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1 Motivation

In this lecture we work with a Grothendieck abelian category A . We have in
mind the following examples:

1. A = R-mod, the category of R-modules for some ring R (for example,
R = Z or a field K),

2. A = Shv(X) sheaves of abelian groups on a topological space,

3. A = Shvet(X), étale sheaves of abelian groups on a variety X,

4. A = G-mod, the category of discrete G-modules for some profinite group1

(such as G = Gal(ksep/k) for some field k).

We are interested in functors Φ : A → B which preserve limits. Such
functors send exact sequences2 of the form

0 → A → B → C → 0

to exact sequences of the form

0 → Φ(A) → Φ(B) → Φ(C). (1)

Examples of such functors are:

1A group is profinite if it is of the form limλ∈Λ Fλ for some filtered category Λ and finite
groups Fλ. The canonical example is Zp = lim(· · · → Z/p3 → Z/p2 → Z/p). A module over
a profinite group is discrete if all orbits are finite.

2Recall that a sequence · · · → Kn−1 dn−1

→ Kn dn→ Kn+1 → . . . is exact if for every n we
have ker(dn) = im(dn−1).
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1. If A = R-mod, the functors F (−) = homR(M,−) for some fixed M ∈ R-
mod.

2. If A = Shv(X) the functor Φ(F ) = F (X),

3. If A = Shvet(X) the functor Φ(F ) = F (X),

4. If A = G-mod, the functor Φ(M) = MG = {m ∈ M : gm = m ∀ g ∈ G}.

Problem. Extend the exact sequence Eq.(1) to the right.

2 Chain complexes

Throughout this section A is always a Grothendieck abelian category. Note
that there is a unique colimit preserving functor

−⊗− : A ×Ab → A

such that A⊗Z = A for each object A. So for example, A⊗(
󰁏

i∈I Z) =
󰁏

i∈I A,

A⊗ (Z/n) = coker(A
n→ A), and A⊗Q = lim−→n∈N(A

n→ A
n′

→ . . . ).

Definition 2.1. A chain complex C• is a sequence of morphisms

· · · d→ Cn−1 d→ Cn d→ Cn+1 d→→ . . .

in A such that d ◦ d = 0.
A morphism of chain complexes C• → D• is a sequence of morphisms fn :

Cn → Dn such that all squares

. . . 󰈣󰈣 Cn d 󰈣󰈣

fn

󰈃󰈃

Cn+1

fn+1

󰈃󰈃

󰈣󰈣 . . .

. . . 󰈣󰈣 Dn d 󰈣󰈣 Dn+1 󰈣󰈣 . . .

are commutative. The category of chain complexes is denoted Ch(A ).

In the case A = R-mod we will often write Ch(R) := Ch(R-mod). Some-
times we think of A as a subcategory of Ch(A ) by identifying A ∈ A with

· · · → 0󰁿󰁾󰁽󰂀
−1

→ A󰁿󰁾󰁽󰂀
0

→ 0󰁿󰁾󰁽󰂀
1

→ . . .

in Ch(A ).

Example 2.2.

1. The category Ch(A ) is again a Grothendieck abelian category. Kernels,
cokernels, images, and exact sequences of chain complexes are calculated
degreewise. That is, (lim←−λ

C•
λ)

n = lim←−λ
Cn

λ resp. (lim−→λ
C•

λ)
n = lim−→λ

Cn
λ .
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2. We have the canonical chain complexes

Sn = [· · · → 0󰁿󰁾󰁽󰂀
−n−2

→ 0󰁿󰁾󰁽󰂀
−n−1

→ Z󰁿󰁾󰁽󰂀
−n

→ 0󰁿󰁾󰁽󰂀
−n+1

→ . . . ]

Dn+1 = [· · · → 0󰁿󰁾󰁽󰂀
−n−2

→ Z󰁿󰁾󰁽󰂀
−n−1

=→ Z󰁿󰁾󰁽󰂀
−n

→ 0󰁿󰁾󰁽󰂀
−n+1

→ . . . ]

in Ch(Z). There is a canonical short exact sequence

0 → Sn → Dn+1 → Sn+1 → 0.

3. We can extend ⊗ to a functor

−⊗− : Ch(A )× Ch(Ab) → Ch(A )

by setting

(C• ⊗A•)n =
󰁐

i+j=n

Ci ⊗Aj

the differentials (C• ⊗A•)n → (C• ⊗A•)n+1 are sums of the morphisms

d⊗ id+(−1)i id⊗d : Ci ⊗Aj → (Ci+1 ⊗Aj)⊕ (Ci ⊗Aj+1).

4. Given any chain complex C• and i ∈ Z the shift is

C•[i] = C• ⊗ Si.

5. Given any morphism of chain complexes f : A• → B• we can form the
cone as the pushout

A• = A• ⊗ S0 󰈣󰈣

󰈃󰈃

A• ⊗D1

󰈃󰈃
B• = B• ⊗ S0 󰈣󰈣 Cone(f)

Note that Cone(A• → 0) = A•[1].

6. Given a morphism f : A• → B• the mapping cylinder is defined as the
pushout

A• 󰈣󰈣

󰈃󰈃

A• ⊗∆1

󰈃󰈃
B• 󰈣󰈣 Cyl(f)

where ∆1 = Cone(Z diag.→ Z⊕ Z) and A → A⊗ Cyl is inclusion to the left
component.
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7. For any two chain complexes A•, B• we define

Map(A•, B•)n =
󰁜

i∈Z
homA (Ai, Bi−n)

in Ch(Ab). This is equipped with differentials

df = d ◦ f − (−1)nf ◦ d.

Exercise 2.3.

1. Describe the terms and differentials of C•[i] and Cone(f) explicitly.

2. Show that there is a canonical exact sequence

0 → B• → Cone(f) → A•[1] → 0.

3. Using the canonical inclusion D1 → ∆1 and an appropriate pushout
square, show that the canonical morphism B• → Cyl(f) admits a re-
traction. Hint.3

Remark 2.4. The S and D in Sn and Dn are for sphere and disc. They are
algebraic analogues of

Sn
top = {(x0, . . . , xn) ∈ Rn+1 |

󰁛
x2
i = 1}

Dn+1
top = {(x0, . . . , xn) ∈ Rn+1 |

󰁛
x2
i ≤ 1}.

The cone is an algebraic version of the topological cone construction which
sends a continuous morphism of topological spaces X → Y to the topological
space Y ⊔(X×{0}) (X × [0, 1]) ⊔X×{0} {0} where [0, 1] ⊆ R is the unit interval.

−−−− picture−−−

The exact sequence 0 → Sn → Dn+1 → Sn+1 → 0 is the algebraic analogue
of the homeomorphism Sn

top
∼= Dn

top/S
n−1
top .

3 Quasi-isomorphisms

Definition 3.1. Let C• be a chain complex. We define

the group of n-cycles as Zn = ker(Cn → Cn+1),

the group of n-boundaries as Bn = im(Cn−1 → Cn), and

the n-th cohomology group as Hn = Zn/Bn.

3First show that ∆1 ∼= D1 ⊕ S0.
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Exercise 3.2. Show that Hn ∼= coker

󰀕
Map(D−n, C•) → Map(S−n, C•)

󰀖
.

Exercise 3.3. Show that a morphism of chain complexes C• → D• induces a
morphism on cohomology groups HnC → HnD.

In a normal first course on homological algebra the following would be the
first main theorem.

Exercise 3.4 (Snake Lemma. (Harder)). Show that for any exact sequence
0 → A• → B• → C• → 0 in Ch(A ), there is an associated long exact sequence

· · · → Hn(A) → Hn(B) → Hn(C) → Hn+1(A) → . . . .

Deduce that for any morphism A• → B• there is a long exact sequence

· · · → Hn(A) → Hn(B) → Hn(Cone(f)) → Hn+1(A) → . . . .

Exercise 3.5. Using three cocartesian squares and the Snake Lemma, show
that Cone(B• → Cone(A• → B•)) → A• is a quasi-isomorphism. Hint.4

Exercise 3.6. Using the Snake Lemma, show that for morphism f : A• → B•

the morphism B• → Cyl(f) is a quasi-isomorphism. Hint.5

Definition 3.7. A morphism of chain complexes f : C• → D• is called a quasi-
isomorphism if the induced maps Hnf : HnC → HnD are isomorphisms ∀ n.
Two chain complexes C•, D• are said to be quasi-isomorphic if there exists a
sequence of quasi-isomorphisms

(1)C•

󰈓󰈓❄
❄❄

❄❄

󰉳󰉳⑧⑧
⑧⑧
⑧

(3)C•

󰈓󰈓❄
❄

❄
❄

󰉳󰉳⑧⑧
⑧⑧
⑧

(n−1)C•

󰉳󰉳⑧
⑧
⑧
⑧

󰈓󰈓❄
❄❄

❄❄

C• = (0)C• (2)C• . . . (n)C• = D•

Example 3.8.

C• = (· · · → 0 → Z 2→ Z → 0 → . . . )

↓
D• = (· · · → 0 → 0 → Z/2 → 0 → . . . )

is a quasi-isomorphism. Here, “2” means the morphism n 󰀁→ 2n. Note that
there are no nonzero morphisms D• → C•.

4Show that if
A
↓
B

→

→

C
↓
D

is a cocartesian square such that A → B is a monomorphism, then

0 → A → B ⊕ C → D → 0 is exact.

5Show that if
A
↓
B

→

→

C
↓
D

is a cocartesian square such that A → B is a monomorphism, then

0 → A → B ⊕ C → D → 0 is exact.
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Exercise 3.9. Let K be a field. Show that every chain complex of vector spaces

is quasi-isomorphic to one of the form (· · · 0→ V n−1 0→ V n 0→ V n+1 0→ . . . ) in
Ch(K).

Exercise 3.10 (Harder). Show that every chain complex of abelian groups is

quasi-isomorphic to one of the form (· · · 0→ An−1 0→ An 0→ An+1 0→ . . . ) in
Ch(Z). Hint.6 Hint.7 Hint.8

Exercise 3.11 (Difficult). Let R = Z/4 or R = Q[x, y]. Find a chain complex

of R-modules which is not quasi-isomorphic to one of the form (· · · 0→ Mn−1 0→
Mn 0→ Mn+1 0→ . . . ) in Ch(R), and prove that it is not.

Now we can formulate our strategy for the question at the beginning.

Strategy 3.12. Let 0 → A → B → C → 0 be a short exact sequence in A .
Suppose that we can find a quasi-isomorphism of exact sequences

0 󰈣󰈣 Q•
A

󰈣󰈣 Q•
B

󰈣󰈣 Q•
C

󰈣󰈣 0

0 󰈣󰈣 A 󰈣󰈣

q.i.

󰉃󰉃

B

q.i.

󰉃󰉃

󰈣󰈣 C 󰈣󰈣

q.i.

󰉃󰉃

0

in Ch(A ) which is termwise split, i.e., Qn
B
∼= Qn

A⊕Qn
C for each n ∈ Z, and with

Qn
A = Qn

B = Qn
C = 0 for n < 0. Since Φ preserves sums,

0 → ΦQ•
A → ΦQ•

B → φQ•
C → 0

remains exact. On the other hand, since Φ is left exact it follows thatH0(ΦQ•
A)

∼=
ΦA and similar for B,C. So by the Snake Lemma, we obtain a long exact se-
quence

H2Φ(Q•
A)

󰈣󰈣 H2Φ(Q•
B)

󰈣󰈣 H2Φ(Q•
C)

󰈣󰈣 . . .

H1Φ(Q•
A)

󰈣󰈣 H1Φ(Q•
B)

󰈣󰈣 H1Φ(Q•
C)

󰊶󰊷󰊹󰊸󰊴󰊵󰊻󰊺 󰈣󰈣

0 󰈣󰈣 ΦA 󰈣󰈣 ΦB 󰈣󰈣 ΦC

󰊶󰊷󰊹󰊸󰊴󰊵󰊻󰊺 󰈣󰈣❫❫❫❫

(2)

We must also show existence, functoriality, uniqueness (or at least canonicity)
of the Q•

−.
6Use the fact that any subgroup of a free abelian group is again a free abelian group. That

is, if I is a set and M ⊆ Z⊕I a subgroup, then M ∼= Z⊕J for some set J .
7Use the fact that morphisms from free abelian groups lift through surjections. That is,

if Z⊕I → C is any morphism and B → C is surjective, then there exists a factorisation
Z⊕I → D → C.

8Given an arbitrary chain complex of abelian groups C• and n ∈ Z, find a morphism of
the form P • = (· · · → 0 → Pn−1 → Pn → 0 → . . . ) → C• such that Pn−1 and Pn are free,
Hn(P •) ∼= Hn(C•) and Hi(P •) = 0 for i ∕= n.
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Remark 3.13. We will not carry out the exact strategy above. That is, our
replacement Q•

A → Q•
B → Q•

C will not be split exact. Instead, we will use an
exact sequence of the form 0 → Q•

C [−1] → Cone(Q•
B → Q•

C)[−1] → Q•
B → 0.

We will also be working with untruncated resolutions, so showingH0(ΦQ•
A)

∼=
ΦA, etc., will require an additional argument.

4 Fibrant replacement

Definition 4.1. A chain complex Q• is called fibrant if for any monomor-
phic quasi-isomorphism f : C• → D• in Ch(A ), every map C• → Q• factors
through D•.

C• 󰈣󰈣 󰈜󰈜
D• 󰈣󰈣❴❴❴ Q•

Exercise 4.2. Let Q• ∈ Ch(Ab) be a fibrant complex of abelian groups. Show
that each Qn is divisible in the sense that for every m ∈ Z and q ∈ Qn there is
a p ∈ Qn with mp = q. Hint.9

Exercise 4.3 (Difficult). Suppose that

· · · → 0 → 0 → 0 → Q0 → Q1 → Q2 → . . .

is a chain complex in Ch(Ab) such that each Qn is divisible. Show that Q• is
fibrant.

Exercise 4.4. Suppose that X is a topological space and Q• ∈ Ch(Shv(X,Ab))
is fibrant. Show that for each n, and inclusion V ⊆ U ⊆ X of open subsets,
the map Qn(U) → Qn(V ) is surjective. Show that each abelian group Qn(U) is
divisible.

Definition 4.5. Suppose that Φ : A → B is a functor between Grothendieck
abelian categories which preserves limits. The derived functors of Φ are the
cohomology

RnΦ(A) := Hn(ΦQ•)

where A → Q• is any quasi-isomorphism towards a fibrant complex Q•. In
particular, given F ∈ Shvet(X,Ab),

Hn
et(X,F ) = Hn(Q•(X))

where F → Q• is a quasi-isomorphism in Ch(Shvet(X,Ab)) and Q• is a fibrant
complex of étale sheaves.

Claim 4.6.

1. The RnΦ(A) exist and are functorial in A. In fact, there exists a functor
Q : Ch(A ) → Ch(A ) and a natural transformation id → Q such that
for each complex C•, the complex QC• is fibrant, and the morphism
C• → QC• is a monomorphism and a quasi-isomorphism.

9Use the Dn form Example 2.2.
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2. The RnΦ are independent of Q•. In fact, if A → Q•, A → P • are two
quasi-isomorphisms towards fibrant complexes, then there exists a quasi-

isomorphism ΦQ• q.i.→ ΦP •.

3. The RnΦ send short exact sequences to long exact sequences. More pre-
cisely, if 0 → A → B → C → 0 is an exact sequence in A, then there exist
fibrant replacements Q•

A, Q
•
B , Q

•
C , such that Q•

A = Cone(Q•
B → Q•

C)[−1].

5 Functorial fibrant replacement

We start with the first claim. The proof is known as the Small Object Argument
and appears in many places and many guises throughout the homotopy theoretic
literature.

Theorem 5.1. Suppose A is a Grothendieck abelian category. Then there exists
a functor Q : Ch(A ) → Ch(A ) and a natural transformation id → Q such that
for each complex C•, the complex QC• is fibrant, and the morphism C• → QC•

is a monomorphism and a quasi-isomorphism.

Remark 5.2. A proof of the case where A is the category of modules over a
ring is in Hovey, “Model categories”, see Theorem 2.3.13. For a more general
version see Beke, “Sheafifiable homotopy model categories”, Proposition 1.3.

Discussion of proof. The idea is as follows. Given C•, define FC• as the pushout

⊕ΛAλ
󰈣󰈣

⊕Λιλ

󰈃󰈃

C•

󰈃󰈃
⊕ΛBλ

󰈣󰈣 FC•

where the sum is over the collection Λ of roofs ιλ

Aλ

↓
Bλ

→C

such that ιλ is both a

monomophism and a quasi-isomorphism. Then take

QC• = lim−→(C• → FC• → FFC• → FFFC• → . . . ).

Functoriality of F comes from functoriality of Λ. By the Snake Lemma, the
morphisms C• → FC• are quasi-isomorphisms, so C• → QC• is a filtered
colimit of quasi-isomorphisms, and therefore a quasi-isomorphism. To see that
QC• is fibrant, we would like to argue that given an arbitrary monomorphic
quasi-isomorphism A → B and a morphism A → QC•, we can lift to some A →
FnC•. Then by definition of F we automatically have a canonical commutative
square

A 󰈣󰈣

󰈃󰈃

FnC•

󰈃󰈃
B 󰈣󰈣 Fn+1C•
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so we get the factorisation A → B 󰃚󰃚󰃄 QC•.
There are two big problems with the above proof. The first is that Λ is a

proper class, not a set. So the sums defining F will not exist in general. The
second problem is that an arbitrary A → QC• (for the QC• defined above) will
not necessarily factor through some FnC•.

The solution to these problems is to make Λ smaller and lim−→FnC• bigger.
Since A is a Grothendieck abelian category, it can be shown that there is a set
I of monomorphic quasi-isomorphisms which still detect fibrant objects, and
which generate the set of all monomorphic quasi-isomorphisms. On the other
hand, instead of defining QC• as above, for ordinals γ one recursively defines

F γ =

󰀫
F γ+1 = F ◦ F γ successor ordinals

lim−→γ′<γ
F γ′

limit ordinals

Then, QC• := FκC• for some appropriate κ. For details, see [Beke].
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