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In this lecture we show how the category Shvet(X) of étale sheaves on a
scheme X can be reconstructed from Shvet(Z) sheaves on a closed subscheme
Z ⊆ X and Shvet(U) sheaves on its open complement U = X −Z via a functor
i∗j∗ : Shvet(U) → Shvet(Z), see Theorem 4.1.

The material in this lecture works for quasi-compact quasi-separated schemes
(e.g., Noetherian and separated), where we recall that étale morphisms are by
definition locally of finite presentation (this means finite type if working only
with Noetherian schemes).

However, the main application in the next lecture will be to curves, and in
the second half of the course the main example will be things of dimension zero.

So feel free to assume all schemes are dimension ≤ 1.
References for this section include:

[Maclane, Categories for the working mathematician]
[Milne, Etale cohomology]
[Stacks Project]

1 Presheaf adjunctions

Definition 1.1. Suppose that π : C → D is a functor. We denote the functor
induced by composition as

πp : PSh(D) → PSh(C);

F %→ F ◦ π

Remark 1.2. If π : C → D and θ : D → E are two functors, we have

(θ ◦ π)p = πp ◦ θp.

Recall that given a functor C → D and an object Y ∈ D, the comma category

(Y ↓ π) is the category whose objects are pairs (X,
Y

↓
π(X)

) consisting of an object

X of C and a morphism X → π(Y ) of D. Morphisms are those morphisms of
C making a commutative triangle. That is

hom((X,
Y

↓
π(X)

), (X ′,
Y ′

↓
π(X′)

)) =

!
X → X ′ | ↙

π(X)

Y

→
↘

π(X′)

commutes

"
.
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See [MacLane, Categories for the working mathematician, pp.45-47].

Definition 1.3. Let π : C → D be a functor and suppose C is small. Give a
presheaf F ∈ PSh(C) and Y ∈ D define

(πpF )(Y ) = lim−→
Y→π(X)

F (X)

where the colimit is over the comma category (Y ↓ π).

Remark 1.4. There is also a right adjoint to πp defined in an analogous way,
but we will not use it.

Exercise 1.5. Using the universal property of the colimit, show that a mor-
phism Y → Y ′ in D induces a morphism (πpF )(Y ′) → (πpF )(Y ), and that this
makes πpF into a presheaf on C. Hint.1

Show that a morphism of presheaves F → G induces a morphism πpF →
πpG, and that this makes πp into a functor

πp : PSh(C) → PSh(D).

Exercise 1.6. Show that πp is the unique colimit preserving functor making
following square commutative

C
π !!

h−

""

D

h−

""
PSh(C)

πp
!! PSh(D)

Here h is the Yoneda functor X %→ hom(−, X). So in particular, show that

πphX = hπX

for any X ∈ C.

Exercise 1.7 (Harder). Let G ∈ PSh(D) be an arbitrary presheaf.

1. Show that there is canonical isomorphism hom(πphY , G) ∼= hom(hY ,πpG).
Here hY = hom(−, Y ). Hint.2

2. Show that any presheaf F ∈ PSh(C) can be written as a colimit of repre-
sentable presheaves. Hint.3

3. Deduce that for any F ∈ PSh(C) (not necessarily representable) there is
a canonical isomorphism

homPSh(D)(π
pF,G) ∼= homPSh(C)(F,πpG).

1Note first that there is a canonical functor (Y ′ ↓ π) → (Y ↓ π).
2Use Exercise 1.6 and note that the right side of the isomorphism is (πpG)(Y ).
3Consider the comma category (h ↓ F ) where h : C → PSh(C);X #→ hom(−, X) is Yoneda.
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Corollary 1.8. The pair (πp,πp) is an adjunction PSh(D) ⇄ PSh(C).

Exercise 1.9. Show that for any two composable functors C
π→ D

θ→ E we
have

θp ◦ πp = (θ ◦ π)p.
Hint.4

Example 1.10. Suppose that f : Y → X is a morphism of topological spaces,
and let π : Op(X) → Op(Y );U %→ f−1U be the induced functor between
the categories of open subsets of X,Y . Then πp is the usual push-forward
PSh(Y ) → PSh(X) and πp is the usual inverse image of presheaves functor
PSh(X) → PSh(Y ).

Example 1.11. If C is any small category and π : C → ∗ the unique morphism
towards the category ∗ with a unique object, and a unique morphism (i.e., id),
then via the identifications PSh(∗) ∼= Set and PSh(C) ∼= Fun(Cop, Set), the
functor πp is identified with the functor

lim−→ : Fun(Cop, Set) → Set

F %→ lim−→
c∈C

F (c)

Exercise 1.12. Suppose that C is a category with fibre products, e.g., C =
Et/X for some scheme X.

1. Show that for every object V ∈ C there is an adjunction

γ : C/V ⇄ C : π

2. Show that
γp ∼= πp

Hint.5 Deduce that in this case we have

πphY = hW×Y .

Remark 1.13. In the situation of Exercise 1.12 we have three functors, each
one left adjoint to the one on its right

γp ⊢ γp ∼= πp ⊢ πp.

Exercise 1.14 (Base change). Suppose that V → X is an étale morphism of
schemes, Y → X any other morphism of schemes, and consider the cartesian
square

Y ×X V
b !!

g

""

V

f

""
Y

a
!! X

4Use Exercise 1.2, Corollary 1.8, and uniqueness of adjoints.
5Use uniqueness of adjoints.
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1. Show that the square

Et/Y×XV

γ

""

Et/V
π##

γ

""
Et/Y Et/Xπ

##

is commutative (up to natural isomorphism).

2. Deduce that the two squares

PSh(Et/Y×XV )
πp !! PSh(Et/V ) PSh(Et/Y×XV )

γp

""

PSh(Et/V )
πp
##

γp

""
PSh(Et/Y )

γp

$$

πp

!! PSh(Et/X)

γp

$$

PSh(Et/Y ) PSh(Et/X)
πp
##

are commutative (up to natural isomorphism).

2 Sheaf adjunctions

Definition 2.1. Suppose that C,D are sites, i.e., categories equipped with
Grothendieck topologies. A functor π : C → D is called continuous if for every
sheaf F on D, the presheaf πpF is a sheaf on C.

Exercise 2.2. Suppose π : C → D sends fibre products to fibre products. Show
that π is continuous if it sends covers to covers.

Example 2.3. If Y → X is a morphism topological spaces then the induced
morphism of sites Op(X) → Op(Y ) is continuous.

Example 2.4. If f : Y → X is a morphism of schemes, then

π : EtX → EtY ; W %→ Y ×X W

is continuous. If f is an étale morphism of schemes then

γ : EtY → EtX ; (W→Y ) %→ (W→Y→X)

is also continuous.

Definition 2.5. Suppose π : C → D is a continuous functor between sites. The
induced functor on sheaves is denoted

π∗ : Shv(D) → Shv(C).

The composition of πp with sheafification L : PSh(D) → Shv(D) and the inclu-
sion ι : Shv(C) → PSh(C) is denoted

π∗ = L ◦ πp ◦ ι : Shv(C) → Shv(D).
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Exercise 2.6. Suppose we are in the situation of Definition 2.5. Show that

π∗ : Shv(C) ⇄ Shv(D) : π∗

is an adjunction. Hint.6

Exercise 2.7. Show that if C
π→ D

θ→ E are continuous functors between sites
then (θ ◦ π)∗ = π∗ ◦ θ∗ and θ∗ ◦ π∗ = (θ ◦ π)∗.

Definition 2.8. If f : Y → X is a morphism of schemes, we write

f∗ := π∗, f∗ := π∗

where π is Et/X → Et/Y ;W %→ Y ×X W . If f is étale, so π has a left adjoint
γ : (W→Y ) %→ (W→Y→X) then we write

f! := γ∗

Note that since γ∗ = π∗, we get three functors, each left adjoint to the one on
its right

f! ⊢ f∗ ⊢ f∗.

Lemma 2.9. Let f : Y → X be a morphism of schemes. Then f∗ preserves
small colimits and finite limits of diagrams of sheaves. In particular, it preserves
exact sequences of sheaves of abelian groups.

Proof. The functor f∗ automatically preserves colimits because it is a left ad-
joint. To show that it preserves finite limits it is sufficient to show that ι, a, and
πp preserve finite limits.

ι. The functor ι is a right adjoint, so preserves all small limits.
L. The sheafification functor L preserves finite limits by its construction.
πp. The functor πp doesn’t necessarily preserve finite limits in general,

cf.Example 1.11, however when π is W %→ Y ×XW , the under categories (V ↓ π)
admit finite limits. That is, they are filtered. Consequently, the colimits we used
to define πp are filtered colimits in this case, and filtered colimits commute with
finite limits.

Exercise 2.10. Let f : Y → X and X ′ → X be morphisms of schemes. Show
that we have

f∗hX′ = hY×XX′ .

Hint.7

If f is étale, and V → Y an étale morphism, show that we have

f!hV = hV .

6Note that Shv → PSh is fully faithful.
7Use adjunction and Yoneda.
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Exercise 2.11 (Base change). Suppose that V → X is an étale morphism of
schemes, Y → X any other morphism of schemes, and consider the cartesian
square

Y ×X V
b !!

g

""

V

f

""
Y

a
!! X

Show that the two squares

Shvet(Et/Y×XV )
b∗ !! Shvet(Et/V ) Shvet(Et/Y×XV )

g!

""

Shvet(Et/V )
b∗##

f!

""
Shvet(Et/Y )

g∗

$$

a∗
!! Shvet(Et/X)

f∗

$$

Shvet(Et/Y ) Shvet(Et/X)
a∗
##

are commutative (up to natural isomorphism). That is, we have

g!b
∗ ∼= a∗f!, f∗a∗ ∼= b∗g

∗.

Hint.8

3 Immersions

For ease of exposition, from this point on we work with sheaves of abelian
groups. Everything below also has a version for sheaves of sets.

Proposition 3.1. Suppose that i : Z → X is a closed immersion of schemes.
Then the adjunction counit

i∗i∗ → id

is an isomorphism.

Proof. If suffices to prove that for every sheaf F and geometric point x → Z we
have (i∗i∗F )x ∼= Fx. Since

9 (i∗−)x → (−)x is an isomorphism, we need to show
that (i∗F )x → Fx is an isomorphism. Explicitly, this is the morphism

lim−→
x→W→X

F (Z×XW ) → lim−→
x→V→Z

F (V )

induced by the functor10 Φ : (x ↓ Et/X) → (x ↓ Et/Z), W %→ Z ×X W . More
explicitly, it is the morphism

lim−→
W∈(x↓Et/X)

F (Φ(W )) → lim−→
V ∈(x↓Et/Z)

F (V ).

8Use Exercise 1.14.
9This is because (−)x = ι∗ where ι : x → Z is the structural morphism.

10Here, (x ↓ Et/X) is the category of factorisations x → V → X with V ∈ Et/X and similar
for (x ↓ Et/Z).
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So it suffices to show that Φ is cofinal. This follows from the following two
geometric facts which we take as a black box.

1. For every factorisation x → V → Z with V ∈ Et/Z , there exists a factori-
sation x → W → X with W ∈ Et/X such that Z ×X W ∼= V . [Stacks
Project, 04FW].

2. For every W,W ′ ∈ Et/X and morphism f : Z ×X W → Z ×X W ′ in Et/Z ,

there exist morphisms W
g← W ′′ h→ W ′ in Et/X such that Z ×X g is

an isomorphism and f is the morphism (Z ×X h) ◦ (Z ×X g)−1. [Stacks
Project, 04FV].

Exercise 3.2. Suppose that i : Z → X is a closed immersion and j : U → X
the open complement. Show that a sheaf of abelian groups F is zero if and only
if

j∗F = 0 and i∗F = 0.

Hint.11

Deduce that a morphism of sheaves φ : F → G is an isomorphism, resp.
monomorphism, resp. epimorphism,12 if and only if j∗φ and i∗φ are isomor-
phisms, resp. monomorphisms, resp. epimorphisms. More over, a sequence

0 → F → G → H → 0

of sheaves of abelian groups is exact if and only if it is exact after applying j∗

and i∗.

Exercise 3.3. Suppose that i : Z → X is a closed immersion and j : U → X
the open complement. Show the following identities. Hint.13 Hint.14

j∗j∗ = id, j∗j! = id,
j∗i∗ = 0, i∗j! = 0

Using this, show that for any sheaf F ∈ Shvet(X) the sequence

0 → j!j
∗F → F → i∗i

∗F → 0

is exact.

Exercise 3.4. Suppose that i : Z → X is a closed immersion and j : U → X is
the open complement. Let F ∈ Shvet(X) be a sheaf.

1. Show that j!, j∗, and i∗ are fully faithful.

11Recall that a sheaf of abelian groups F ∈ Shvet(X) is zero if and only if the stalk Fx is
zero for every geometric point x → X.

12By monomorphism, resp. epimorphism, we mean that kerφ ∼= 0 resp. cokerφ ∼= 0.
13Use Exercise 2.11.
14Consider the cartesian squares for U ×X U ∼= U and Z ×X U ∼= ∅.
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2. Show that F is in the image of j! if and only if

F (V ) = 0 for all V ∕∈ EtU . (1)

3. Show that F is in the image of j∗ if and only if

F (V )
∼→ F (V ×X U) for all V ∈ EtX . (2)

4. Show that F is in the image of i∗ if and only if

F (V ) = 0 for all V ∈ EtU . (3)

4 The localistion sequences

To recap, associated to a closed immersion i : Z → X and its open complement
j : U → X we now have five functors

Shvet(Z)
i∗ !! Shvet(X)

i∗##
j∗ !! Shvet(U)
j∗##

j!##

satisfying the identities

j∗j∗ = id, i∗i
∗ = id, j∗j! = id,

j∗i∗ = 0, i∗j! = 0

where the outer four identities follow directly from base change, i.e., they’re
formal, and the central one uses geometric facts about étale morphisms.

Using these five functors, we will describe Shvet(X) as the comma category

T (X) :=

#
Shvet(Z) ↓ (i∗j∗ : Shvet(U) → Shvet(Z))

$
.

Explicitly, T (X) is the category whose objects are triples (F1, F2,φ) consisting
of two objects F1 ∈ Shvet(Z), F2 ∈ Shvet(U), and a morphism φ : F1 → i∗j∗F2.

Morphisms (F1, F2,φ) → (F ′
1, F

′
2,φ

′) are pairs of morphisms (F1
ψ1→ F ′

1, F2
ψ2→

F ′
2) such that the square commutes.

F1
φ !!

ψ1

""

i∗j∗F2

i∗j∗ψ2

""
F ′
1

φ′
!! i∗j∗F

′
2

Theorem 4.1 (Milne Thm.II.3.10). The functor t : Shvet(X) → T (X)

t : F %→
#
i∗F, j∗F, i∗(F

η→ j∗j
∗F )

$

is an equivalence of categories. Here η : id → j∗j
∗ is the adjunction unit.

8



Proof. Given a triple (F1, F2,φ) in T (X) define

s(F1, F2,φ) := ker

#
i∗F1 ⊕ j∗F2

i∗φ + η−→ i∗i
∗j∗F2

$
.

Here, η : id → i∗i
∗ is the unit of the adjunction (i∗, i∗). Notice that every

morphism of T (X) induces a morphism in Shvet(X) in a way that defines a
functor

s : T (X) → Shvet(X).

So it suffices to check that st ∼= id and ts ∼= id. Consider stF . By definition,
this is

stF = ker

#
i∗i

∗F ⊕ j∗j
∗F

i∗φ + η−→ i∗i
∗j∗j

∗F

$
.

This comes equipped with a canonical morphism F → stF . This morphism is
an isomorphism if and only if the sequence

0 → F → i∗i
∗F ⊕ j∗j

∗F
i∗φ + η−→ i∗i

∗j∗j
∗F (4)

is exact. By Exercise 3.2 it suffices to check exactness after applying j∗ and i∗.
After j∗ we obtain

0 → j∗F → j∗i∗i
∗F% &' (

∼=0

⊕ j∗j∗j
∗F% &' (

∼=j∗F

→ j∗i∗i
∗j∗j

∗F% &' (
∼=0

where the underbraces follows from Exercise 3.3. Applying i∗ we obtain

0 → i∗F → i∗i∗i
∗F% &' (

∼=i∗F

⊕ i∗j∗j
∗F% &' (

∼=0

→ i∗i∗i
∗j∗j

∗F% &' (
∼=0

.

where the underbraces follows from Exercise 3.3 and Proposition 3.1. Hence,
Eq.(4) is exact, so F

∼→ stF .
Now consider ts(F1, F2,φ). We have

i∗s(F1, F2,φ) = i∗ ker

#
i∗F1 ⊕ j∗F2 −→ i∗i

∗j∗F2

$

= ker

#
i∗i∗F1 ⊕ i∗j∗F2 −→ i∗i∗i

∗j∗F2

$

Prop.3.1
= ker

#
F1 ⊕ i∗j∗F2 −→ i∗j∗F2

$

= F1

One similarly checks that j∗s(F1, F2,φ) ∼= F2, and that the canonical morphism
i∗s(F1, F2,φ) → i∗j∗j

∗s(F1, F2,φ) is none-other-than φ, under these identifica-
tions. Hence, ts(F1, F2,φ) = (F1, F2,φ).

9



Remark 4.2. Under the identification Shvet(X) ∼= T (X), the functors j!, j
∗, j∗, i

∗, i∗
correspond to:

F1
i∗← ! (F1, F2,φ) (0, F2, 0)

j!← ! F2

F1
i∗%→ (F1, 0, 0) (F1, F2,φ)

j∗%→ F2

(i∗j∗F2, F2, id)
j∗← ! F2

Exercise 4.3 (Harder.). Suppose that i : Z → X is a closed immersion and
j : U → X the open complement.

1. Show that
i! := i∗ ker(id → j∗j

∗)

defines a right adjoint to the functor i∗.

2. Show the identities

i!i∗ = id, i!j! = 0, i!j∗ = 0.

3. Show that for any sheaf F ∈ Shvet(X) the following sequence is exact.

0 → i∗i
!F → F → j∗j

∗F

4. Given an example of closed immersion Z → X and a sheaf F for which the
cokernel coker(F → j∗j

∗F ) is not zero.

5 Curves

Example 5.1 (Milne, Exam.II.3.12). Let A be a discrete valuation ring (e.g.,
C[[z]],Fp[[z]],Zp, . . . ). Let

K = Frac(A), k = A/m

GK = Gal(Ksep/K), Gk = Gal(ksep/k)

Since A is a discrete valuation ring, X = Spec(A) has one open point, and
one closed point. Let U = Spec(K), Z = Spec(k) be the corresponding open
and closed subschemes. Recall that the category of étale sheaves over a field
is equivalent to the category of discrete Galois modules. That is, Shvet(Z) ∼=
Gk-mod and Shvet(U) ∼= GK-mod. We can give an analogous description of
Shvet(X) using a similar construction to T (X). It suffices to work out what
functor GK-mod → Gk-mod corresponds to i∗j∗ : Shvet(U) → Shvet(Z).

Let Ah be the henselisation of A, and Ash a strict henselisation. Since Ksep

is separable closed, there are factorisations A → Ah → Ash → Ksep which are
actually inclusions. The choice of Ash and the inclusion define subgroups I =
Gal(Ksep/Frac(Ash)) and D = Gal(Ksep/Frac(Ah)), with I ⊆ D ⊆ GK . The
identifications Ash/mA

∼= ksep and Ah/mA
∼= k induce a group homomorphism
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D/I → Gk, and it turns out this is an isomorphism. In particular, given anyGK-
module M , the subset M I of I-invariant elements admits a canonical action of
Gk

∼= D/I. We claim that the functor i∗j∗ : Shvet(U) → Shvet(Z) corresponds
to the functor of I-invariants.

(−)I : GK-mod → Gk-mod.

Hence, the category Shvet is equivalent to the category of triples (M1,M2,φ)
where M1 ∈ Gk-mod, M2 ∈ GK-mod, and φ : M1 → M2 is compatible with the
actions of Gk

∼= D/I and GK .

Example 5.2. Example 5.1 can be generalised to any normal curve, see Milne
Exer.II.3.16 for details.
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