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1 Motivation
References:

http://math.stanford.edu/~vakil/245/245class1.pdf

Theorem 1 (Bezout’s Theorem, Version I). Suppose that f(x, y), g(x, y) ∈ R[x, y]
are two polynomials of degree d and e respectively, and

C = {(a, b) ∈ R2 | f(a, b) = 0}
C ′ = {(a, b) ∈ R2 | g(a, b) = 0}

the corresponding curves in R2. Then, if C ∩ C ′ is finite, we have

|C ∩ C ′| ≤ d · e.

Example 2. Take

f(x, y) =
d−1∏
i=0

(dy − i(1 + x)),

g(x, y) =
e−1∏
j=0

(ex− j(1 + y)).

So C is the union of the lines through (−1, 0) and (0, i
d
) for 0 ≤ i < d. Similarly, C ′

is the union of the lines through (0,−1) and ( j
e
, 0) for 0 ≤ j < e. Each of the former

lines intersects each of the latter lines exactly once. Hence, there are d · e points in
common.
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Now let’s look at why we have “≤ d · e” and not “= d · e”.

Example 3. Take

f(x, y) = y − x2,

g(x, y) = y − 1.

We can parametrise C ′ as {(t, 1) : t ∈ R}. Restricting f(x, y) along this map
γ : R→ R2; t 7→ (t, 1) we see that γ(t) = (t, 1) is in C if and only if t is a solution of
f(γ(t)) = 1− t2 = (1− t)(1 + t). So we get 2 = 1 · 2 solutions.

On the other hand if we had chosen

g(x, y) = y + 1,

then we would end up with 1 + t2 which has no real solutions. However, if we use C
instead of R, this problem goes away.

R ; C

The case
g(x, y) = y

produces f(γ(t)) = t2 which has only one solution. We can correct for this by taking
into account the square. The modern way of doing this is to move from geometry to
algebra.

geometry ; algebra
affine varieties ; rings

C2 ; C[x, y]
curves in C2 ; quotients of C[x, y]
intersection ; tensor product

Then we have

# points in the
intersection = dimC

(
C[x, y]
y − x2

⊗C[x,y]
C[x, y]

y

)
= dimC

C[t]
t2

= 2.
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Example 4. Take

f(x, y) = x,

g(x, y) = x− 1.

Then C and C ′ are parallel lines, so there are no points in common.

We fix this problem by adjoining the points at infinity where those two parallel
lines should meet. We do this by embedding C2 into C3; (x, y) 7→ (x, y, 1). Now we
can identify points of C2 with the non-horizontal lines through the origin.

C2 ∼= {{(at, bt, ct) ∈ C3 : t ∈ C} : c 6= 0}
(x, y) 7→ {(xt, yt, t) ∈ C3 : t ∈ C} =: (X : Y : 1)

Our two lines f(x, y) = x and g(x, y) = x−1 now correspond to planes f(X,Y, Z) =
X and g(X,Y, Z) = X−1 which meet in the line (0 : 1 : 0) = {(0, t, 0) ∈ C3 : t ∈ C}.

With a little more thought, one can see that the horizontal lines C3 are in bijection
with parallel classes of lines in C2. We define

CP2 := { lines in C3 through the origin}.

Polynomial functions
∑

aijx
iyj ∈ C[x, y] of degree d on C2 ⊆ CP2 now correspond

to homogeneous polynomials
∑

aijX
iY jZd−i−j ∈ C[X,Y, Z] of degree d.

affine plane ; projective plane
points in C2 ; lines through the origin in C3

polynomials in C[x, y] ; homogeneous polynomials in C[X,Y, Z]
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Theorem 5 (Bezout’s Theorem, Version II). Suppose k is an algebraically closed
field, and f(X,Y, Z), g(X,Y, Z) ∈ k[X,Y, Z] are two homogeneous polynomials of
degree d and e respectively, with corresponding curves C,C ′ ⊆ P2. Then, if C ∩C ′ is
finite, we have

|C ∩ C ′| = d · e

as long as points are counted wth multiplicity.

Now what about higher dimension? The above adjustments (algebraically closing
the field, moving to projective space, counting with multiplicity) are quite robust.

Theorem 6 (Bezout’s Theorem, Version III). Suppose k is algebraically closed,
f1, . . . , fn ∈ k[X0, . . . , Xn] are n homogeneous polynomials of degrees d1, . . . , dn re-
spectively, with corresponding hypersurfaces V1, . . . , Vn. Then, if ∩iVi is finite, we
have

|
∩
i

Vi| =
∏
i

di

as long as points are counted wth multiplicity.

Let’s try and do better. Let’s consider varieties of higher codimension.

Example 7 (Ravi Vakil). Let V = P0 be a plane in P4, and let V ′ = P1 ∪ P2 be the
union of two different planes such that P1 ∩ P2 is a single point. We want to know
what

V ∩ V ′

looks like as V varies. Recall that planes in P4 correspond to 3-dimensional subspaces
of C5. So for P,Q any two planes in P4, the intersection P ∩ Q is either a point, a
line, or a plane (P ∩ Q cannot be empty because 3 + 3 > 5). We want V ∩ V ′ to
be finite, so we only care about the case that P0 ∩ P1 and P0 ∩ P2 both consist of a
single point. So ignoring multiplicity, we have

|V ∩ V ′| = 1 or 2 (counting without multiplicity)

according to whether V ∩ V ′ = P1 ∩ P2 or not. One can check that in the latter
case, there is no multiplicity. So in the former case we want the unique point to have
multiplicity 2.

Choosing coordinates appropriately,1 we can assume that the point is the origin
1Let e0 ∈ C5 be a generator for P1 ∩ P2 = V ∩ V ′ ∼= C ⊆ C5, let e1, e2 be any two linearly

independent vectors in P1\(P1∩P2) and e3, e4 any two linearly independent vectors in P2\(P1∩P2).
Let a, b, c be generators for P0. Since V ∩ V ′ = P1 ∩ P2 we can assume a = e0, and b =

∑4
i=1 biei

and c =
∑4

i=1 ciei. If (b1, b2) = λ(c1, c2) for some λ, then b − λc ∈ P2, contradicting the fact that
P0 ∩ P2 is a one dimensional vector space in C5. Similarly, we can’t have (b3, b4) = λ(c3, c4). In
other words, the matricies [b1b2

c1
c2 ] and [b3b4

c3
c4 ] are invertible. Using the inverses of these matricies, we

can replace e1, e2, e3, e4 with f1, f2, f3, f4 such that b = f1+f3 and c = f2+f4. Then e0, f1, f2, f3, f4
is the desired basis.
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in A4 ⊆ P4, and our three planes (intersected with A4 are:

A4 ∩ P0 : w = y;x = z

A4 ∩ P1 : w = x = 0

A4 ∩ P2 : y = z = 0

So A4 ∩ V ′ has coordinate ring C[w, x, y, z]/(w, x)(y, z) and A4 ∩ P0 has coordinate
ring C[w, x, y, z]/(w−y, x−z). Now,

C[w, x, y, z]
(w, x)(y, z)

⊗C[w,x,y,z]
C[w, x, y, z]
(w−y, x−z)

∼=
C[w, x]

(x2, xy, w2)

which has dimension 3. So, in fact, we get

|V ∩ V ′| = 3 or 2 (counting with multiplicity)

As we slide P0 around, our two distinct points have joined to become three points.
Where did the extra point come from?

The solution to the above problem came from Serre. The idea is that we should
be using “homotopy types” not just sets.

sets ; homotopy types
abelian groups ; chain complexes of abelian groups
R-modules ; chain complexes of R-modules

For use in algebra, often chain complexes are a good enough model for homotopy
types, so we will use these here. A (connective) chain complex is a sequence of
R-modules

M• = (· · · →M2
d(2)→ M1

d(1)→ M0)

such that d(n− 1) ◦ d(n) = 0 for every n. A morphism of chain complexes M• → N•
is a sequence of morphisms Mn → Nn forming commutative squares. The homology
of a chain complexes is

Hn(M) =
ker(Mn →Mn−1)

im(Mn+1 →Mn)

A morphism f : M• → N• inducing an isomorphism on homology is called a quasi-
isomorphism.
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Principle. Quasi-isomorphism type is what we actually want to work with, not
specific representatives of a given quasi-isomorphism class.

This is a version of the principle that topological spaces should be studied up to
homotopy type. That is, if we can bend or stretch a space X into a space Y , then X
and Y should be considered as the same. We will make this formal next week.

There is a canonical extension of ⊗ to ChR, namely

(M• ⊗N•)n =
⊕
i+j=n

Mi ⊗Mj, d(m⊗ n) = (dm)⊗ n+ (−1)deg mm⊗ dn

but it does not preserve quasi-isomorphisms. Indeed, M = [· · · → 0 → Z 2→ Z] is
quasi-isomorphic to N = [· · · → 0 → 0 → Z/2] but M ⊗ N is not quasi-isomorphic
to N⊗N . However, there is a sub-category Chfree

R ⊆ ChR on which ⊗ does preserves
quasi-isomorphisms, the category of complexes of free modules, and every complex
is quasi-isomorphic to one in Chfree

R . In fact, there is even a functor

F : ChR → Chfree
R

equipped with a natural transformation F(−) → id such that FM• → M• is a
quasi-isomorphism for every M•. So

⊗L : (M•, N•) 7→ FM• ⊗FN•

does preserves quasi-isomorphisms in both variables.

Exercise 8.
1. Show that if 0 → A → B → C → 0 is a short exact sequence of R-modules,

and F = ⊕i∈IR is a free R-module, then 0 → A⊗F → B⊗F → C⊗F → 0 is
a short exact sequence.

2. Show that if M• → N• is a quasi-isomorphism and F = ⊕i∈IR is a free module,
then M• ⊗ F → N• ⊗ F is a quasi-isomorphism.

3. Show that ⊗ commutes with cone2, shift3, and colimit4 in each variable.

2Cone(M•
f→ N•)n = Mn−1 ⊕Nn with differential d(m,n) = (dm, dn+(−1)deg mfm).

3(M•[1])n = Mn−1 with the same differentials.
4Colimits of chain complexes are computed degere-wise. That is (lim−→λ

Mλ,•)n = lim−→λ
Mλ,n.
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4. Let F• be a complex of free modules. Let τ≤nF• be the chain complex such
that (τ≤nF )m = Fm if m ≤ n and 0 otherwise. Show that:
(a) τ≤nF = Cone(Fn[n−1]→ τ≤n−1F ) and F• = lim−→(τ≤0F→τ≤1F→ . . . ).

5. Let F• be a complex of free modules and M• → N• a quasi-isomorphism. Show
that M• ⊗ F• → N• ⊗ F• is a quasi-isomorphism.

If we have a specific M•, N•, since we only care about quasi-isomorphism class,
not the actual chain complexes, we can choose any convenient quasi-isomorphisms
F• →M•, G• → N• with F•, G• ∈ Chfree

R to calculate ⊗L. We don’t have to use the
FM• and FN• coming from choice of F(−) → id. In fact, for a fixed F• ∈ Chfree

R

the functor
−⊗ F• : ChR → ChR

preserves quasi-isomorphisms so we only need to choose a nice model F• of N•.
Indeed, if F• → N• is a quasi-isomorphism, then FF• → FN• will be a quasi-

isomorphism,5 so

M• ⊗ F• ← (FM•)⊗ F• ← (FM•)⊗ (FF•)→ (FM•)⊗ (FN•)

are quasi-isomorphisms.
The extension of the function dim : C-Mod→ Z to ChC is

dimM• =
∑
i∈Z

(−1)i dimHiM.

Now let’s come back to the above example. Instead of

C[w, x, y, z]
(w, x)(y, z)

⊗C[w,x,y,z]
C[w, x, y, z]
(w−y, x−z)

(1)

we should have been considering

C[w, x, y, z]
(w, x)(y, z)

⊗L
C[w,x,y,z]

C[w, x, y, z]
(w−y, x−z)

. (2)

To do this calculation, we choose a term-wise free complex representing C[w,x,y,z]
(w−y,x−z)

.

F• :=

[
R

(w−y,x−z)−→ R⊕R
(x−z,y−w)−→ R

]
(3)

where R := C[x,w, y, z].

Exercise 9.
1. Suppose that R is a ring and f ∈ R a non-zero divisors. Show that [R f→ R] is

quasi-isomorphic to R/f .

5Consider the square
FF•
↓
F•

→

→

FN•
↓
N•

.
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2. Suppose that R is a ring, I ⊂ R an ideal, f ∈ R an element which is a
non-zero divisor in R/I (and R), and F• a chain complex of free modules
quasi-isomorphic to R/I. Show that Cone(F•

f→ F•) is quasi-isomorphic to
R/I + (f).

3. Suppose that R is a ring and f1, . . . , fn ∈ R are elements such that fi is not a
zero divisor in R/(f1, . . . , fi−1). By induction, show that

[R
f1→ R]⊗ · · · ⊗ [R

fn→ R]

is quasi-isomorphic to R/(f1, . . . , fn).
On the other hand, we have the short exact sequence of R-modules

0→ C[w, x, y, z]
(w, x)(y, z)

→ C[w, x]⊕ C[y, z]→ C→ 0

(morphisms send the various coordinates to zero) which is the algebraic manifestation
of the fact that V is two planes glued at a point. Indeed, a function on V = P1 ∪ P2

should be the same as a function on P1 and a function on P2 which agree on P1∩P2.
Applying −⊗R F• to this, we get a short exact sequence of chain complexes,

0→ C[w, x, y, z]
(w, x)(y, z)

⊗R F• →
(
C[w, x]⊗R F•

)
⊕
(
C[y, z]⊗R F•

)
→ C⊗R F• → 0.

By the Snake Lemma, this leads to a long exact sequence of homology groups
. . . =<BCF������ // H3

// 0 // 0 =<BCF������� // H2
// 0 // C =<BCF������� // H1
// 0 // C⊕ C =<BCF������� // H0

// C⊕ C // C
From this we can read directly that

dimCHn = 0 for n > 1

dimCH1 = 1

dimC H0 = 3

So the multiplicity according to Serre is
2 = 3− 1 + 0− 0 + 0− ...

as expected.
Question 10. Find a geometric interpretation of H1.
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