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1 Weil conjectures

We began the course with the question:

Question 1. Given a smooth projective variety X/F,, how many F-points does X
have for each n? That is, calculate

Z(X,t) = exp (Z |X<Fqn>|§) .

n=1
This lead to the Weil conjectures:
Theorem 2 (Weil conjectures). If X is a smooth projective variety of dimension d

over .
1. (Rationality) Z(X,t) is a rational function of t. In other words we have

Z(X,t) € Q@) N Q[[t]] € Q((1))-

2. (Functional equation) There is an integer e such that
Z(X,q %) = 2" Z (X, t).
3. (Riemann Hypothesis) We can write
Pi(t)Ps(t) ... Pyg_1(t)
Po(t)Pa(t) ... Pyy(t)
with Py(t) € Z[t], and such that the roots of Pi(t) have absolute value q~"/2.
Moreover, Py(t) =1 —t and Pyy(t) = 1 — ¢‘t.

4. (Betti numbers) If X comes from a smooth projective variety over O, C C for
some number ring O and prime p (e.g., Op = Zgy)),

deg P;(t) = dimg H'(X(C), Q).

Z(X,t) =

The strategy was to develop a cohomology theory
H* : (Varieties/k)” — graded Q-vector spaces

for arbitrary varieties over any field k£, which satisfied the following properties for
smooth projective varieties X.



1. (Finiteness) dim H*(X) is finite, and H*(X) =0 for i € {0,1,...,2dim X }.
2. (Poincaré Duality) There is a canonical isomorphism H24mX(X) = Q and a
natural perfect pairing

HI(X) x H*=(X) - Q
3. (Lefschetz Trace Formula)

2dim X

X (Fg)l = > (=1)"Tx(¢}")

1=0

where Xz = X Xp, F,, ¢ : Xy, — Xp, is the Frobenius morphism, and
bi: Hi(XFq) — Hi(XFq) is the induced morphism.
4. (Compatibility) If k£ = C then H*(X) is isomorphic to singular cohomology.
Then,

(Lefschetz Trace Formula) = (Rationality)
(Poincaré Duality) = (Functional equation)
(Compatibility) = (Betti numbers)
Eigenvalues ; ; of ¢i|Hi(Xﬂ3q)
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satisfy |a; ;| = ¢"/? = (Riemann Hypothesis)

Very early Serre showed that due to the existence of supersingular elliptic curves,
there cannot be any cohomology theory with the above properties taking values in
Q-vector spaces.

However, we saw in the last lecture that for curves, étale cohomology with Z/I"-
coefficients has Poincaré Duality and

vanky i Hiy(Xg,  Z/1") = dimg Hi,y(X(C), Q).

2 [-adic cohomology

This leads us to define:

Definition 3.
HL(X, Q1) — (@Hm, Z/m) 2 Q. W

n>1
Then we obtain the following.

Theorem 4. The Q;-vector spaces Hi (X, Q) satisfy (Finiteness), (Poincaré Dual-
ity), (Lefschetz Trace Formula), and (Riemann Hypothesis).

The Poincaré Duality that we saw in the last lecture was a special case of a much
more general form of duality which is encoded in a six functor formalism.



Theorem 5. For “nice” morphisms between “nice” Z[1/l]-schemes f:Y — X, and
“nice” objects E € D(Xe,Z/1™) there are adjunctions

(f% fo) s D(Yer, ZJ1") = D(Xer, Z/1%)
(fis /') : D(Xer, Z/1") = D(Yer, Z/1")
(— ® B, #om(E, —)) : D(Xe, Z/1") = D(Xey, Z/1")

satisfying a number of properties such as a Proper Base Change, Kiinneth, and Pro-
jection formulas.

Remark 6. In this framework, (Duality) becomes an isomorphism
fortom(F, f'G) = AHom(HF,G). (2)
In order to have these functors for sheaves of Z;-modules, some work is needed.

Definition 7 ([BS, Def.3.5.3]). For a scheme X, define Shv.(X,Z/I*) to be the
category of N-indexed systems

== B —

in Shve (X, Ab) such that F,, € Shve (X, Z/I™) for each n. The derived category of
this abelian category is denoted by D(Xe, Z/1®). We consider its full subcategory

Dpie(X,Zy) € D(Xe, Z/1°)
consisting of those systems of complexes (--- — Ky — K; — Kj) such that each
Ko 8 20— K,
is an isomorphisms in D(X, Z/1™).

Theorem 8 (Ekedahl). Under reasonable hypotheses on X, the functors f*, f., fi, ', ®, #om
can be extended to the categories Dpp(X,Z;) in a sensible way.

We also have a very nice Galois theory.

Definition 9. Let X be a connected scheme, T — X a geometric point, FEty the
category of finite étale X-schemes, and consider the functor

¢ : FEty — Set; Y — Yz = homx (7, Y).
The étale fundamental group of X is the profinite group
(X, T) = Aut(®).

That is, an element of 7$*(X,T) is a system (0y)yerrt, Of automorphisms oy :
®(Y) = ®(Y) indexed by objects Y € FEtx subject to the naturality condition that
for every morphism Y’ — Y in FEtx the corresponding square is commutative.
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Example 10.
1. If X is the spectrum of a field k£ then

X, T) = Gal(k*? /k).
2. If X is a smooth C-variety then
™ (X, T) = m(X(C))"

the profinite completion! of the usual fundamental group. [Szamuely, Galois
groups and fundamental groups, Thm 5.7.4], [SGA1, Exposé XII, Cor 5.2]

Theorem 11 (Stacks Project, Tags 0BNB, 0BMY,0BN4). Let X be a connected
scheme and T — X a geometric point. Then ® induces an equivalence of categories

FEtx = 7{"(X,7)-FinSet
with the category of finite sets equipped with a continuous 75 (X, T)-action.

There is also a linear version of this. Recall that Locx (R) is the category of local
systems with R-coefficients. That is, sheaves F' of R-modules such that for some
covering {f; : U; — X}, each fF is isomorphic to the constant sheaf R" for some n.
Similar to the case of topological spaces, m; determines the category of local systems.

Proposition 12. If X is a connected locally noetherian Z)-scheme, then there is
an equivalence of categories

continuous finite dimensional }

Q ®z, lim Locx (Z/1") = { Qi-linear representations of w§'(X)

All of this is not quite as nice as it could be though.

Problem 13.
1. The definition H! (X,Q,) = (liﬂlan‘it(X’ Z/l")> ®z, Qi is a ad hoc, and

not very pleasant to work with.

The categories D(Xe, Z/1®) are horrible to work with.

The equivalence between local systems and mi-representations is no longer true
in general if one uses, honest Q;-local systems instead of the ad hoc Q ®z,
Locx(Z/1™) (c¢f. [Bhatt-Scholze, Pro-étale topology, Example 7.4.9] for an ex-
ample due to Deligne).

o o

Question 14. So why can’t we just use sheaves of Z;-coefficients?

‘ Representability!

!The profinite completion of a group G is the inverse limit over all surjective maps to finite
groups limg_.p F.



Finite coefficients work so well due to the equivalence of categories.

Theorem 15. There is equivalence of categories
FEt(X) = Locx (FinSet)

between the category of finite étale X -schemes and the category of locally constant
étale sheaves.

This suggests that we should enlarge the category Etx to include filtered limits.

3 The proétale topology

Definition 16. A morphism of schemes Y — X is weakly étale if both Y — X and
Y - Y xx Y are flat.

Example 17.
1. Etale morphisms are weakly étale.
2. If ... =Y,—Y;—Y) is a sequence of étale X-schemes, then limY,,— X is weakly
étale.
3. In particular, lim,en(Uz/m)X — X is weakly étale.

Exercise 18. Show that for any Y € Et,x we have
homy (Y, limy,en(Uz/m) X) = Zy(Y)

where 7Z; is the constant étale sheaf associated to Z;. That is, Z; is representable by
the scheme limy,en(Uz/m) X

Definition 19. The category Xoe; of weakly étale X-schemes is equipped with the
coarsest topology? such that:
1. Zariski coverings are coverings, and
2. {Spec(B) — Spec(A)} is a covering for every surjective Spec(B)— Spec(A) in
Xproet'

Theorem 20. Let X be a connected noetherian scheme.
1. We have

Hi(Xproeta Ql) = Hi(Xeta Ql)

where the right hand side is the limit Fq.(1), and the left hand side is honest
sheaf cohomology of Q.
2. The six functors of Theorem 5 work for the honest derived categories D(Xproet, Zi)-

2In other words, {Y; — Y} is a covering if there exists a Zariski covering {U; — Y}jey,
surjections V; — Uj, a map o : J — I and factorisations V; — Y,;) — Y.



3. If X = Spec(k) is the spectrum of a field, then the subcategory of quasicom-
pact quasiseparated objects XL is canonically isomorphic to the category of

profinite continuous (not necessarily finite) Gal(k*? /k)-sets

Profinite sets equipped with a
qcqs  ~v
Spec(k)proet = { continuous Gal(k*®/k) action.

4. Honest Q;-local systems on X are equivalent to continuous representations of

t . . .
T X) on finite dimensional Q-vector spaces.

4 Proétale schemes

Definition 21. A morphism Spec(B) — Spec(A) of affine schemes is proétale if
there exists a cofiltered® system (By)aea of étale finite presentation A-algebras such
that B =lim B). The system (B,) is called a presentation for B.

Exercise 22. Let (B))ea be a cofiltered system of rings. Let B(C') denote the set
of prime ideals of a ring C', and Spc(C') the underlying topological space of Spec(C'),
i.e., Spc(C) is P(C) equipped with its Zariski topology.
1. Show that
P (lim B) = lim P (By).
2. Show that for any f € B, with image f € lim B), the set D(f) C P(lim By)

of primes not containing f is the preimage of the set D(f) C B(By) of primes
not containing f, under the canonical map 7 : P(lim By) — PB(B,). That is,

show D(f) =7~ (D(f)).
3. Deduce that
Spe(lim By) = lim Spe(By).

Exercise 23. Let k be an algebraically closed field. Using Exercise 22, show that
for every profinite set S, there exists a proétale k-scheme Spec(B) — Spec(k) with
S = Spc(B).

Exercise 24. Let k be a field and k£ C k*P a separable closure. Show that the
Spec(k*?) — Spec(k) is proétale.

Exercise 25. Suppose that Spec(B) — Spec(A), Spec(C') — Spec(A) are proétale.
Show that Spec(B) Xspec(a) Spec(C) — Spec(A) is proétale. Hint.*

3A system is cofiltered if (i) it is nonempty, (ii) for every pair of objects By, By there is a third
object By~ and morphisms in the system By — By», By, — By, and (iii) for any pair of parallel
morphisms in the system By = B): there exists a morphism in the system By, — By~ such that
the two compositions are equal.

‘Let B = lim By and C' = li_n}ueM C,, be presentations and consider the system (By ®4

Cu)()\,u)eAxM-



Exercise 26. Show that
Spc(k*? @y k°P) = Gal(k* /k)
as topological spaces. Hint.” Hint.

Exercise 27. Let A be a ring and p € Spec(A) a point. Show that the canonical
morphism Spec(A,) — Spec(A) is proétale.

Example 28. Let p, be the nth prime number (so p; = 2,p2 = 3,p3 = 5,ps =
7,p5 = 11,pg = 13,p; = 17, ...). For any n € N, the map

X, := Spec(Z[L

1 1
P17 pn

J) (Wi, Spec(Zy,))) — Spec(Z)

is proétale. Moreover, there are canonical morphisms X, ,; — X,, induced by the
canonical proétale morphisms

Spec(Z]|

) L1 Spec(Zy,,,,) — Spec(Z[-,- .., 5-]).

1 1 1
p1’ """ pn? Pt p1

Consequently, X :=lim X, is a proétale Spec(Z) scheme. As a set, we have

X ={n} I Up1{ni,p:})

where {n;,p;} correspond to the points of Spec(Z,,)), and n corresponds to the
generic points of the Spec(Z[pil, ce pin])’s. The open sets of X are disjoint unions of
sets of the form

{mi}, {ni,pi}s X\ (U {mi pi})-
In particular, every open covering of X can be refined by one which is a finite family
of sets of the above form. These sets’ corresponding rings of functions are

Q  Zgpy,  Mm Z[ o] X Ly X Ly X X Lipy))-

The latter is a subring of [];. y Zg,) with Z[-, ..., -] embedded diagonally into

[Lis, Zp,)- Here is a picture.

e Ja s T2 1 lopen points
ndfo. 334 op3 .pz .131 }closed points

Exercise 29. Consider the X from Example 28. Show that for every open covering
{U; — X}ier the associated morphism IIU; — X admits a section. Deduce that for
every open covering {U; — X },c; there exists a finite decomposition X = L, V;
into clopens,” a map o : {1,...,n} — I and factorisations V; C U,; C X.

®Recall that if L/k is a (finite) Galois extension, then Spec(L ®y L) = g1 k) Spec(L).

SRecall also that a separable closure k*“P/k is the union of the finite Galois subextensions
kCLCkE* and Gal(k*P/k) = lim, . _ . Gal(L/k).

"Le., each V; C X is both closed and open.



