier 1982, [HTT, §1.1.5]). Define C[∆n] to be the simplicial
category whose objects are elements of [n] = {0 < · · · < n}. For 0 ≤ i, j ≤ n the
mapping space is the nerve of the partially ordered set

MapC[∆n](i, j) = N


{i, j} ⊆ J ⊆ {i, i+1, . . . , j}



of subsets J containing i, j and contained in {i, i+1, . . . , j}. Composition

MapC[∆n](i, j)×MapC[∆n](j, k) → MapC[∆n](i, k)

is induced by union.

Exercise 26. Show that MapC[∆n](i, j) = N [1]j−i−1 where [1]m is the poset

[1]× · · ·× [1]  
m times

= {(ε1, . . . , εm) | εk ∈ {0, 1}}.

That is, show that MapC[∆n](i, j) = ∆1 × · · · ×∆1 is the (j−i−1)-dimensional sim-
plicial cube.

Remark 27. The 0-simplices of MapC[∆n](i, j) can be interpreted as all of the dif-
ferent ways of writing the morphism i → j in N [n] as a composition

i = k0 → k1 → · · · → km → km+1 = j,

with kℓ ∕= kℓ+1 (unless i = j). The higher simplicies can be interpreted as homotopies
between these various compositions. See Remark 33 for more details.
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Note that C[∆n] is functorial in n, cf.[HTT, Def.1.1.5.3], so we obtain a functor

C[∆−] : ∆ → Cat∆

Definition 28. The nerve of a simplicial category C is the simplicial set, [HTT,
Def.1.1.5.5],

NC : [n] → homCat∆(C[∆
n], C).

Here is the main comparison theorem.

Theorem 29 ([HTT, §2.2], [HTT, Prop.1.1.5.10, Thm.2.2.5.1]).
1. The nerve functor admits a left adjoint

C : Set∆ ⇄ Cat∆ : N.

2. The functor N sends fibrant simplicial categories7 to quasi-categories.
3. Both C and N both preserve and reflect categorical equivalences.8

4. Given C ∈ QCat and X, Y ∈ C0 there exist homotopy equivalences of Kan
complexes

homL
C(X, Y ) ∼= Sing |MapC[C](X, Y )| ∼= MapR

C(X, Y ).

Remark 30.
1. Since the functor C is a left adjoint and we know its values on the representables

∆n, its value on a general simplicial set K is a kind of geometric realisation
C[K] = lim−→([n],f)∈∆/K

C[∆n].9 This description is usually useless since colimits

(for example coequalisers) in Cat∆ are difficult to describe in general. Only in
some simple cases (e.g. ∂∆n, Λn

i ) something can be said.
2. In [HTT, Thm.2.2.5.1] categorical equivalences of simplicial sets are defined as

those morphisms sent to equivalences under C[−]. So this part of the above
theorem is empty in some sense. However, as we saw above, for quasi-categories
C, the mapping spaces in C[C] can also be computed via other more accessible
models.

Definition 31. The quasi-category of spaces is the nerve of the simplicial category
of Kan complexes.

S := N(Kan).

7Recall, a simplicial category if fibrant if all Map are Kan complexes.
8That is, a morphism f in Cat∞ (resp. Cat∆) is a categorical equivalence if and only if C(f)

(resp. N(f)) is a categorical equivalence.
9For this, we also need to know that Cat∆ admits colimits. This follows from abstract nonsense

because it sits in a monadic adjunction Gr∆ ⇄ Cat∆ with the category Gr∆ of simplicial graphs,
i.e., graph objects E  V in Set∆ such that V is a constant simplicial set. Cf. the Barr-Beck
Theorem.
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Remark 32 ([HTT, §1.2.15]). Here we run into Russell’s paradox, the set of all sets
cannot be a set. There are various ways to resolve this. One way is to choose a
Grothendieck universe, or equivalently, a strongly inaccessible cardinal κ. This is a
cardinal such that the category Setκ of sets of cardinality < κ satisfies: if f : X → Y
is a morphism of sets such that Y ∈ Setκ and all f−1(y) ∈ Setκ then X ∈ Setκ and
{Z ⊆ Y } ∈ Setκ. Then we define Set∆ to be the category of simplicial sets in Setκ,
i.e., (Setκ)∆. In this way it’s not a member of itself.

Remark 33.
1. Elements of S0 are Kan complexes.
2. Elements of S1 are morphisms between Kan complexes.
3. Elements of S2 are tuples

(X0,X1, X2,

X0
f01→ X1, X1

f12→ X2, X0
f02→ X2,

X0 ×∆1 f012→ X2)

such that such X0, X1, X2 are Kan complexes and f012 is a simplicial homotopy
from f02 to f12◦f01, in the sense that f012|X0×{0} = f02 and f012|X0×{1} = f12◦f01.

X0

X1

X2

f01  f12



f02

f012



4. Elements of S3 are tuples

((Xi : 0 ≤ 1 ≤ 3),

(Xi
fij→ Xj : 0 ≤ i < j ≤ 3),

(Xi×∆1 fijk→ Xj : 0 ≤ i < j < k ≤ 3)

(X0×∆1×∆1 f0123→ X3)

such X0, X1, X2, X3 are Kan complexes, each of the four fijk satisfies the prop-
erty analogous to f012 above,

Xi

Xj

Xk

fij  fjk



fik

fijk



and f0123 restricted to the four edges∆1×{} ⊂ ∆1×∆1 and {}×∆1 ⊂ ∆1×∆1

for  = 0, 1 correspond to the four fijk.

f03
f023 

f013
 













f23 ◦ f02
f012


f13 ◦ f01 f123
 f23 ◦ f12 ◦ f01
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X0

f03



f02



f01 
X1

f13


f12

 X2
f23  X3



 
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼
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