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2. Weibel, “An introduction to homological algebra”

3. Beke, “Sheafifiable homotopy modeal categories”

4. The Stacks Project (online)

1 Motivation

Last week we defined the derived functors RnΦ of a functor Φ : A → B between
Grothendieck abelian categories as RnΦ(A) := Hn(Φ(Q•

A)) where A → Q•
A is

any quasi-isomorphism towards a fibrant complex.
We also showed that there exists a functor Q : Ch(A ) → Ch(A ) equipped

with a natural isomorphism id → Q such that each C• → QC• is a monomorphic
quasi-isomorphism, and each QC• is fibrant. This shows that the RnΦ(A) exist,
and are functorial in A.

It remains to show:

1. The RnΦ are independent of the choice of Q.

2. The R•Φ send short exact sequences to long exact sequences.

One can show the above two points directly, but we will use the derived
category in the second half of this course, so we develop it now. We start with
the homotopy category.

2 The homotopy category

Consider the complex of abelian groups

∆1 = [· · · → 0 → Z󰁿󰁾󰁽󰂀
−1

diag→ Z⊕ Z󰁿 󰁾󰁽 󰂀
0

→ 0 → 0 → . . . ]
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where diag(m) = (n, n). Note that the morphisms Z 󰃃 Z⊕Z; n 󰀁→ (n, 0), (0,−n)
and the projection Z⊕ Z → Z; (n,m) 󰀁→ n−m define morphisms

Z
ι0
󰃃
ι1

∆1 π→ Z

such that π ◦ ι0 = π ◦ ι1 = idZ.

Remark 2.1. This is an algebraic analogue of ∆1
top

∼= {t ∈ R | 0 ≤ t ≤ 1} with
inclusions 0, 1 ∈ ∆1

top and projection ∆1
top → {∗}.

Definition 2.2. Suppose that f, g : A• 󰃃 B• are two morphisms between
complexes. A chain homotopy from f to g is a morphism h : A• ⊗ ∆1 → B•

such that h ◦ ι0 = f and h ◦ ι1 = g. In this case we write f ∼ g.

Exercise 2.3. Show that if f and g are homotopic then they induce the same
morphism on cohomology Hn(f) = Hn(g).

Exercise 2.4. A morphism f : A• → B• is a homotopy equivalence if there
exists a morphism g : B• → A• such that fg and gf are both homotopic to the
identity. Show that every homotopy equivalence is a quasi-isomorphism.

Exercise 2.5. Suppose that f1, f2, f3 : A• →→→ B• are three morphisms such
that f1 ∼ f2 and f2 ∼ f3. Show that f1 ∼ f3. Deduce that chain homotopy is
an equivalence relation. Hint.1

Exercise 2.6. Suppose we have morphisms A• e→ B•
f

󰃃
g

C• h→ D• such that

f ∼ g. Show that fe ∼ ge and hf ∼ hg. Deduce that there exists a category

K(A )

whose objects are the same as Ch(A ) but whose morphisms are given by
homCh(A ) modulo homotopy. That is,

homK(A )(A
•, B•) =

homCh(A )(A
•, B•)

{f : f ∼ 0} .

Remark 2.7. If we are thinking of Ch(Ab) as analogous to the category of
topological spaces, the category homotopy category K(Ab) is analogous to the
topological homotopy category Htop, whose objects are topological spaces and
morphisms are modulo homotopy.2 We have the following analogies.

Ch(A ) Top
K(A ) Htop

quasi-isomorphisms weak equivalences3

fibrant complexes CW complexes
A• → QA• |Sing∗X| → X

1Use a map of the form ∆1 → ∆1 ⊔Z ∆1.
2Two morphisms f, g : X → Y are homotopy if there is a morphism h : X×∆1

top → Y
such that h(x, 0) = f(x) and h(x, 1) = g(x).
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3 The derived category

Definition 3.1. An object Q• of K(A ) is called q.i.-local if for every quasi-
isomorphism A• → B• the induced morphism

hom(B•, Q•) → hom(A•, Q•) (1)

is an isomorphism (hom’s in K(A )). The full subcategory of q.i.-local objects
is denoted

D(A ) ⊆ K(A ).

Exercise 3.2. Using Yoneda’s Lemma, show that if P • → Q• is a quasi-
isomorphism between q.i.-local objects then f is an isomorphism in K(A ).

Proposition 3.3. Every fibrant complex is q.i.-local.

Proof. It suffices to check on monomorphic quasi-isomorphisms. Suppose f is
an arbitrary quasi-isomorphism. Factor it as A• → Cyl(f) → B•. Here, Cyl(f)
is the pushout in the square

A• ι0 󰈣󰈣

󰈃󰈃

A• ⊗∆1

󰈃󰈃
B•

σ
󰈣󰈣 Cyl(f).

Then the composition A• ι1→ A• ⊗ ∆1 → Cyl(f) is a monomorphic quasi-
isomorphism, and the morphism4 Cyl(f) → B• is a quasi-isomorphism ad-
mitting a section σ : B• → Cyl(f), which is therefore a monomorphic quasi-
isomorphism. So it suffices to show that hom(−, Q•) sends ι and σ to isomor-
phisms. That is, we can assume f is a monomorphism.

The case the f is a monomorphism. By the definition of fibrant the map
Eq.(1) is surjective when f : A• → B• is a monomorphic quasi-isomorphism.
Suppose that g0, g1 : B• 󰃃 Q• are two morphisms which become homotopic on
A•. That is, there exists a morphism h : A• ⊗ ∆1 → Q• with hι󰂃 = g󰂃f for
󰂃 = 0, 1. Consider the diagram:

A• ⊕A• ι0+ι1 󰈣󰈣

f+f

󰈃󰈃

A• ⊗∆1

f⊗id

󰈃󰈃

h

󰈊󰈊
B• ⊕B• ι0+ι1 󰈣󰈣

g0+g1

󰈨󰈨B• ⊗∆1 Q•

Giving rise to the diagram

(B• ⊕B•)∐A•⊕A• (A• ⊗∆1)
(∗∗)
󰈣󰈣

(∗)

󰈟󰈟
B ⊗∆1 󰈣󰈣❴❴❴ Q•

4This is induced by the isomorphism Cyl(f)⊔A•⊗∆1 A• = (B•⊔A• A•⊗∆1)⊔A•⊗∆1 A• =
B• ⊔A• A• = B•.
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where (∗) comes from the outside square and (∗∗) from the inside square. Once
one checks that (∗∗) is a monomorphic quasi-isomorphism, we get the desired
factorisation by virtue of the fact that Q• is fibrant.

Exercise 3.4 (Harder.). Prove the claim in the above proof that (∗∗) is a
monomorphic quasi-isomorphism. Hint.5 Hint.6

Corollary 3.5. Any choice of fibrant replacement id → Q induces a left adjoint

L : K(A ) → D(A )

to the canonical inclusion
K(A ) ⊇ D(A ) : ι

Proof. Since every fibrant object is q.i.-local, the functor Q we developed last
week induces a functor L : K(A ) → D(A ) equipped with a natural transfor-
mation η : idK(A ) → ιL which is termwise a quasi-isomorphism. Hence, for
any C• ∈ K(A ) and q.i.-local D• ∈ D(A ) we have homK(A )(ιLC

•, ιD•) ∼=
homK(A )(C

•, ιD•) by definition of q.i.-local. Since ι is a fully faithful inclusion,
we also have hom(LC•, D•) = hom(LC•, ιD•). Hence,

hom(LC•, D•) = hom(ιLC•, ιD•)
∼→ hom(C•, ιD•).

Corollary 3.6. The derived functors RnΦ are independent of the choice of Q.

Proof. By Corollary 3.5 the derived functors can be defined as

RnΦ(A) = HnΦ(ιL(A)).

Since adjoints are unique up to unique isomorphism, this is independent of any
particular construction of L.

4 Identifying R0Φ

Proposition 4.1. Suppose that A ∈ A is an object thought of as a chain
complex concentrated in degree zero. Then

RnΦ(A) = 0

for all n < 0. If Φ preserves finite limits, then

R0Φ(A) ∼= Φ(A).

5For monomorphism, write down precisely the terms of (B ⊕B)∐A⊕A (A⊗∆1).
6For quasi-isomorphism, first prove that A ⊗ ∆1 → (B ⊕ B) ∐A⊕A (A ⊗ ∆1) is a quasi-

isomorphism.
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Proof. Let A → Q• be a quasi-isomorphism with Q• a q.i.-local object. Define
Q•

≥0 as the complex

Q•
≥0 := [· · · → 0 → 0 → Q0/B0 → Q1 → Q2 → . . . ].

Note that this is not necessarily q.i.-local anymore, however it is equipped with
a morphism Q• → Q•

≥0 which is a quasi-isomorphism since A → Q• is a quasi-
isomorphism. By definition of q.i.-local, there exists a retraction Q• → Q•

≥0 󰃚󰃚󰃄
Q• in Ch(A ), and therefore in K(A ). Any functor preserves retractions so

ΦQ• → Φ(Q•
≥0)

HnΦQ• → HnΦ(Q•
≥0)

also admit retractions. Therefore they are monomorphisms. Since Φ(Q•
≥0) is

zero in degrees < 0 it follows that theHnΦ(Q•) ⊆ HnΦ(Q•
≥0) are zero in degrees

< 0. If Φ preserves finite limits, then Φ(A) → H0Φ(Q•
≥0) is an isomorphism.

This factors through H0Φ(Q•) ⊆ H0Φ(Q•
≥0) so Φ(A) → H0Φ(Q•) is also an

isomorphism.

Exercise 4.2. Prove the claim in the above proof that Φ(A) ∼= H0Φ(Q•
≥0).

5 Exact sequences

Now we are finally in a position to attack the motivating question. Namely, to
extend 0 → ΦA → ΦB → ΦC to a long exact sequence. We first develop some
basic pieces of homological algebra.

Exercise 5.1 (The Five Lemma (Harder)). Suppose that we have a commuta-
tive diagram of abelian groups

A1
󰈣󰈣

f1

󰈃󰈃

A2
󰈣󰈣

f2

󰈃󰈃

A3
󰈣󰈣

f3

󰈃󰈃

A4

f4

󰈃󰈃

󰈣󰈣 A5

f5

󰈃󰈃
B1

󰈣󰈣 B2
󰈣󰈣 B3

󰈣󰈣 B4
󰈣󰈣 B5

such that the rows are exact and f1, f2, f4, f5 are isomorphisms. Show that f3
is an isomorphism.

Recall that for complexes A•, B• ∈ Ch(A ) we defined the mapping complex
Map(A•, B•) ∈ Ch(Ab) by

Map(A•, B•)n =
󰁜

i∈Z
hom(Ai, Bi−n)

with differential f 󰀁→ df − (−1)nfd.

Exercise 5.2 (Harder). Choose an object A• and a morphism f : B• → C• of
Ch(A ).
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1. Show that Map(A•,Cone(f)) ∼= Cone(Map(A•, f)) in Ch(Ab).

2. Show that for any i ∈ Z we have homK(A )(A
•, B•[i]) = H−i Map(A•, B•)

3. Deduce that there is a long exact sequence

· · · → hom(A•, B•[i]) → hom(A•, C•[i]) (2)

→ hom(A•,Cone(f)[i]) → hom(A•, B•[i+1]) → . . .

where the homs are in K(A ).

Definition 5.3. The cofibre sequences ofK(A ) are those isomorphic (inK(A ))
to the sequences

A• f→ B• → Cone(f).

The cofibre sequences of D(A ) ⊆ K(A ) are those which are cofibre sequences
in K(A ).

Exercise 5.4.

1. Using the long exact sequence Eq.(2) and the Five Lemma, show that if
B• and C• are q.i.-local, then so is Cone(f).

2. Deduce that the canonical morphism Cone(Lf) → LCone(Lf) is an iso-
morphism in D(A ).

3. Using Yoneda and the Five Lemma show that the canonical morphism
LCone(f) → LCone(Lf) is also an isomorphism.

4. Deduce that L : K(A ) → D(A ) sends cofibre sequence to cofibre se-
quences.

Proposition 5.5. If 0 → A → B → C → 0 is an exact sequence in A and
Φ : A → B is an additive functor, then

RΦA → RΦB → RΦC

is a cofibre sequence of B. If Φ preserves finite limits, then we obtain a long
exact sequence

R2Φ(A) 󰈣󰈣 R2Φ(B) 󰈣󰈣 R2Φ(C) 󰈣󰈣 . . .

R1Φ(A) 󰈣󰈣 R1Φ(B) 󰈣󰈣 R1Φ(C)

󰊶󰊷󰊹󰊸󰊴󰊵󰊻󰊺 󰈣󰈣

0 󰈣󰈣 Φ(A) 󰈣󰈣 Φ(B) 󰈣󰈣 Φ(C)

󰊶󰊷󰊹󰊸󰊴󰊵󰊻󰊺 󰈣󰈣

(3)
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Proof. By Exercise 5.4 the functor L : K(A ) → D(A ) preserves cofibre se-
quences, by definition the inclusion D(A ) → K(A ) preserves cofibre sequences,
and by additivity Φ : K(A ) → K(B) preserves cofibre sequences. Hence,

RΦ := ΦιL

preserves cofibre sequences, and therefore, sends A → B → Cone(A→B) to a
cofibre sequence. The functor L sends the quasi-isomorphism Cone(A→B) → C
to an isomorphism in D(A ), so A → B → C is also sent to a cofibre sequence
by RΦ.

We saw last week that cofibre sequences give rise to long exact sequences on
cohomology, so the last thing to check is that RnΦ(−) : A → Ab is zero for
n < 0 and Φ for n = 0. This is Proposition 4.1.

Remark 5.6. The derived category is not necessary to prove Proposition 5.5.
However, we want to have access to the derived category in the second part of
the course.

Here is an argument not using derived categories. Choose fibrant replace-
ments B → Q•

B and C → Q•
C fitting into a commutative square and set

Q•
A := Cone(Q•

B → Q•
C)[−1]. Since the compositions A → Q0

C and A → Q1
B are

zero, there exists a factorisation A → Q•
A. So we get the desired long exact se-

quence as soon as we know that A → Q•
A is a fibrant replacement. Proving that

A → Q•
A is a quasi-isomorphism can be done using the Snake Lemma. Proving

that Q•
A is fibrant is harder. We include a proof at the end. See Proposition B.1.

A Universal properties

In this section we show that both D(A ) and RΦ satisfy universal properties.
This material holds for more general localisations, so we develop it in this greater
level of generalilty.

Exercise A.1. Suppose f is a morphism of K(A ). Show that L(f) is an
isomorphism if and only if f is a quasi-isomorphism. Hint.7 Hint.8

Exercise A.2. Suppose that ι : D ⊆ C is a fully faithful functor admitting a
left adjoint L (e.g., ι : D(A ) ⊆ K(A )). Let

S = {f : A → B ∈ C | L(f) is an isomorphism }.

Show that for any category E , composition with L induces an equivalence of
categories

L∗ : Fun(D, E)
∼=→ FunS(C, E)

Ψ 󰀁→ Ψ ◦ L
7For (⇐) use Yoneda.

8For (⇒) use the square
A•

↓
LA•

→

→

B•

↓
LB•

.
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where FunS(C, E) ⊆ Fun(C, E) is the fullsubcategory of those functors which
send all elements of S to isomorphisms. Hint.9

Deduce that any functorΨ : K(A ) → D(B) which sends quasi-isomorphisms
to isomorphisms factors uniquely (up to unique natural isomorphism) through
D(A ) → D(B).

Definition A.3. Suppose L∗ : D̂ → Ĉ is a functor and c ∈ Ĉ an object. The
slice category

(c ↓ L∗)

has as objects pairs (d,
c

↓
L∗d

) where d ∈ D̂ and
c

↓
L∗d

∈ Ĉ. Morphisms are

hom((d,
c

↓
L∗d

), (d,
c

↓
L∗d′

)) =

󰀝
g ∈ hom(d, d′) | ↙

L∗d

c

→
↘
L∗d′

commutes

󰀞
.

Exercise A.4. Suppose that L∗ is fully faithful and admits a left adjoint ι∗ :
Ĉ → D̂ (e.g., L∗ : Fun(D(A ), D(B)) → Fun(K(A ), D(B)). Show that for any

c ∈ Ĉ, the pair (L∗ι∗c,
c

↓
L∗ι∗c

) is an initial object of (c ↓ L∗).

Deduce that, given a fixed functor Φ : K(A ) → D(B), for every functor
Ψ : D(A ) → D(B) equipped with a natural transformation η : Φ ⇒ ΨL
there exists a unique natural transformation RΦ ⇒ Ψ admitting a factorisation
Φ ⇒ RΦL ⇒ ΨL.

B Cone preserves fibrancy

Proposition B.1. Suppose that f : Q• → P • is a morphism between fibrant
complexes. Then Cone(f)[−1] is also fibrant.

Proof. We have a pullback square of the form

Cone(f)[−1]

󰈃󰈃

󰈣󰈣 P • ⊗D0

pr.

󰈃󰈃
Q• ⊗ S0 󰈣󰈣 P • ⊗ S0

Suppose that A• → B• is a monomorphic quasi-isomorphism and we have a
morphism A• → Cone(f)[−1] we would like to factor through B•. Since Q• is
fibrant, we can extend the above square to the diagram on the left below. Since
the square above is a pullback square, it suffices to find the diagonal morphism

9Show that for each A ∈ C, the natural transformation A → ιLA is in S. For this, use
Yoneda and the hypothesis that ι is fully faithful.
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in the square below on the right.

A• 󰈣󰈣

󰈃󰈃

Cone(f)[−1]

󰈃󰈃

󰈣󰈣 P • ⊗D0

pr.

󰈃󰈃

A• α 󰈣󰈣

ι

󰈃󰈃

P • ⊗D0

pr.

󰈃󰈃
B• 󰈣󰈣 Q• ⊗ S0 󰈣󰈣 P • ⊗ S0 B•

β
󰈣󰈣

󰈯󰈯✈
✈

✈
✈

✈
P • ⊗ S0 (∼=P•)

Now in general, there is a canonical bijection

hom(X•, Y • ⊗D0) ∼= hom(X• ⊗D1, Y •)

natural in X• and Y •. So the right hand square above is equivalent to the
diagram below, with the two dashed morphisms correspond to each other.

A•

ι

󰈃󰈃

inc. 󰈣󰈣 A• ⊗D1

󰈃󰈃

α′

󰈘󰈘❍
❍❍

❍❍
❍❍

❍❍
❍

B• inc. 󰈣󰈣

β

󰈩󰈩B• ⊗D1 󰈣󰈣❴❴❴ P •

Now we play the same game as in the proof of Proposition 3.3. Namely, we
show that the canonical morphism from the pushout factors as below, using the
fact that P • is fibrant, and (*) is a monomorphic quasi-isomorphism.

B• ∐A• (A• ⊗D1)
(∗) 󰈣󰈣 󰈨󰈨B• ⊗D1 󰈣󰈣❴❴❴ P •
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