Derived Algebraic Geometry Shane Kelly, UTokyo Spring Semester 2025

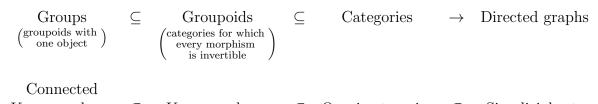
Lecture 3: Categories

May 7th, 2025

In this lecture we introduce two models for the category of infinity categories the category \mathcal{Q} Cat of *quasi-categories* and the category $\mathcal{C}at_{\Delta}$ of *simplicial categories*. We describe the adjunction between them $\mathfrak{C} : \mathcal{Q}$ Cat $\rightleftharpoons \mathcal{C}at_{\Delta} : N$. We finish with the definition of the quasi-category of spaces \mathcal{S} .

1 Quasi-categories

Just as a small category is a directed graph with composable edges, a quasi-category is a kind of simplicial set.



Kan complexes \subseteq Kan complexes \subseteq Quasi-categories \subseteq Simplicial sets **Definition 1** (Boardman, Vogt, 1973). A *quasi-category* is a simplicial set K such that for every 0 < i < n and each diagram

there exists a (not necessarily unique) dashed arrow making a commutative triangle.

A *functor* between quasi-categories is a morphism of simplicial sets. That is, the category of quasi-categories is a full subcategory of the category of simplicial sets

$$\mathcal{Q}$$
Cat $\subset \mathcal{S}$ et $_{\Delta}$.

Elements of K_0 are called *objects* and elements of K_1 are called 1-morphisms, or often just *morphisms*. Given two morphisms $f, g \in K_1$ such that $d_0 f = d_1 g$ (equivalently, a morphism of simplicial sets $\Lambda_1^2 \to K$), for any factorisation $\Lambda_1^2 \to \Delta^2 \xrightarrow{\sigma} K$, the morphism $d_1 \sigma \in K_1$ will be called a *composition* of g and f. For any object $X \in K_0$, the morphism $s_0 X \in K_1$ is called the *identity morphism* of X, and written id_X . **Example 2.** Let C be a small category. Considering the ordered sets [n] as categories¹ $\{0 \rightarrow 1 \rightarrow \cdots \rightarrow n\}$ the assignment

 $N: [n] \mapsto \operatorname{Fun}([n], C)$

sending [n] to the set of functors $[n] \to C$ defines a simplicial set. This is called the *nerve* of C.

Explicitly,

- 1. $N(C)_0$ is the set of objects of C,
- 2. $N(C)_1$ is the set of (all) morphisms in C,
- 3. The two morphisms $N(C)_1 \Rightarrow N(C)_0$ induced by the two functors $[0] \Rightarrow [1]$ send morphisms in $N(C)_1$ to their source and target.

$$(X \xrightarrow{f} Y) \mapsto X, Y$$

4. The morphism $N(C)_0 \to N(C)_1$ induced by $[1] \to [0]$ sends each object to its identity morphism.

$$X \qquad \mapsto \qquad (X \stackrel{\operatorname{id}_X}{\to} X)$$

- 5. $N(C)_2$ is the set of composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$.
- 6. The three maps $d_0, d_1, d_2: N(C)_2 \stackrel{\rightarrow}{\rightrightarrows} N(C)_1$ induced by the three faithful functors $[1] \stackrel{\rightarrow}{\rightrightarrows} [2]$ send $\stackrel{f}{\rightarrow} \stackrel{g}{\rightarrow}$ to $g, g \circ f$, and f respectively.

$$X \xrightarrow{f} Z \xrightarrow{Y} g \longrightarrow (Y \xrightarrow{g} Z), \quad (X \xrightarrow{g \circ f} Y), \quad (X \xrightarrow{f} Y)$$

7. More generally, $N(C)_n$ is the set of sequences of *n* composable morphisms $\stackrel{f_1}{\rightarrow}$ $\cdots \xrightarrow{f_n}$ and the various maps $N(C)_n \to N(C)_m$ come from various combinations of composition and inserting identities.

Note that we can completely recover C from N(C). In fact we have a lot of degenerate information.

Exercise 3. Suppose that C is a simplicial set such that:

- 1. Each $\Lambda_1^2 \to C$ extends to a unique $\Delta^2 \to C$, and 2. Each $\Lambda_1^3 \to C$ extends to some $\Delta^3 \to C$.

Show that C canonically determines a category whose set of objects is C_0 and set of morphisms is C_1 .

Exercise 4 (HTT, Proposition 1.1.2.2). (Difficult) Show that a simplicial set K is of the form N(C) if and only if for every 0 < i < n and each diagram

¹So, for $0 \le i, j \le n$ there is exactly one morphism $i \to j$ if $i \le j$, and no morphisms otherwise.

there exists a *unique* dotted arrow making a commutative triangle.

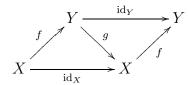
Example 5. Any Kan complex is an quasi-category. That is, we have fully faithful inclusions

$$\mathcal{S}et_{\Delta} \supset \mathcal{Q}Cat \supset \mathcal{K}an.$$

In particular, for any topological space X, the simplicial set Sing X is a quasicategory.

Exercise 6.

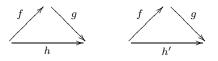
- 1. Show that every Kan complex is a quasi-category.
- 2. Show that if K is a Kan complex, then every morphism in K is invertible up to homotopy in the sense that:
 - For every $X \xrightarrow{f} Y$ in K_1 we can find two 2-cells in K_2 fitting into a diagram of the form



3. (Harder) Show that if K is a quasi-category satisfying the above property, then K is a Kan complex. Hint.²

Note that in general, for a topological space X, composition in Sing X is not unique, but any two choices of composition are homotopic. This is a general feature of ∞ -categories.

Exercise 7. Show that in a quasi-category C, any two compositions are "homotopic" in the sense that if there exist two 2-cells in C_2 of the form

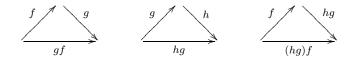


then there exists a 2-cell of the form

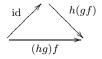
Similarly, in $\operatorname{Sing} X$ composition is not associative on the nose, but only up to homotopy.

²Start with the case $\Lambda_0^2 \to C$ and work up to Λ_0^n by induction. Use opposite categories to deduce Λ_n^n from Λ_0^n .

Exercise 8. Show that composition in a quasi-category C is associative "up to homotopy" in the sense that if we have 2-cells in C_2 of the form



Then (hg)f is a composition of gf and h. In particular, by Exercise 7, if h(gf) is any other choice of composition of gf and h, then there is a 2-cell of the form:

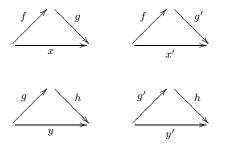


Exercise 9. Recall the nerve functor from Example 2. We will show that the nerve functor admits a left adjoint.

1. Let C be a quasi-category. Define a relation on 1-morphisms in C by saying $f \sim g$ if f is a composition of g and id. That is, if there exists a 2-cell in C_2 of the form

Show that this is an equivalence relation.

2. Show that the above equivalence relation preserves composition. That is, suppose that $g \in C_1$ is equivalent to $g' \in C_1$, and suppose we have 2-cells of the following form.



Show that $x \sim x$ and $y \sim y'$. (Use Exercise 7 if necessary).

- 3. Define hC to be the category whose objects are vertices C_0 , morphisms are edges C_1 modulo the above equivalence relation, and composition is induced by composition in C. Show that this is actually a category. That is, show that it satisfies the identity and associativity axioms. (Use Exercise 8 for associativity).
- 4. Show that

$$h: \mathcal{Q}Cat \to \mathcal{C}at$$

defines a functor which is left adjoint to N. Hint.³

Definition 10. The category hC defined above is called the *homotopy category* of C. A morphism $X \xrightarrow{f} Y \in C_1$ in a quasi-category is said to be an *equivalence* if it becomes an isomorphism in hC. If such an equivalence exists, we say X and Y are equivalent.

2 Mapping spaces

We wanted to replace sets with homotopy types, so for any two objects $x, y \in C_0$ in a quasi-category, we should have a homotopy type $\operatorname{Map}_C(x, y)$ of morphisms. Here are two models for this homotopy type.

Definition 11. Let C be a quasi-category, and $x, y \in C_0$ objects. Define

$$\hom_C^R(x,y)_J = \{ z : \Delta^{J \sqcup [0]} \to C \mid z|_{\Delta^J} = x \text{ and } z|_{\Delta^0} = y \}$$

where $J \sqcup [0] = \{j_0 < \cdots < j_n\} \sqcup \{0\} = \{j_0 < j_1 < \cdots < j_n < 0\}$ and we use x for the constant morphism $\Delta^J \to \Delta^0 \xrightarrow{x} C$. Similarly, define

$$\hom_{C}^{L}(x,y)_{J} = \{ z : \Delta^{[0] \sqcup J} \to C \mid z|_{\Delta^{0}} = x \text{ and } z|_{\Delta^{j}} = y \}$$

where $[0] \sqcup J = \{0\} \sqcup \{j_0 < \dots < j_n\} = \{0 < j_0 < j_1 < \dots < j_n\}.$

Exercise 12. Suppose C is a quasi-category and $x, y \in C_0$ are objects. Show that $\hom_C^R(x, y)$ and $\hom_C^L(x, y)$ are Kan complexes.

Exercise 13.

- 1. Let C be a small category. Show that $\hom_{NC}^{R}(x, y)_{J} = \hom_{C}(x, y)$ for all J.
- 2. Let X be a topological space and $x, y \in X$ two points. Let PX denote the set $\hom_{\text{Top}}(\Delta_{\text{top}}^1, X)$ equipped with the compact-open topology⁴ and $PX(x, y) \subseteq \hom_{\text{Top}}(\Delta_{\text{top}}^1, X)$ the subspace of maps $\gamma : \Delta_{\text{top}}^1 \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Define an isomorphism of simplicial sets

$$\hom_{\operatorname{Sing} X}^{R}(x, y) \cong \operatorname{Sing} PX(x, y).$$

Definition 14. A morphism $C \rightarrow D$ of quasi-categories is:

- 1. fully faithful if for every pair of objects $X, Y \in C_0$ the induced morphism $\hom_C^R(X, Y) \to \hom_D^R(FX, FY)$ is an equivalence of Kan complexes,
- 2. essentially surjective if $hC \rightarrow hD$ is essentially surjective,
- 3. a categorical equivalence if it is essentially surjective and fully faithful.

Exercise 15. Let $F : C \to C'$ be a functor between small categories. Show that F is an equivalence of categories if and only if $NF : NC \to NC'$ is an equivalence of quasi-categories.

³It suffices to show that hN = id and to give a natural transformation $\eta : id \to Nh$ such that $h(\eta)$ is the identity natural transformation.

⁴Or indeed, any topology such that $\hom_{\text{Top}}(\Delta_{\text{top}}^n, \hom_{\text{Top}}(\Delta_{\text{top}}^1, X)) = \hom_{\text{Top}}(\Delta_{\text{top}}^n \times \Delta_{\text{top}}^1, X).$

2.1 Simplicial categories

References:

[1982 Max Kelly, Basic Concepts of Enriched Category Theory]

[2003 Hirschorn, Model categories and their localisations, Def.9.1.2]

[2012 Lurie, Higher Topos Theory]

Quasi-categories are good for some things but not so good for other things. For example, proving the Yoneda lemma purely in the context of quasi-categories is particularly uncomfortable (cf. Cisinski's book). For such things (i.e., Yoneda) simplicial categories are much nicer.

Definition 16 ([HTT, Def.1.1.4.1]). A simplicial category C is a category enriched over Set_{Δ} . Explicitly, it is the data of:

- 1. A collection of objects Ob C.
- 2. For every pair of objects $X, Y \in Ob \ C$, a simplicial set $\operatorname{Map}_{C}(X, Y)$.
- 3. For every triple of objects $W, X, Y \in Ob \ C$ a morphism of simplicial sets

 $-\circ -: \operatorname{Map}_{C}(W, X) \times \operatorname{Map}_{C}(X, Y) \to \operatorname{Map}_{C}(W, Y).$

These data are required to satisfy:

(Id.) Every object has an identity morphism. That is, for every $X \in Ob \ C$ there is a vertex $id_X \in Map(X, X)_0$ such that

$${}^{{\rm id}_X}\times{}^{{\rm id}_{{\rm Map}(X,Y)}}$$

 $\Delta^0 \times {\rm Map}(X,Y) \longrightarrow {\rm Map}(X,X) \times {\rm Map}(X,Y) \xrightarrow{\circ} {\rm Map}(X,Y)$

is the canonical identification $\Delta^0 \times \operatorname{Map}(X, Y) \cong \operatorname{Map}(X, Y)$, and similarly for $\operatorname{Map}(W, X) \times \operatorname{Map}(X, X) \to \operatorname{Map}(W, X)$.

(Assoc.) The composition is associative. That is the following diagram of simplicial sets commutes for any objects W, X, Y, Z.

$$\begin{split} \operatorname{Map}_{C}(W,X) \times \operatorname{Map}_{C}(X,Y) \times \operatorname{Map}_{C}(Y,Z) &\longrightarrow \operatorname{Map}_{C}(W,Y) \times \operatorname{Map}_{C}(Y,Z) \\ & \downarrow & \downarrow \\ & \operatorname{Map}_{C}(W,X) \times \operatorname{Map}_{C}(X,Z) &\longrightarrow \operatorname{Map}_{C}(W,Z) \end{split}$$

A simplicial category is called *fibrant* if all $Map_C(X, Y)$ are Kan complexes.

Example 17. The simplicial category of simplicial sets is defined as follows. Objects are simplicial sets. Given two simplicial sets K, L the mapping space is defined by

$$\operatorname{Map}_{\mathcal{S}et_{\Delta}}(K, L)_{n} = \operatorname{hom}_{\mathcal{S}et_{\Delta}}(K \times \Delta^{n}, L).$$

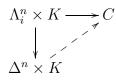
The simplicial set structure comes from functoriality in $[n] \in \Delta$. Composition is defined using the diagonal maps $\Delta^n \to \Delta^n \times \Delta^n$. Explicitly, the composition of two *n*-cells $f: K \times \Delta^n \to L$ and $g: L \times \Delta^n \to M$ is

$$K \times \Delta^n \xrightarrow{diag.} K \times \Delta^n \times \Delta^n \xrightarrow{f \times \operatorname{id}_{\Delta^n}} L \times \Delta^n \xrightarrow{g} M.$$

Exercise 18. Show that composition in the simplicial category Set_{Δ} satisfies the identity and associativity axioms.

Exercise 19 ([HTT, Prop.1.2.7.3], [Gabriel-Zisman, 3.1.3]). Let C be a quasicategory (resp. Kan complex). It turns out [HTT, Cor.2.3.2.4],⁵ [Gabriel-Zisman, Prop.2.2] that C satisfies the stronger property:

(*) For every simplicial set K, every 0 < i < n (resp. $0 \le i \le n$), and every morphism $\Lambda_i^n \times K \to C$ there exists a factorisation



Using this property, show that for any $K \in Set_{\Delta}$, the simplicial set Map(K, C) is a quasi-category (resp. Kan complex).

Deduce that the simplicial category of Kan complexes is fibrant.

Exercise 20. Give an example of $C, C' \in \mathcal{Q}$ Cat such that $\operatorname{Map}_{\mathcal{S}et_{\Delta}}(C, C')$ is not a Kan complex.

Like quasi-categories, simplicial categories also have associated categories.

Exercise 21.

- 1. Let C be a simplicial category. For $X, Y \in Ob \ C$ define $\hom_C(X, Y) = \operatorname{Map}_C(X, Y)_0$. Show that this defines a category. This category is sometimes denoted C_0 . Be careful not to confuse this with the set of 0-simplicies of a simplicial set.
- 2. (Harder) If K, L are simplicial sets, define a map $\pi_0|K| \times \pi_0|L| \to \pi_0|K \times L|$. Hint.⁶
- 3. Let C be a fibrant simplicial category. For $X, Y \in Ob \ C$ define $\hom_{hC}(X, Y) = \pi_0 |\operatorname{Map}_C(X, Y)|$. Show that this defines a category.

Definition 22. A morphism $F: C \to D$ between two simplicial categories is defined in the obvious way. We have a map $Ob \ C \to Ob \ D$, for every pair $X, Y \in Ob \ C$ we have a morphism of simplicial sets $\operatorname{Map}_C(X,Y) \to \operatorname{Map}_D(FX,FY)$, and these morphisms are required to be compatible with composition and send identity morphisms to identity morphisms. The category of small simplicial categories is denoted $\mathcal{C}at_{\Delta}$.

Definition 23 ([HTT, Def.1.1.4.4]). A morphism $F : C \to C'$ of simplicial categories is an *equivalence* if

- 1. it is fully faithful in the sense that for every $X, Y \in Ob \ C$ the map $\operatorname{Map}_{C}(X, Y) \to \operatorname{Map}_{C'}(FX, FY)$ is a weak equivalence of simplicial sets, and
- 2. it is essentially surjective in the sense that $hC \to hC'$ is essentially surjective.

⁵This is a result of Joyal.

⁶Note that for diagrams $X, Y : \mathbb{N} \rightrightarrows$ Top such that for each n, the maps $X(n) \rightarrow X(n+1), Y(n) \rightarrow Y(n+1)$ are inclusions of closed subspaces, we have $\varinjlim_{\mathbb{N}} X(n) \times \varinjlim_{\mathbb{N}} Y(m) \cong \lim_{m \in \mathbb{N}} X(n) \times Y(m)$, and $\hom_{\text{Top}}(\Delta_{\text{top}}^1, \varinjlim_{n \in \mathbb{N}} X_n) = \varinjlim_{n \in \mathbb{N}} \hom(\Delta_{\text{top}}^1, X(n)).$

3 Comparing quasi-categories and simplicial categories

In this section we construct the adjunction

$$\mathfrak{C}: \mathcal{Q} \mathrm{Cat} \rightleftharpoons \mathcal{C} \mathrm{at}_{\Delta}: N.$$

As with geometric realisation $|-|: \mathcal{S}et_{\Delta} \rightleftharpoons \text{Top}:$ Sing, the strategy is to define $\mathfrak{C}[\Delta^n]$ for the quasi-categories Δ^n , take the hom out of this functor to define N, and then observe that N admits a left adjoint, determined by its values on Δ^n and the requirement that it preserve colimits.

Example 24. Consider the directed graph which has one vertex *i* for every $0 \le i \le n$, and one edge $i \to j$ for every $0 \le i < j \le n$. Notice that there are exactly 2^{n-1} paths from 0 to *n*. Indeed, there is exactly one path for every subset $J \subseteq \{1, \ldots, n-1\}$; namely the path which passes through exactly the vertices *J*. Here is the complete set of paths for n = 4.

$$0 \rightarrow 4$$

$$0 \rightarrow 1 \rightarrow 4, \quad 0 \rightarrow 2 \rightarrow 4, \quad 0 \rightarrow 3 \rightarrow 4,$$

$$0 \rightarrow 2 \rightarrow 3 \rightarrow 4, \quad 0 \rightarrow 1 \rightarrow 3 \rightarrow 4, \quad 0 \rightarrow 1 \rightarrow 2 \rightarrow 4$$

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$$

Definition 25 (Cordier 1982, [HTT, §1.1.5]). Define $\mathfrak{C}[\Delta^n]$ to be the simplicial category whose objects are elements of $[n] = \{0 < \cdots < n\}$. For $0 \leq i, j \leq n$ the mapping space is the nerve of the partially ordered set

$$\operatorname{Map}_{\mathfrak{C}[\Delta^n]}(i,j) = N\left\{\{i,j\} \subseteq J \subseteq \{i,i+1,\ldots,j\}\right\}$$

of subsets J containing i, j and contained in $\{i, i+1, \ldots, j\}$. Composition

$$\operatorname{Map}_{\mathfrak{C}[\Delta^n]}(i,j) \times \operatorname{Map}_{\mathfrak{C}[\Delta^n]}(j,k) \to \operatorname{Map}_{\mathfrak{C}[\Delta^n]}(i,k)$$

is induced by union.

Exercise 26. Show that $\operatorname{Map}_{\mathfrak{C}[\Delta^n]}(i,j) = N[1]^{j-i-1}$ where $[1]^m$ is the poset

$$\underbrace{[1] \times \cdots \times [1]}_{m \text{ times}} = \{ (\varepsilon_1, \dots, \varepsilon_m) \mid \varepsilon_k \in \{0, 1\} \}.$$

That is, show that $\operatorname{Map}_{\mathfrak{C}[\Delta^n]}(i,j) = \Delta^1 \times \cdots \times \Delta^1$ is the (j-i-1)-dimensional simplicial cube.

Remark 27. The 0-simplices of $\operatorname{Map}_{\mathfrak{C}[\Delta^n]}(i, j)$ can be interpreted as all of the different ways of writing the morphism $i \to j$ in N[n] as a composition

$$i = k_0 \rightarrow k_1 \rightarrow \cdots \rightarrow k_m \rightarrow k_{m+1} = j_s$$

with $k_{\ell} \neq k_{\ell+1}$ (unless i = j). The higher simplicies can be interpreted as homotopies between these various compositions. See Remark 33 for more details.

Note that $\mathfrak{C}[\Delta^n]$ is functorial in n, cf.[HTT, Def.1.1.5.3], so we obtain a functor

$$\mathfrak{C}[\Delta^-]: \Delta \to \mathcal{C}at_\Delta$$

Definition 28. The *nerve* of a simplicial category C is the simplicial set, [HTT, Def.1.1.5.5],

$$NC: [n] \mapsto \hom_{\mathcal{Cat}_{\Delta}}(\mathfrak{C}[\Delta^n], C).$$

Here is the main comparison theorem.

Theorem 29 ([HTT, §2.2], [HTT, Prop.1.1.5.10, Thm.2.2.5.1]).

1. The nerve functor admits a left adjoint

$$\mathfrak{C}: \mathcal{S}\mathrm{et}_{\Delta} \rightleftarrows \mathcal{C}\mathrm{at}_{\Delta}: N.$$

- 2. The functor N sends fibrant simplicial categories⁷ to quasi-categories.
- 3. Both \mathfrak{C} and N both preserve and reflect categorical equivalences.⁸
- 4. Given $C \in \mathcal{Q}$ Cat and $X, Y \in C_0$ there exist homotopy equivalences of Kan complexes

$$\hom_C^L(X,Y) \cong \operatorname{Sing} |\operatorname{Map}_{\mathfrak{C}[C]}(X,Y)| \cong \operatorname{Map}_C^R(X,Y).$$

Remark 30.

- 1. Since the functor \mathfrak{C} is a left adjoint and we know its values on the representables Δ^n , its value on a general simplicial set K is a kind of geometric realisation $\mathfrak{C}[K] = \varinjlim_{([n],f)\in \Delta_{/K}} \mathfrak{C}[\Delta^n].^9$ This description is usually useless since colimits (for example coequalisers) in $\mathcal{C}at_{\Delta}$ are difficult to describe in general. Only in some simple cases (e.g. $\partial\Delta^n$, Λ^n) something can be said.
- 2. In [HTT, Thm.2.2.5.1] categorical equivalences of simplicial sets are *defined* as those morphisms sent to equivalences under $\mathfrak{C}[-]$. So this part of the above theorem is empty in some sense. However, as we saw above, for quasi-categories C, the mapping spaces in $\mathfrak{C}[C]$ can also be computed via other more accessible models.

Definition 31. The *quasi-category of spaces* is the nerve of the simplicial category of Kan complexes.

$$\mathcal{S} := N(\mathcal{K}an).$$

⁷Recall, a simplicial category if *fibrant* if all Map are Kan complexes.

⁸That is, a morphism f in Cat_{∞} (resp. Cat_{Δ}) is a categorical equivalence if and only if $\mathfrak{C}(f)$ (resp. N(f)) is a categorical equivalence.

⁹For this, we also need to know that Cat_{Δ} admits colimits. This follows from abstract nonsense because it sits in a monadic adjunction $\mathcal{G}r_{\Delta} \rightleftharpoons Cat_{\Delta}$ with the category $\mathcal{G}r_{\Delta}$ of simplicial graphs, i.e., graph objects $E \rightrightarrows V$ in Set_{Δ} such that V is a constant simplicial set. Cf. the Barr-Beck Theorem.

Remark 32 ([HTT, §1.2.15]). Here we run into Russell's paradox, the set of all sets cannot be a set. There are various ways to resolve this. One way is to choose a Grothendieck universe, or equivalently, a strongly inaccessible cardinal κ . This is a cardinal such that the category $\mathcal{S}et_{\kappa}$ of sets of cardinality $< \kappa$ satisfies: if $f: X \to Y$ is a morphism of sets such that $Y \in \mathcal{S}et_{\kappa}$ and all $f^{-1}(y) \in \mathcal{S}et_{\kappa}$ then $X \in \mathcal{S}et_{\kappa}$ and $\{Z \subseteq Y\} \in \mathcal{S}et_{\kappa}$. Then we define $\mathcal{S}et_{\Delta}$ to be the category of simplicial sets in $\mathcal{S}et_{\kappa}$, i.e., $(\mathcal{S}et_{\kappa})_{\Delta}$. In this way it's not a member of itself.

Remark 33.

- 1. Elements of \mathcal{S}_0 are Kan complexes.
- 2. Elements of S_1 are morphisms between Kan complexes.
- 3. Elements of S_2 are tuples

$$(X_0, X_1, X_2, X_0 \xrightarrow{f_{01}} X_1, X_1 \xrightarrow{f_{12}} X_2, X_0 \xrightarrow{f_{02}} X_2, X_0 \xrightarrow{f_{02}} X_2, X_0 \times \Delta^1 \xrightarrow{f_{012}} X_2)$$

such that such X_0, X_1, X_2 are Kan complexes and f_{012} is a simplicial homotopy from f_{02} to $f_{12} \circ f_{01}$, in the sense that $f_{012}|_{X_0 \times \{0\}} = f_{02}$ and $f_{012}|_{X_0 \times \{1\}} = f_{12} \circ f_{01}$.

$$X_0 \underbrace{ \overbrace{f_{01}}^{f_{01}} X_1 \underbrace{f_{12}}_{f_{012}} X_2}_{f_{02}} X_2$$

4. Elements of S_3 are tuples

(

$$((X_i : 0 \le 1 \le 3),$$
$$(X_i \xrightarrow{f_{ij}} X_j : 0 \le i < j \le 3),$$
$$(X_i \times \Delta^1 \xrightarrow{f_{ijk}} X_j : 0 \le i < j < k \le 3)$$
$$X_0 \times \Delta^1 \times \Delta^1 \xrightarrow{f_{0123}} X_3)$$

such X_0, X_1, X_2, X_3 are Kan complexes, each of the four f_{ijk} satisfies the property analogous to f_{012} above,

$$X_i \xrightarrow{f_{ij}}_{f_{ijk}} X_j \xrightarrow{f_{jk}}_{f_{ijk}} X_k$$

and f_{0123} restricted to the four edges $\Delta^1 \times \{\epsilon\} \subset \Delta^1 \times \Delta^1$ and $\{\epsilon\} \times \Delta^1 \subset \Delta^1 \times \Delta^1$ for $\epsilon = 0, 1$ correspond to the four f_{ijk} .

$$\begin{array}{c|c}f_{03} & \xrightarrow{f_{023}} & f_{23} \circ f_{02}\\ \hline f_{013} & & & \\ f_{13} \circ f_{01} & \xrightarrow{f_{123}} & f_{23} \circ f_{12} \circ f_{01}\end{array}$$

